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LungHist700: A dataset of 
histological images for deep 
learning in pulmonary pathology
Jorge Diosdado   1 ✉, Pere Gilabert   1, Santi Seguí1 & Henar Borrego2

Accurate detection and classification of lung malignancies are crucial for early diagnosis, treatment 
planning, and patient prognosis. Conventional histopathological analysis is time-consuming, limiting 
its clinical applicability. To address this, we present a dataset of 691 high-resolution (1200 × 1600 
pixels) histopathological lung images, covering adenocarcinomas, squamous cell carcinomas, and 
normal tissues from 45 patients. These images are subdivided into three differentiation levels for 
both pathological types: well, moderately, and poorly differentiated, resulting in seven classes 
for classification. The dataset includes images at 20x and 40x magnification, reflecting real clinical 
diversity. We evaluated image classification using deep neural network and multiple instance learning 
approaches. Each method was used to classify images at 20x and 40x magnification into three 
superclasses. We achieved accuracies between 81% and 92%, depending on the method and resolution, 
demonstrating the dataset’s utility.

Background & Summary
Cancer is the second leading cause of death globally. In 2022, more than 20 million new cancer cases were 
reported, and approximately 9.7 million people succumbed to the disease worldwide. Lung cancer, with more 
than 2.5 million new cases diagnosed1, was the most lethal, accounting for 1.8 million deaths. This staggering 
figure represents a fifth of all cancer deaths globally, significantly more than the second deadliest cancer, colon 
and rectum cancer, which caused almost 904,000 deaths in the same year, 20222.

The high mortality rate of lung cancer is mainly due to late detection. Early diagnosis of lung cancer is key 
to survival. However, by the time symptoms become apparent, the disease has often spread, resulting in a low 
survival rate3. The 5-year survival rate for early-stage lung cancer can exceed 90%, while for patients diagnosed 
at a late stage, it can be less than 10%04. Smoking, identified as the leading risk factor by the American Cancer 
Society, is projected to account for 81% of lung cancer cases in 20235.

Carcinomas, malignancies that develop from epithelial cells, are the most common type of malignancy in the 
lungs. Carcinomas located in the lungs that originate there are referred to as primary lung carcinomas, distin-
guishing them from those that have spread to the lungs via metastasis. Primary lung carcinomas can be divided 
into two major histopathological types: small cell carcinoma and non-small cell carcinoma, with non-small cell 
carcinomas being the most frequent6.

Non-small cell carcinoma can be classified into two main subtypes: adenocarcinomas and squamous cell 
carcinomas.

•	 Adenocarcinomas: These tumors exhibit microscopic glandular-related tissue cytology, tissue architecture, 
and/or gland-related products.

•	 Squamous Cell Carcinomas: These tumors are characterized by observable traits of squamous differentia-
tion, such as intercellular bridges, keratinization, and the formation of squamous pearls6.

Additionally, there are other less common types of non-small cell carcinoma, such as large cell carcinoma, 
adenosquamous carcinoma, and sarcomatoid carcinoma, each with its own unique histological features and 
clinical behaviors that may influence treatment strategies and prognosis.
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Distinguishing the histological types of lung carcinomas is crucial in the era of personalized medicine, 
as each tumor type can be associated with different genetic alterations within the tumor itself. These genetic 
changes, in turn, are related to targeted therapies aimed at those specific mutations, improving the medium and 
long-term prognosis7.

Histopathological images, microscopic images of tissue samples, play a crucial role in medical diagnosis and 
research. They offer valuable insights into the appearance and structure of cells and tissues, enabling patholo-
gists to accurately identify and classify diseases8. However, manual analysis of these images is time-consuming 
and prone to human error9. Therefore, histopathological image datasets, collections of labeled histopathological 
images, are essential for developing and training image analysis algorithms. These datasets provide researchers 
with a large and diverse set of images, facilitating the creation of artificial intelligence (AI) models that can accu-
rately classify and diagnose diseases, thereby assisting human experts in their tasks.

The field of AI is expanding rapidly, with new applications emerging daily, particularly in the medical sec-
tor10. One promising application is in diagnostics, where AI can enhance both diagnostic accuracy and effi-
ciency. AI can improve the early detection and diagnosis of lung cancer, potentially leading to better patient 
outcomes11.

To develop AI algorithms using lung histopathology images, several popular datasets are frequently utilized. 
Three of the most important ones are TCGA-LUAD12 for adenocarcinomas, TCGA-LUSC13 for squamous cell 
carcinoma, and LC2500014 which also includes slides from benign patients. The TCGA-LUAD and TCGA-LUSC 
datasets contain whole slide images (WSI) of lungs, specifically 541 slides from 478 LUAD patients and 512 
slides from 478 LUSC patients.

The LC25000 dataset consists of 750 images of size 768 × 768, classified into three different categories: lung 
benign, lung adenocarcinoma, and lung squamous cell carcinoma, with 250 unique images in each category. 
Additionally, the dataset contains 500 images of the colon. All these images were then artificially augmented to 
create a dataset of 25,000 images. However, the absence of traceability from the original images to the augmented 
ones poses a challenge in accurately dividing the dataset into training, validation, and test sets. This lack of trace-
ability can lead to potential data leakage during the training and validation stages, undermining the validity of 
technical conclusions drawn from studies using this dataset15–19.

This paper introduces a novel dataset, LungHist700, comprising 691 images of size 1200 × 1600 pixels from 
both normal lung tissue and primary lung carcinomas. The carcinomas are categorized into two types: adeno-
carcinomas and squamous cell carcinomas. Each of these types is further subclassified based on the degree of 
carcinoma differentiation into three levels: well differentiated, moderately differentiated, and poorly 
differentiated.

Methods
Data was collected from 45 patients at Hospital Clínico de Valladolid in 2023 as part of a regular diagnostic 
process. The dataset consists of images of hematoxylin and eosin-stained samples extracted from pathology 
glass slides using a Leica DM 2000 microscope and a Leica ICC50 W microscope camera at two distinct magni-
fications: 20x and 40x. The field of view was meticulously selected by a pathologist to encompass representative 
tissue of the category. In most cases, this tissue is discernible in all four quadrants of the image.

All individuals included in the study were surgical patients, so all images are from patients with malignan-
cies. Images classified as showing normal lung depict areas where the tumor has not spread.

For each patient, two concurrent evaluations were conducted to determine the type of tumor (adenocar-
cinoma or squamous cell carcinoma) and the level of differentiation (well differentiated, moderately differen-
tiated, or poorly differentiated). The first evaluation was a morphological analysis of the tissue based on the 
hematoxylin and eosin-stained samples, which determined the classification of well and moderately differen-
tiated samples. The second evaluation involved immunohistochemical tests of the tissue to determine the type 
of tumor (adenocarcinoma or squamous). These tests, combined with contextual information, contributed to 
the accurate classification of poorly differentiated categories. The tests performed were TTF1, CK7, Napsin A, 
P40, and CK5/6. Using the results from all the tests, a specialist pathologist classified the images into the seven 
classes of the dataset.

For adenocarcinomas, the differentiation grading system recommended by the College of American 
Pathologists20,21 was employed. According to their guidelines, there are three differentiation levels:

	 1.	 Well-differentiated: Tumors primarily exhibiting a lepidic pattern, with no high-grade components or less 
than 20% high-grade features (such as solid, micropapillary, or complex glandular patterns).

	 2.	 Moderately differentiated adenocarcinoma: Tumors mainly showing acinar or papillary patterns, with less 
than 20% high-grade features.

	 3.	 Poorly differentiated adenocarcinoma: Tumors that have 20% or more high-grade features.

Pulmonary squamous cell carcinoma has also traditionally been divided into well differentiated, moder-
ately differentiated, and poorly differentiated, similar to squamous cell carcinomas of other organ systems. The 
degree of differentiation is generally dependent on a combination of features, such as the presence or absence of 
keratinization and intercellular bridges, as well as cellular pleomorphism and mitotic activity22. Following these 
guidelines, squamous cell carcinoma has been divided into the following three categories:

	 1.	 Well differentiated: These tumors exhibit keratinization, such as keratin pearls and intercellular bridges. 
They typically grow in sheets or nests, with polygonal cells that have round to oval nuclei, vesicular fea-
tures, and eosinophilic cytoplasm. Additionally, mitotic figures and focal areas of hemorrhage or necrosis 
may be present.
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	 2.	 Moderately differentiated: These tumors show increased cytologic atypia and mitotic activity. Although 
keratinization and intercellular bridges are still present, they are less prominent compared to well-differen-
tiated tumors. Moreover, areas of hemorrhage or necrosis are more common.

	 3.	 Poorly differentiated: These tumors grow in sheets and are often unrecognizable as squamous type without 
immunohistochemistry. They display significant cellular pleomorphism, high mitotic activity, and exten-
sive areas of necrosis.

Figure 1 shows adenocarcinoma samples, Fig. 2 displays squamous cell carcinoma samples at varying levels 
of differentiation and resolution. Figure 3 presents images of normal lung tissue at two different resolution.

Ethics approval.  The study was conducted according to the guidelines of the Declaration of Helsinki and 
approved by the Ethical Committee of the Hospital Clínico Universitario de Valladolid (CEIm Área de Salud 
Valladolid Este) under project PI 23–3167. The committee waived participant consent given data anonymization 
and approved open publication of the data.

Fig. 1  Images displaying adenocarcinoma at varying levels of differentiation and resolution.

Fig. 2  Images displaying squamous cell carcinoma at varying levels of differentiation and resolution.
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Data Records
The dataset is available at figshare23. It consists of 691 images from 45 patients, with each image having a reso-
lution of 1200 × 1600 pixels and stored in .jpg format. These images are captured at either 20x or 40x magnifi-
cation levels and are categorized into seven classes (see Table 1). An accompanying.csv file links each image to 
the associated patient ID. All patients have been anonymized, and the file includes an identifier to match images 
from the same patient.

Technical Validation
In this section, we present two baseline methods for classifying the dataset into the three major superclasses. 
First, a classic approach was employed where images were resized, and a deep neural network (DNN) was 
trained. The second method involves a multiple instance learning (MIL) strategy, where patches of the images 
were extracted, and the same DNN was used to obtain multiple embeddings, one for each patch. An attention24 
layer was then applied to relate and aggregate these embeddings for image classification.

All the experiments used the same training configuration: the networks were implemented using Keras and 
executed on an NVIDIA RTX 3090 with CUDA 11.0. The DNN model used in both methods was a ResNet50 
network pretrained on ImageNet. The Adam optimizer was employed with an initial learning rate of 1e-5, which 
was reduced by a factor of 0.1 if the model began to overfit. Categorical cross-entropy was used as the loss func-
tion in both experiments. The Albumentations library25 was utilized to generate augmentations on the fly during 
training.

Images were classified into their superclasses: “aca” (adenocarcinoma), “scc” (squamous cell carcinoma), and 
“nor” (normal). The data was divided into three sets: 80% for training, 10% for validation, and the remaining 
10% for testing. A patient-wise strategy was employed, ensuring that images from the same patient were placed 
in the same set to ensure fair evaluation and prevent data leakage.

DNN Baseline.  To train the ResNet50 model, images were resized to 300 × 400 pixels to better fit this archi-
tecture. The published dataset, however, contains images at their original resolution (1200 × 1600 pixels). Figure 4 
illustrates the learning curves on the training and validation splits, as well as the classification confusion matrix 
of the experiment on the test set for the 20x resolution. The model achieved an accuracy of 90%, a ROC-AUC of 
98%, a precision of 92%, and a recall of 87%.

The experiment was then repeated with the same configuration but using images at 40x resolution. The 
model achieved an accuracy of 82%, a ROC-AUC of 94%, a precision of 82%, and a recall of 84%.

To assess the validity and explainability of the results, we used Grad-CAM26 on the last convolutional 
layer of the ResNet50 model. The threshold was set to 0.25 to visualize the Grad-CAM activations. Figure 5 
shows the explanation masks generated by the algorithm on some test images, each representing a distinct 

Fig. 3  Normal lung images at different resolution.

Description Id. 20x 40x Subclass total Superclass total

Well differentiated adenocarcinoma aca_bd 57 46 103

280Moderately differentiated adenocarcinoma aca_md 44 46 90

Poorly differentiated adenocarcinoma aca_pd 45 42 87

Normal lung nor 85 66 151 151

Well differentiated squamous cell carcinoma scc_bd 50 49 99

260Moderately differentiated squamous cell carcinoma scc_md 30 36 66

Poorly differentiated squamous cell carcinoma scc_pd 48 47 95

Total 359 332 691 691

Table 1.  The dataset comprises three classes: adenocarcinoma (aca), squamous cell carcinoma (scc), and 
normal (nor). Images showing malignant tissue are further categorized based on their differentiation level.

https://doi.org/10.1038/s41597-024-03944-3


5Scientific Data |         (2024) 11:1088  | https://doi.org/10.1038/s41597-024-03944-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Fig. 4  Classification results of the proposed baseline for 20x resolution. Early stopping was triggered at epoch 
28, based on the validation set. After that, the best weights were loaded. The confusion matrix shows the 
correctly classified percentage of samples and the classification errors on the test set. The results are normalized 
by rows (True label).

Fig. 5  Masks generated by the Grad-CAM algorithm on some test images.

Fig. 6  Classification performance of the MIL algorithm (ResNet50 + Multi-Head Attention layer) for 20x 
resolution. Early stopping was triggered at epoch 28.
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histopathological class: adenocarcinoma, normal tissue, and squamous cell carcinoma. The masks illustrate how 
the model highlights specific areas relevant to image classification. The results were cross-checked with the 
medical team to validate the model’s output.

MIL Baseline.  A second strategy based on ResNet50 was also tested. We trained a MIL algorithm that con-
sisted of a ResNet50 followed by a Multi-Head Attention layer. During training, we extracted 20 random patches 
of size 224 × 224 and used the ResNet architecture to obtain embeddings for each patch. An attention layer with 
four heads was then applied, followed by average pooling to obtain a single embedding for classification. All the 
training parameters remained the same, though the batch size was reduced to three to fit within the GPU’s mem-
ory constraints. The results of the MIL algorithm for images at 20x resolution are shown in Fig. 6. This baseline 
model achieved an accuracy of 81%, a ROC-AUC of 89%, a precision of 80%, and a recall of 81% on the test set.

Code availability
Code to reproduce the DNN baseline is available at https://github.com/jorgediosdado/LungHist700.
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