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Abstract

We study the behaviour of a transcendental entire map f : C → C on an unbounded
invariant Fatou component U , assuming that infinity is accessible from U . It is well-
known that U is simply connected. Hence, by means of a Riemann map φ : D → U
and the associated inner function g := φ−1 ◦ f ◦ φ, the boundary of U is described
topologically in terms of the disjoint union of clusters sets, each of them consisting of one
or two connected components in C, improving the results in [BD99; Bar08].

Moreover, under mild assumptions on the location of singular values in U (allowing
them even to accumulate at infinity, as long as they accumulate through accesses to
∞), we show that periodic and escaping boundary points are dense in ∂U , and that all
periodic boundary points accessible from U . Finally, under similar conditions, the set of
singularities of g is shown to have zero Lebesgue measure, strengthening substantially the
results in [EFJS19; ERS20].

1 Introduction

Consider a transcendental entire function f : C → C and denote by {fn}n∈N its iterates,
which generate a discrete dynamical system in C. Then, the complex plane is divided into
two totally invariant sets: the Fatou set F(f), defined to be the set of points z ∈ C such
that {fn}n∈N forms a normal family in some neighbourhood of z; and the Julia set J (f), its
complement. For background on the iteration of entire functions see e.g. [Ber93].

The Fatou set is open and consists typically of infinitely many connected components,
called Fatou components. Due to the invariance of the Fatou and the Julia sets, Fatou
components are periodic, preperiodic or wandering. Replacing f by fn, the study of periodic
Fatou components can be reduced to the study of the invariant ones. Such Fatou components
are always simply connected [Bak84], and are classified according to their internal dynamics
into Siegel disks, attracting and parabolic basins, and Baker domains, being the latter exclusive
of transcendental functions. Unlike Siegel disks or basins, for which there is a well-defined
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normal form in a neighbourhood of the convergence point, Baker domains do not come with
a unique asymptotic expression. Indeed, this leads to a classification of Baker domains
into three types: doubly parabolic, simply parabolic and hyperbolic, whose normal forms are,
respectively, idC + 1, idH ± 1 and λidH, for some λ > 0 [Kön99]. See also [FH06].

We aim to study the boundary of unbounded invariant Fatou components for
transcendental entire functions, from a topological and dynamical point of view. While
the classification of periodic Fatou components, and their internal dynamics, are known since
the begining of the twentieth century from the works of Fatou and Julia, the study of the
dynamics of f when restricted to the boundary of such invariant sets is much more recent.
Indeed, the seminal paper of Doering and Mañé [DM91], initiated the study of the ergodic
properties on the boundary of invariant Fatou components of rational maps. In this context,
the work in [PZ94] should be highlighted, where it is proven that periodic points are dense
in the boundary of basins of all rational maps. We remark that a crucial point in the proofs
of their results is the fact that rational maps have a finite number of singular values, i.e.
singularities of the inverse map. The work of Doering and Mañé was partially extended to
the transcendental setting in [RS18; BFJK19], while the topology of the boundaries has been
widely studied in [BW91; BD99; Bar08; BFJK17].

A standard approach to study invariant Fatou components is to conjugate the dynamics
in the Fatou component to the dynamics of a self-map of the unit disk D. Indeed, since U is
simply connected, one can consider a Riemann map φ : D → U , and the function

g : D → D, g := φ−1 ◦ f ◦ φ.

The map g is called an associated inner function to f |U , and it is unique up to conjugacy
with automorphisms of D.

As we shall see throughout the paper, associated inner functions play an important role
in the study of U , not only to describe the dynamics of f |U , but also to study the topology
and the dynamics on the boundary. However, some considerations have to be made since
neither φ nor g need to be defined in ∂D (if, for example, the degree of g is infinite, or the
boundary of U is not locally connected). Details are given in Section 3.

In particular, we consider the dynamical system induced in ∂D by the inner function
g in the sense of radial limits, which we denote by g∗ : ∂D → ∂D. For our approach, the
ergodic properties of g∗ : ∂D → ∂D become crucial, and depend only on the type of Fatou
component considered. This leads to the following definition (see Def. 3.13 for ergodicity
and recurrence).

Definition. (Ergodic and recurrent Fatou components) Let f : C → C be a
transcendental entire function. Let U be an invariant Fatou component for f , and let g be
an associated inner function. We say that U is an ergodic (resp. recurrent) if g∗ : ∂D → ∂D
is ergodic (resp. recurrent).

As detailed in Section 3.3, Siegel disks, attracting and parabolic basins are both ergodic
and recurrent. Hyperbolic and simply parabolic Baker domains are never ergodic nor
recurrent. Doubly parabolic Baker domains are always ergodic, but they may be recurrent
or not. Properties of the boundary of Fatou components (both from the topological and the
dynamical point of view) depend essentially more on this ergodic classification, rather than
on the precise type of Fatou component.

The goal of this paper is to give an accurate description of the boundary dynamics of
f on unbounded invariant Fatou components for transcendental entire functions, using as
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main tools the ergodic properties of the associated inner function and the distribution of
postsingular values.

The standing hypotheses throughout the article are that f is a transcendental entire
function, and U is an invariant Fatou component, for which ∞ is an accessible boundary
point, i.e. we assume there exists a curve γ : [0, 1) → U , with γ(t) → ∞, as t → 1−. In the
sequel, we denote by ∂U the boundary of U considered in C.

The objectives of this paper are threefold. First, we aim to give a topological description
of the boundary of U from the point of view of its Riemann map; second, we wish to give
analytical properties for the associated inner function g; and last, we wish to explore the
existence, density and accessibility of periodic points and escaping points in ∂U , i.e. points
that converge to ∞ under iteration.

Next, we proceed to explain these three aspects in more detail and state our main results,
together with a brief account of the state of the art. Due to the somewhat technical nature of
the results when stated in the complete generality, most of them are presented in a simplified
form understandable by a more general audience, and later stated more precisely in the
corresponding section.

Topology of the boundary of unbounded invariant Fatou components

In the setting described above, understanding the boundary behaviour of the Riemann map
φ : D → U is used not only to study the dynamics of f on the boundary, but also to describe
the topology of ∂U . We note that, a priori, continuity of the Riemann map in D cannot
be assumed, since the continuous extension only exists if ∂U is locally connected, something
impossible if, for example, U is unbounded and it is not a univalent Baker domain [BW91].
Hence, given a point eiθ ∈ ∂D, we shall work with its radial limit

φ∗(eiθ) := lim
r→1−

φ(reiθ)

(if it exists), and its cluster set

Cl(φ, eiθ) :=
{
w ∈ Ĉ : there exists {zn}n ⊂ D with zn → eiθ and φ(zn) → w

}
(see Sect. 3.1 and Def. 3.3). We prove the following.

Theorem A. (Topological structure of ∂U) Let f be a transcendental entire function,
and let U be an invariant Fatou component, such that ∞ is accessible from U . Assume U is
ergodic. Let φ : D → U be a Riemann map. Then, ∂U is the disjoint union of cluster sets
Cl(φ, ·) of φ in C, i.e.

∂U =
⊔

eiθ∈∂D

Cl(φ, eiθ) ∩ C.

Moreover, either Cl(φ, eiθ) ∩ C is empty, or has at most two connected components. If
Cl(φ, eiθ) ∩ C is disconnected, then φ∗(eiθ) = ∞.

Observe that this is quite a strong property. For example, there cannot be points in ∂U
with more than one access from U , since they would belong to the cluster set of at least two
points in ∂D (for the definition of access, see Sect. 3.1).

We shall see that Theorem A plays an important role in the proofs of the main dynamical
results in this paper, but it also has some interesting more direct consequences, like for
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example the following generalization of the result of Bargmann [Bar08, Corol. 3.15], which
states that the boundary of a Siegel disk cannot have accessible periodic points.

Corollary B. (Periodic points in Siegel disks) Let f be a transcendental entire function,
and let U be a Siegel disk, such that ∞ is accessible from U . Then, there are no periodic
points in ∂U .

Theorem A improves the understanding of the topology of the boundary of unbounded
Fatou components for transcendental entire functions, initiated by the work of Devaney and
Golberg [DG87], on the completely invariant attracting basin Uλ of Eλ(z) := λez, with
0 < λ < 1

e . It was shown, on the one hand, that points eiθ ∈ ∂D such that φ∗
λ(e

iθ) = ∞
are dense in ∂D; and, on the other hand, that each cluster set Cl(φλ, e

iθ) is either equal to
{∞} or it consists of an unbounded curve landing at a finite accessible endpoint (for the
definitions of cluster set and landing point, see Sect. 3.1). This result was generalized to
totally invariant attracting basins of transcendental entire function f , with connected Fatou
set [BK07]. We note that both in [DG87] and in [BK07], symbolic dynamics (and tracts)
play an important role in their proofs, which depend essentially on the class of functions they
consider, and it does not lead to an obvious generalization to arbitrary Fatou components.

In a more general setting, for arbitrary unbounded Fatou components it is known that
all cluster sets must contain infinity [BW91]. With the additional assumption that infinity
is accessible from U , points with radial limit infinity are dense in the unit circle as shown in
[BD99; Bar08], although their work did not address the nature of these cluster sets.

In this context, Theorem A should be viewed as a susbtantial generalization of the results
in [BK07], since it applies to arbitrary ergodic invariant Fatou components with infinity
accessible. We remark that our proof does not rely on symbolic dynamics, but on the fact
that radii landing at infinity under the Riemann map are dense in ∂D, and they separate the
plane into infinitely many regions, each of them containing a different cluster set, as well as
on a deep analysis of clusters sets using null-chains of crosscut neighbourhoods (see Sect. 3.1
for definitions).

Inner functions associated to unbounded invariant Fatou components

As stated above, to each invariant Fatou component U of a transcendental entire function f
we associate an inner function g : D → D via a Riemann map φ : D → U . Such inner function
is unique up to conformal conjugacy in the unit disk, and it is well-known that it is either
a finite Blaschke product (when f |U has finite degree); or conjugate to an infinite Blaschke
product (when f |U has infinite degree) (Frostman, [Gar81, Thm. II.6.4]). In the former case,
g extends to a rational function g : Ĉ → Ĉ, whereas in the latter there exists at least a point
eiθ ∈ ∂D where g does not extend holomorphically to any neighbourhood of it. Such a point
is called a singularity for g, and the set of singularities of g is denoted by Sing(g) ⊂ ∂D (see
Sect. 3).

A natural problem in this setting is to relate the inner function g with the function f |U ,
in the sense of understanding if every inner function can be realised for some f |U , or if
considering a particular class of functions f limits the possible associate inner functions g;
for instance if a bound on the number of singularities of g in ∂D exists. Note that, in general,
there exist inner functions for which every point in ∂D is a singularity.

A first (naive) remark is that singularities of g are related to accesses from U to infinity,
since the singularities of g share many properties with the essential singularity of f (e.g. both
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are the only accumulation points of preimages of almost every point). In particular, bounded
invariant Fatou components are always associated with finite Blaschke products. In fact, it
is shown in [BFJK17, Prop. 2.7] that, if ∞ is accessible from U , then

Sing(g) ⊂ {eiθ ∈ ∂D : the radial limit φ∗(eiθ) is equal to ∞}.

We note that, by the results of [BD99; Bar08], when U is ergodic, the latter set is the whole
unit circle, and hence the result does not give actual information on the singularities of g.

A different approach is found in [EFJS19; ERS20], which relies on having a great control
on the singular values of f , i.e. points for which not every branch of the inverse is locally well-
defined around it. Indeed, assuming that the orbits of singular values belong to a compact
set in F(f) (i.e. assuming f to be hyperbolic), they give explicit bounds for the number of
singularities. One can see from the proof that it is enough to assume that f behaves as if it
was a hyperbolic function when restricted to U i.e. that the orbits of singular values in U
are compactly contained in U . We shall not enter into the details at this point, but keep in
mind the main idea: controlling the singular values of f allows to bound the singularities of
g, and it is enough to have this control on the singular values which actually lie inside U .

In this direction, let us consider the postsingular set of f

P (f) :=
⋃

s∈SV (f)

⋃
n≥0

fn(s),

where SV (f) denotes the set of singular values of f , and define the following more general
class of Fatou components.

Definition. (Postsingularly separated Fatou components) Let f be a transcendental
entire function, and let U be an invariant Fatou component. We say that U is a postsingularly
separated Fatou component (PS Fatou component) if there exists a domain V , such that
V ⊂ U and

P (f) ∩ U ⊂ V.

Hence, a PS Fatou component is a Fatou component whose postsingular values are allowed
to accumulate at∞, as long as they accumulate through accesses to∞. Indeed, the role of the
domain V is precisely to control in which accesses of U do the postsingular values accumulate.

Observe that PS Fatou components can be seen as a generalization of Fatou components
of hyperbolic functions. In fact, if U is a Fatou component of a hyperbolic function f , then
P (f) ∩ U is contained in a compact set V in U . PS Fatou components allow V not to be
compact, we only ask V ⊂ U .

Note that there is no requirement for P (f) outside U ; in particular, P (f) is allowed to
accumulate in ∂U .

The postsingularly separated condition is sufficient to describe the singularities of g, as
we show in the following theorem.

Theorem C. (Singularities for the associated inner function) Let f be a
transcendental entire function, and let U be an invariant Fatou component, such that ∞
is accessible from U . Let φ : D → U be a Riemann map, and let g := φ−1 ◦ f ◦ φ be the
corresponding associated inner function. Assume U is postsingularly separated.
Then, the set of singularities of g has zero Lebesgue measure in ∂D. Moreover, if eiθ ∈ ∂D is
a singularity for g, then φ∗(eiθ) = ∞.
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Figure 1.1: Schematic representation of how a postsingularly separated Fatou component would look like.
The Fatou component of the left is a Baker domain of z + e−z. For this particular example, the domain V
could have been taken simpler. However, we wanted to illustrate how V looks like in general. As we will prove
in the Technical Lemma 1, given a Riemann map φ : D → U , φ−1(V ) is a domain enclosed by curves landing
in ∂D.

Recall that we do allow postsingular values to accumulate at ∞. Hence, in contrast to the
setting considered in [EFJS19; ERS20], we allow φ−1(SV (f)) to accumulate in ∂D. Moreover,
Theorem C strengthens the result in [BFJK17, Prop. 2.7], showing that a singularity not
only must be approximated by points with radial limit infinity, but itself must have radial
limit infinity, in accordance with the a priori naive idea of relating singularities with accesses
to infinity.

Dynamics on the boundary of unbounded invariant Fatou components

Periodic boundary points have been widely studied for rational maps. As it was mentioned
before, Przytycki and Zdunik [PZ94] proved that repelling periodic points are dense in the
boundary of any attracting or parabolic basin U of a rational map, actually showing that
accessible periodic points are dense in ∂U . In the setting of transcendental entire functions,
the study of periodic points in the boundary of Fatou components remains much more
unexplored. On the one hand, in [BD00, Thm. H] it is proven that all repelling periodic
points are accessible when considering a transcendental entire function with finitely many
singular values whose Fatou set consists of a totally invariant attracting or parabolic basin.1

On the other hand, there are examples of hyperbolic and simply parabolic Baker domains
without periodic boundary points, (see e.g. [BF01]) and, in fact, the existence of periodic
points on the boundary of Siegel disks for which ∞ is accessible is ruled out by our Corollary
B. As far as we are aware, no general results exist concerning periodic boundary points for
transcendental functions.

In this section, we shall apply the techniques developed throughout the paper to study
periodic points in ∂U , and also escaping points, in this general setting. To this end, and
being very far from the rational case where the only singularities of f−1 are a finite number
of critical values, we need a slightly stronger condition on the orbits of the singular values of
f . More precisely, we restrict to the following class of Fatou components, which is a subset
of the previous ones.

1We note that Theorem H in [BD00] relies on [Bak70], which has a flaw (see [RS19]). However, as it is
shown in [RS19, p. 1612], the result holds using [RS19, Thm. 1.3.c].
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Definition. (Strongly postsingularly separated Fatou components) Let f be a
transcendental entire function, and let U be an invariant Fatou component. We say that
U is a strongly postsingularly separated Fatou component (SPS Fatou component) if there
exists a simply connected domain Ω and a domain V such that V ⊂ U , U ⊂ Ω, and

P (f) ∩ Ω ⊂ V.

R+ πi

R− πi

•
0

Figure 1.2: Dynamical plane for f(z) = z+ e−z, which is 2πi-pseudoperiodic, and contains a Baker domain
Uk in each strip {(2k − 1)π < Im z < (2k + 1)π}k∈Z. All of them are SPS. Indeed, there is one critical point
zk = 2πki in each strip, which lies in UK , and there are no asymptotic values. This function was studied in
[BD99; FH06; FJ23].

Hence, the control on the postsingular set that we require is two-fold. On the one hand,
to control the postsingular values inside U , we ask U to be postsingularly separated. On
the other hand, the existence of the simply connected domain Ω is needed to control the
postsingular values in a neighbourhood of ∂U .

We note that this condition is analogous to the one given by Pérez-Marco [Per97] for the
study of the boundary of Siegel disks. The need of this condition is discussed in Section 5.3.

Examples. (SPS Fatou components)Many of the examples of unbounded invariant Fatou
components that have been explicitly studied are SPS. Examples of basins of attraction
include the ones of hyperbolic functions studied in [BK07], as well as the hyperbolic
exponentials [DG87]. However, the results we prove are already known for this class of
functions, since J (f) = ∂U . A more significant example are the basins of attraction of
f(z) = z − 1 + e−z. Regarding Baker domains, consider Fatou’s function f(z) = z + 1+ e−z,
studied in [Evd16]; the Baker domains of f(z) = z + e−z, investigated in [BD99; FJ23]; and
the ones in [FH06, Ex. 4].

In all cases, singular values are all critical values and lie in the Baker domains, at a positive
distance from the boundary, even though their orbits accumulate at ∞. Observe however
that they do so through only one access, and that there is an absorbing domain V ⊂ U with
P (f) ⊂ V (we refer to [Evd16; FJ23] for further details). This implies, in particular, that
iterated inverse branches are globally well-defined around ∂U . Note that this situation is
much simpler than the general case that we address in our theorem, and in fact, if this were
always the case, our proofs could be simplified to a great extent (due to this global definition
if inverse branches).
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We prove the following.

Theorem D. (Boundary dynamics) Let f be a transcendental entire function, and let U
be an invariant Fatou component, such that ∞ is accessible from U . Assume U is strongly
postsingularly separated. Then, periodic points in ∂U are accessible from U .
Moreover, if U is recurrent, then both periodic and escaping points are dense in ∂U .

Remark. (Parabolic basins) Note that parabolic basins cannot be PS (and hence neither
SPS), due to the fact that the parabolic fixed point is always in P (f). However, as we see in
Section 8, our results apply if the parabolic fixed point is the only point in ∂U ∩ P (f).

Apart from the more classical analysis of the existence and distribution of periodic points,
we notice that other types of orbits, like escaping points, are a topic of more recent and wide
interest. In this sense, one can consider the the escaping set I(f), i.e. the set of z ∈ C such
that fn(z) → ∞ as n → ∞; the bounded-orbit set K(f); i.e. the set of points whose orbit
remains bounded under iteration; and the bungee set BU(f), i.e. the set of points whose
orbit is nor escaping nor bounded.

The existence of escaping points in the boundary of Fatou components fits into the more
general problem of understanding the relationship between the two dynamically relevant
partitions of the complex plane: on the one hand, the Fatou set F(f) and the Julia set J (f);
and on the other hand, the escaping set I(f), the bungee set BU(f) and the bounded-orbit
set K(f). By normality, every Fatou component of f must be contained either in one and
only one of these sets. In fact, periodic and preperiodic Fatou components lie in K(f), except
for Baker domains (and their preimages), in which iterates tend to infinity, and hence belong
to I(f).

One may ask how ∂U relates to these three sets: I(f), BU(f) or K(f). This question
is undoubtedly more difficult (leaving out the trivial case where U is bounded), and often
approachable only in terms of harmonic measure (see Thm. 3.15). In particular, for recurrent
unbounded Fatou components the bungee set BU(f) has full harmonic measure, and it is an
open question the existence of even one boundary point in K(f)∩∂U , or in I(f)∩∂U . Thus,
Theorem D shows that, under additional conditions on P (f), both K(f)∩∂U and I(f)∩∂U
are dense in ∂U , despite having zero harmonic measure.

Structure of the paper. Section 2 contains preliminary results about planar topology.
Section 3 is devoted to introduce the main tool when studying the dynamics on a Fatou
component: the associated inner function, and to prove several results concerning the
boundary behaviour of a Riemann map for an invariant Fatou component. In Section 4,
we deal with ergodic Fatou components and their topological boundary structure, proving
Theorem A and Corollary B, relying on the results of the previous section.

Sections 6 and 7 are devoted to PS Fatou components, proving Theorem C and Theorem
D, respectively. Both proofs depend on the construction of appropriate neighbourhoods of
the connected components of ∂U , in which inverses are well-defined and act as a contraction
with respect to some metric. We collect this in some Technical Lemmas, which can be found
in Section 5. Finally, in Section 8 the generalization of the previous results to parabolic
basins is discussed.

Notation. Throughout this article, C and Ĉ denote the complex plane and the Riemann
sphere, respectively. Given a set A ⊂ C, we denote by Int A, its interior; by A and ∂A, its
closure and its boundary taken in C; and by Â and ∂̂A, its closure and its boundary when
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considered in Ĉ. If U is a simply connected domain, ωU stands for the harmonic measure in
∂U . We denote by D, the unit disk; by ∂D, the unit circle; and by λ, the Lebesgue measure
on ∂D, normalized so that λ(∂D) = 1.

Acknowledgments. We would like to thank Krzysztof Barański, Arnaud Chéritat, Lasse
Rempe, Pascale Roesch and Anna Zdunik, for interesting discussions and comments.

2 Background on planar topology

In this section we state some standard results of planar topology, which we use in our proofs.
By a simple arc, or a Jordan arc, we mean a set homeomorphic to the closed interval

[0, 1]. By a closed simple curve, or a Jordan curve, we mean a set homeomorphic to a circle.
Recall the well-known Jordan Curve Theorem.

Theorem 2.1. (Jordan Curve Theorem) Let γ be a simple closed curve in Ĉ. Then, γ
separates Ĉ into precisely two connected components.

By a domain U ⊂ C, we mean a connected open set. A domain U is simply connected if
every closed curve in U is homotopic to a point in U . We shall need the following criterion
to characterize when a domain is simply connected.

Theorem 2.2. (Criterion for simple connectivity, [Bea91, Prop. 5.1.3]) Let U be a
domain in Ĉ. Then, U is simply connected if, and only if, Ĉ ∖ U is connected.

Given a domain U ⊂ C, a point p ∈ ∂̂U is called accessible from U if there exists a curve
γ : [0, 1) → U such that γ(t) → p, as t → 1. We also say that γ lands at p. Fixed q ∈ U and
p ∈ ∂̂U accessible, each homotopy class (with fixed endpoints) of curves γ : [0, 1) → U such
that γ(0) = q and γ(1) = p is called an access from U to p ∈ ∂̂U .

Finally, given a set in C, let us define its corresponding filled closure as follows.

Definition 2.3. (Filled closure) Let X ⊂ C be any connected set in the complex plane.
We define the filled closure of X as

fill(X) := X ∪
(
components Uof C∖X such that ∞ is not accessible from U

)
.

We note that fill(X) is always closed, independently of whether X is closed or not.

3 Inner function associated to a Fatou component

The main tool when working with a simply connected invariant Fatou component is the
Riemann map, and the conjugacy that it induces between the original function in the Fatou
component and an inner function of the unit disk D. More precisely, let U be an invariant
Fatou component of a transcendental entire function f . Such component is always simply
connected [Bak84], so one may consider a Riemann map φ : D → U . Then,

g : D −→ D, g := φ−1 ◦ f ◦ φ.

is an inner function, i.e. a holomorphic self-map of the unit disk D such that, for almost
every θ ∈ [0, 2π), the radial limit

g∗(eiθ) := lim
r→1−

g(reiθ)
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belongs to ∂D (see e.g. [EFJS19, Sect. 2.3]). Then, g is called an inner function associated
to U . Although g depends on the choice of φ, inner functions associated to the same Fatou
components are conformally conjugate, so, for our purposes, we can ignore the dependence
on the Riemann map.

Since U is unbounded, f |U need not be a proper self-map of U , and thus f |U has infinite
degree. In this case, the associated inner function g has also infinite degree, and must have
at least one singularity on the boundary of the unit disk.

Definition 3.1. (Singularity of an inner function) Let g be an inner function. A point
eiθ ∈ ∂D is called a singularity of g if g cannot be continued analytically to a neighbourhood
of eiθ. Denote the set of all singularities of g by Sing(g).

Throughout this paper we assume that an inner function g is always continued to Ĉ ∖ D
by the reflection principle, and to ∂D ∖ Sing(g) by analytic continuation. In other words, g
is considered as a meromorphic function g : Ĉ ∖ Sing(g) → Ĉ.

φ φ

g

f

U

D

U

D

p p

Figure 3.1: This diagram shows the construction of the inner function. Here, we have the dynamical plane of
f(z) = z + e−z, with one of its invariant Baker domains U (in white). In the Baker domain, iterates converge
to ∞ under iteration, while in the unit disk, they converge to the Denjoy-Wolff point p ∈ ∂D. The inner

function associated to this particular domain was computed explicitly in [BD99, Thm. 5.2]: g(z) = z2+3
1+3z2

.

The asymptotic behaviour of iterates of g|D, and hence of f |U , is described by the Denjoy-
Wolff Theorem, being valid not only for inner functions, but for any holomorphic self-map of
D (see e.g. [CG93, Thm. IV.3.1], or [Mil06, Thm. 5.4]).

Theorem 3.2. (Denjoy-Wolff Theorem) Let g be a holomorphic self-map of D, not
conjugate to a rotation. Then, there exists p ∈ D, such that for all z ∈ D, gn(z) → p.
The point p is called the Denjoy-Wolff point of g.

Inner functions also play an important role when describing boundary dynamics, even in
the case when the Riemann map does not extend continuously to D. Although the Riemann
map is no longer a conjugacy, many interesting properties of ∂U and f |∂U can be deduced,
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as it was shown in the pioneering example studied by Devaney and Goldberg [DG87], and
the subsequent work in [BW91; BD99; Bar08; RS18; BFJK19].

The understanding of this interplay between the inner function and the boundary
dynamics of the Fatou component requires some background on both inner functions and
Riemann maps. This section is dedicated precisely to collect all the results which are needed
throughout the paper.

3.1 Simply connected domains and behaviour of the Riemann map

Let U ⊂ C be a simply connected domain, and consider φ : D → U a Riemann map. We are
interested in the extension of φ to ∂D. By Carathéodory’s Theorem, φ extends continuously
to D if and only if ∂U is locally connected. Several techniques have been developed to study
the boundary extension of φ when ∂U is not locally connected, including radial limits, cluster
sets and prime ends. We shall give a quick introduction to the concepts, which are relevant
in this paper, and refer to [Pom92], [Mil06, Sect. 17] for a wider exposition on the topic.

Definition 3.3. (Radial limits and cluster sets) Let φ : D → U be a Riemann map and
let eiθ ∈ ∂D.

• The radial limit of φ at eiθ is defined to be φ∗(eiθ) := lim
r→1−

φ(reiθ).

• The radial cluster set Clρ(φ, e
iθ) of φ at eiθ is defined as the set of values w ∈ Ĉ for

which there is an increasing sequence {tn}n ⊂ (0, 1) such that tn → 1 and φ(eiθtn) → w,
as n → ∞.

• The cluster set Cl(φ, eiθ) of φ at eiθ is the set of values w ∈ Ĉ for which there is a
sequence {zn}n ⊂ D such that zn → eiθ and φ(zn) → w, as n → ∞.

• If U is unbounded, we define the cluster set in C as

ClC(φ, e
iθ) := Cl(φ, eiθ) ∩ C.

Observe that every point in ∂U must belong to the cluster set of some eiθ ∈ ∂U .
In some sense, the previous concepts replace the notion of image under φ for points in

∂D, and allow us to describe the topology of ∂U . On the one hand, cluster sets (and radial
cluster sets) are, by definition, non-empty compact subsets of Ĉ. However, cluster sets in C
may be empty. On the other hand, although φ may not extend continuously to any point
in ∂D, the following theorem, due to Fatou, Riesz and Riesz, ensures the existence of radial
limits almost everywhere.

Theorem 3.4. (Existence of radial limits, [Mil06, Thm. 17.4]) Let φ : D → U be a
Riemann map. Then, for λ-almost every point eiθ ∈ ∂D, the radial limit φ∗(eiθ) exists.
Moreover, fixed eiθ ∈ ∂D for which φ∗(eiθ) exists, then φ∗(eiθ) ̸= φ∗(eiα), for λ-almost every
point eiα ∈ ∂D.

Prime ends give a more geometrical approach to the same concepts, and are defined as
follows. Consider a simply connected domain U , and fix a basepoint z0 ∈ U . We say that D
is a crosscut in U if D is an open Jordan arc in U such that D = D ∪ {a, b}, with a, b ∈ ∂U ;
we allow a = b. If D is a crosscut of U and z0 /∈ D, then U ∖D has exactly one component
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which does not contain z0; let us denote this component by UD. We say that UD is a crosscut
neighbourhood in U associated to D.

A null-chain in U is a sequence of crosscuts {Dn}n with disjoint closures, such that the
corresponding crosscut neighbourhoods are nested, i.e. UDn+1 ⊂ UDn for n ≥ 0; and the
spherical diameter of Dn tends to zero as n → ∞. We say that two null-chains {Dn}n and
{D′

n}n are equivalent if, for every sufficiently large m, there exists n such that UDn ⊂ UD′
m

and UD′
n
⊂ UDm . This defines an equivalence relation between null-chains. The equivalence

classes are called the prime ends of U . The impression of a prime end P is defined as

I(P ) :=
⋂
n≥0

UDn ⊂ ∂U.

If U = D (or any set with locally connected boundary) the impression of every prime end
is a single point. In general, a Riemann map φ : D → U gives a bijection between points
in ∂D and prime ends of U (Carathéodory’s Theorem, [Pom92, Thm. 2.15]). We denote by
P (φ, eiθ) the prime end in U corresponding to eiθ ∈ ∂D.

Given a prime end P , we say that w ∈ ∂̂U is a principal point of P , if P can be represented
by a null-chain {Dn}n satisfying that, for all r > 0, there exists n0 such that the crosscuts
Dn are contained in the disk D(w, r) for n ≥ n0. Let Π(P ) denote the set of all principal
points of P .

The following theorem gives explicitly the relation between cluster sets and prime ends,
and between radial cluster sets and principal points.

Theorem 3.5. (Prime ends and cluster sets, [Pom92, Thm. 2.16]) Let φ : D → U be a
Riemann map, and let eiθ ∈ ∂D. Then,

I(P (φ, eiθ)) = Cl(φ, eiθ), and Π(P (φ, eiθ)) = Clρ(φ, e
iθ).

When ∂U is non-locally connected, not all points in ∂U are accessible from U .

Definition 3.6. (Accessible point and access) Given an open subset U ⊂ Ĉ, a point
v ∈ ∂̂U is accessible from U if there is a path γ : [0, 1) → U such that lim

t→1
γ(t) = v. We also

say that γ lands at v.
Given z0 ∈ U and v ∈ ∂̂U , a homotopy class (with fixed endpoints) of curves γ : [0, 1] → Ĉ
such that γ([0, 1)) ⊂ U , γ(0) = z0 and γ(1) = v is called an access from U to v.

A classical result about Riemann maps is the following.

Theorem 3.7. (Lindelöf Theorem, [CG93, Thm. I.2.2]) Let γ : [0, 1) → U be a curve
which lands at a point v ∈ ∂̂U . Then, the curve φ−1(γ) in D lands at some point eiθ ∈ ∂D.
Moreover, φ has the radial limit at eiθ equal to v. In particular, curves that land at different
points in ∂̂U correspond to curves which land at different points of ∂D.

Accessible points (and accesses) are in bijection with points in ∂D for which φ∗ exists, as
it is shown in the following well-known theorem [Pom92, p. 35, Ex. 5]. For a complete proof,
see [BFJK17].

Theorem 3.8. (Correspondence Theorem) Let U ⊂ Ĉ be a simply connected domain,
φ : D → U a Riemann map, and let p ∈ ∂U . Then, there is a one-to-one correspondence
between accesses from U to p and the points eiθ ∈ ∂D such that φ∗(eiθ) = p. The
correspondence is given as follows.
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(a) If A is an access to p ∈ ∂U , then there is a point eiθ ∈ ∂D with φ∗(eiθ) = p. Moreover,
different accesses correspond to different points in ∂D.

(b) If, at a point eiθ ∈ ∂D, the radial limit φ∗ exists and it is equal to p ∈ ∂U , then there
exists an access A to p. Moreover, for every curve η ⊂ D landing at eiθ, if φ(η) lands
at some point q ∈ Ĉ, then p = q and φ(η) ∈ A.

Next, we state the following theorem, which exploits the possibility of separating sets in
∂U with arcs contained in U .

Theorem 3.9. (Separation of simply connected domains, [CP02, Prop. 2]) Let U ⊂ Ĉ
be a simply connected domain, and let E ⊂ ∂̂U be a continuum. Let w1, w2 be points in
different connected components of ∂̂U ∖ E. Then, there exists a Jordan arc γ ⊂ U with
γ̂ ∖ γ ⊂ E such that γ ∪ E separates w1 and w2 in Ĉ.

As a consequence of the previous theorem, we describe under which conditions cluster
sets are disconnected when restricted to C. Next proposition gives a precise characterization
of disconnected cluster sets. In particular, if a radial limit achieves a finite value, the
corresponding cluster set is connected in C.

Proposition 3.10. (Disconnected cluster sets) Let f be a transcendental entire function
and let U be an invariant Fatou component, such that ∞ is accessible from U . Let φ : D → U
be a Riemann map. Let eiθ ∈ ∂D be such that ClC(φ, e

iθ) is contained in more than one
component of ∂U . Then, φ∗(eiθ) = ∞, and ClC(φ, e

iθ) is contained in exactly two components
of ∂U .

Proof. Consider C1, C2 connected components of ∂U , such that both intersect ClC(φ, e
iθ).

Set w1 ∈ C1 ∩ ClC(φ, e
iθ), w2 ∈ C2 ∩ ClC(φ, e

iθ). Now, apply Theorem 3.9, with E = {∞}
and w1, w2 chosen before, which lie on different connected components of ∂̂U ∖ {∞} = ∂U .
Hence, there exists a simple arc γ ⊂ U , such that γ̂ ∖ γ = {∞} and γ̂ separates w1 and w2

in Ĉ.
It remains to see that φ−1(γ) has one endpoint at eiθ, and then the Correspondence

Theorem 3.8 would imply that φ∗(eiθ) = ∞. See Figure 3.2.

eiθ

C1

γ

C2

Ω1

Ω2

z1n

z2n

UD

φ

Figure 3.2: Diagram of the setup of the second part of the proof of Lemma 3.10, when it is shown that, if
ClC(φ, e

iθ) is disconnected, then φ∗(eiθ) = ∞.

Since γ̂ is a closed simple curve in Ĉ, by the Jordan Curve Theorem 2.1, Ĉ∖ γ̂ has exactly
two connected components, say Ω1 and Ω2, with Ci ⊂ Ωi ⊂ C, for i = 1, 2. Moreover, since
γ̂ ⊂ U ∪{∞}, each Ui := Ωi ∩U is non-empty and connected. Hence, there exists a sequence
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of points
{
zin
}
n
in Ui converging to wi. Since wi ∈ ClC(φ, e

iθ), we can assume that the

sequences
{
zin
}
n
have been chosen so that

{
φ−1(zin)

}
n
both converge to eiθ ∈ ∂D.

Now, consider a null-chain {DDn}n in D, given by the sequence of crosscuts {Dn}n
converging to eiθ, and such that Uφ(Dn) := φ(DDn) gives a null-chain in U . For the existence
of such null-chain, we refer to [Mil06, Lemma 17.9]. For all n ≥ 0, there is mn such that
zimn

∈ Uφ(Dn), for i = 1, 2. Hence, for all n ≥ 0, there exists zn ∈ γ ∩ Uφ(Dn).
Observe that, by the Correspondence Theorem 3.8, φ−1(γ) lands at two different points

eiα1 , eiα2 ∈ ∂D. Hence, for every null-chain in D not corresponding to eiα1 nor eiα2 , φ−1(γ)
intersects only a finite number of crosscut neighbourhoods of it. Since φ−1(γ) intersects every
DDn , it follows that either e

iα1 = eiθ, or eiα2 = eiθ, so φ−1(γ) lands at eiθ, as desired.
Next, we shall prove that ClC(φ, e

iθ) is contained in exactly of two connected components
of ∂U . Assume, on the contrary, that there exists C1, C2 and C3 connected components of
∂U which intersect ClC(φ, e

iθ). By the previous argument, there exists a simple arc γ ⊂ U ,
separating C into two connected components, Ω1 and Ω2, with Ci ⊂ Ωi, for i = 1, 2. Since
γ̂ ⊂ U ∪ {∞}, C3 is either contained in Ω1 or in Ω2. Without loss of generality, assume
C3 ⊂ Ω1. Now, let us consider U1 := U ∩ Ω1, which is connected, simply connected, and C1

and C3 are different connected components of ∂U1. Hence, there exists γ′ ⊂ U1, separating
C1 and C3. Both curves γ and γ′ are disjoint, γ̂ ∪ γ̂′ = {∞}, and φ−1(γ(t)) → eiθ and
φ−1(γ(t)) → eiθ, as t → +∞. Hence, C ∖ (γ ∪ γ′) consists precisely of three connected
components, each of them containing exactly one Ci. See Figure 3.3.

Dn

φ(Dn)

eiθ

C1γ′

γ

C2

C3

UD

φ

Figure 3.3: Diagram of the setup of the second part of the proof of Lemma 3.10, when it is shown that
ClC(φ, e

iθ) cannot have more that two connected components.

We want to see that γ and γ′ define different accesses to ∞ in U , leading to a contradiction
with the Correspondence Theorem 3.8 (indeed, if γ and γ′ define different accesses to ∞ in
U , then φ−1(γ) and φ−1(γ′) cannot land at the same point eiθ ∈ ∂D).

To do so, we fix a crosscut φ(Dn) of the null-chain
{
Uφ(Dn)

}
n
defined above. Since both

φ−1(γ(t)) and φ−1(γ′(t)) converge to eiθ, as t → ∞, there exist tγ , tγ′ satisfying that

γ (tγ) , γ
′ (tγ′

)
∈ φ(Dn),

γ ([tγ ,+∞)) ∪ γ′
([
tγ′ ,+∞

))
⊂ Uφ(Dn).

Denote by η the connected arc in φ(Dn) satisfying that

γ̃ := η ∪ γ ([tγ ,+∞)) ∪ γ′
([
tγ′ ,+∞

))
is a simple arc in U , and ̂̃γ is a closed simple curve in U ∪ {∞}. Moreover, since

γ̃, C1, C2, C3 ⊂ Uφ(Dn),
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it follows that γ̃ separates exactly one Ci from the others. Hence, γ ([tγ ,+∞))
and γ′

([
tγ′ ,+∞

))
define different accesses to ∞, although both φ−1(γ ([tγ ,+∞))) and

φ−1(γ′
([
tγ′ ,+∞

))
) land at eiθ, contradicting the Correspondence Theorem. This finishes

the proof of the proposition. □

3.2 Behaviour of the Riemann map on a Fatou component

Up to now, all results hold for any Riemann map φ between the unit disk D and a simply
connected domain U , with no dynamics involved. Next, we deal with the particular case that
U is an invariant Fatou component of an entire function f . We give a precise description of
how radial limits and cluster sets are mapped under f .

We use the following notation.

Θ∞ :=
{
eiθ ∈ ∂D : φ∗(eiθ) = ∞

}
ΘC := ∂D∖Θ∞ =

{
eiθ ∈ ∂D : Clρ(φ, e

iθ) ̸= {∞}
}

We remark that, for points in ΘC, we are not assuming that the radial limit φ∗ exists.
Note also that, by Theorem 3.4, λ(Θ∞) = 0 and λ(ΘC) = 1, where λ stands for the normalized
Lebesgue measure in ∂D.

Lemma 3.11. (Radial limits and cluster sets for the associated inner function)
Let f be an entire function, and let U be an invariant Fatou component for f . Consider
φ : D → U a Riemann map, and g := φ−1 ◦ f ◦ φ an associated inner function. Let eiθ ∈ ∂D.
Then, the following holds.

(a) (Radial limit for the associated inner function) If φ∗(eiθ) is well-defined and not equal
to ∞, then g∗(eiθ) and φ∗(g∗(eiθ)) are well-defined and

f(φ∗(eiθ)) = φ∗(g∗(eiθ)).

(b) (Action of f on cluster sets) If eiθ ∈ ∂D is not a singularity for g, then

f(ClC(φ, e
iθ)) ⊂ ClC(φ, g(e

iθ)).

(c) (Action of f on radial cluster sets) Assume eiθ ∈ ΘC and g∗(eiθ) exists. Then, g∗(eiθ)
belongs to ΘC, and

f(Clρ(φ, e
iθ) ∩ C) ⊂ Clρ(φ, g

∗(eiθ)) ∩ C.

(d) (Backwards invariance of Θ∞) If eiθ ∈ Θ∞, then for all eiα ∈ ∂D with g∗(eiα) = eiθ, it
holds eiα ∈ Θ∞.

Proof. (a) Let rθ(t) := teiθ, t ∈ [0, 1). By assumption, φ(rθ(t)) → φ∗(eiθ) =: w ∈ ∂U , as
t → 1, with w ̸= ∞. Since f is continuous at w and conjugate to g by φ,

φ(g(rθ(t))) = f(φ(rθ(t))) → f(w) ∈ ∂U,

as t → 1. By Lindelöf Theorem 3.7,

φ−1(φ(g(rθ(t)))) = g(rθ(t))

lands. Hence, g∗(eiθ) exists and belongs to ∂D, and φ∗(g∗(eiθ)) = f(w), so it is also
well-defined.
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(b) Let z ∈ ClC(φ, e
iθ). Then, there exists a sequence {zn}n ⊂ D such that zn → eiθ and

φ(zn) → z, as n → ∞. Since f is continuous at z, and f and g are conjugate by φ, we
have

φ(g(zn)) = f(φ(zn)) → f(z),

as n → ∞. Since eiθ is not a singularity of g, the sequence {g(zn)}n ⊂ D approaches
g(eiθ), as n → ∞. Hence, f(z) ∈ ClC(φ, g(e

iθ)), as desired.

(c) Let eiθ ∈ ΘC. Assume first φ∗(eiθ) exists, so φ∗(eiθ) = Clρ(φ, e
iθ) ∈ C. Then, by (a),

g∗(eiθ) and φ∗(g∗(eiθ)) are well-defined and

f(Clρ(φ, e
iθ)) = f(φ∗(eiθ)) = φ∗(g∗(eiθ)) = Clρ(φ, g

∗(eiθ)) ∈ ∂U.

Hence, g∗(eiθ) ∈ ΘC.

Assume now that Clρ(φ, e
iθ) is a non-degenerate continuum in Ĉ. Since critical points

are discrete in C, we can find z ∈ Clρ(φ, e
iθ) ∩ C which is not a critical point. Hence,

there exists r > 0 small enough so that f |D(z,r) is a homeomorphism onto its image.

On the other hand, since z ∈ Clρ(φ, e
iθ), it is a principal point (see Thm. 3.5), so we

can find a null-chain {Dn}n ⊂ D(z, r).

We claim that {f(Dn)}n ⊂ f(D(z, r)) is a null-chain. We have to check that f(Dn)
is a crosscut for all n ≥ 0, that different crosscuts have disjoint closures, that the
corresponding crosscut neighbourhoods are nested, and that its spherical diameter tends
to zero as n → ∞.

First, it is clear that f(Dn) is a crosscut for all n ≥ 0, since f |D(z,r) is a homeomorphism,
and f(U) ⊂ U and f(∂U) ⊂ ∂U . From the fact that f |D(z,r) is a homeomorphism and
the original crosscuts {Dn}n have disjoint closures, one deduces that the crosscuts
{f(Dn)}n also have disjoint closures. It is also clear that the diameter of the crosscuts
{f(Dn)}n tends to zero.

We must still see that the crosscut neighbourhoods corresponding to the crosscuts
{f(Dn)}n are nested. To do so, consider rθ to be the radial segment at eiθ. Since g∗(eiθ)
exists, the curve g(rθ) lands at g

∗(eiθ). This implies that, for any crosscut D at eiθ, if
its image is again a crosscut (which it is, because f acts locally as a homeomorphism
in the dynamical plane), it is a crosscut at g∗(eiθ). Therefore,

{
φ−1(f(Dn))

}
n
is a

null-chain in D, corresponding to g∗(eiθ) ∈ ∂D, and {f(Dn)}n is a null-chain in U .

We claim that g∗(eiθ) ∈ ΘC. Indeed, f(z) is a principal point in the prime end of
g∗(eiθ). Then, by Theorem 3.5, f(z) ∈ Clρ(φ, g

∗(eiθ)), and hence g∗(eiθ) ∈ ΘC.

Finally, it is left to see that

f(Clρ(φ, e
iθ) ∩ C) ⊂ Clρ(φ, g

∗(eiθ)) ∩ C.

From the previous construction, we have that, for all z ∈ Clρ(φ, e
iθ)∩C which is not a

critical point,
f(z) ∈ Clρ(φ, g

∗(eiθ)).

Since Clρ(φ, e
iθ) is closed and critical points are discrete, if z ∈ Clρ(φ, e

iθ) ∩ C is
a critical point, we can approximate it by a sequence {zn}n of non-critical points in
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∂U∂U

D(z, r) f(D(z, r))

g

f

φ φ

D D

eiθ

g∗(eiθ)

Figure 3.4: Set-up of the proof of Lemma 3.11(c). On the one hand, since f acts homeomorphically on a
neighbourhood of z, the image of a crosscut near z is a crosscut near f(z). On the other hand, the fact that
g∗(eiθ) exists allows us to prove that the corresponding crosscut neighbourhoods are nested.

Clρ(φ, e
iθ)∩C. Since f is continuous, f(zn) → f(z), and f(zn) ∈ Clρ(φ, g

∗(eiθ)). Then,
f(z) ∈ Clρ(φ, g

∗(eiθ)), because Clρ(φ, g
∗(eiθ)) is closed. Thus,

f(Clρ(φ, e
iθ) ∩ C) ⊂ Clρ(φ, g

∗(eiθ)) ∩ C,

as desired.

(d) Let eiα ∈ ∂D such that g∗(eiα) = eiθ, and assume, on the contrary, that eiα ∈ ΘC.
Then, there exists z ∈ Clρ(φ, e

iα), z ̸= ∞. By (c), f(z) ∈ Clρ(φ, g
∗(eiα)) = Clρ(φ, e

iθ),
f(z) ̸= ∞. Hence, eiθ ∈ ΘC, a contradiction.

□

Remark 3.12. The statements in Lemma 3.11 deserve a few comments.

• In (a), one has to assume that φ∗(eiθ) ̸= ∞, otherwise f(φ∗(eiθ)) is not defined.
Moreover, the existence of g∗(eiθ) does not imply that φ∗(eiθ) exists, as shown by
Baker domains of f(z) = z + e−z (compare [FJ23, Sect. 6]).

• In (b), the assumption of eiθ not being a singularity for g is crucial. Indeed, if eiθ is a
singularity for g, Cl(g, eiθ) = D [Gar81, Thm. II.6.6].

We also note that, under the same assumptions, we cannot expect f(ClC(φ, e
iθ)) =

ClC(φ, g(e
iθ)), due to the possible existence of omitted values in ∂U . For the same

reason, one cannot expect, in general, equality in (c).

• Concerning (d), note that Θ∞ is not always forward invariant. Compare with the
example of the exponential basin considered in [DG87], where −1 ∈ Θ∞ but g∗(−1) =
0 /∈ Θ∞. Even though, −1 is a singularity for g, Θ∞ is not always forward invariant
even at points which are not singularities. Indeed, the inner function g associated to
the parabolic basin of f(z) = ze−z is a Blaschke product of degree 2, which can be
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chosen to have the Denjoy-Wolff point at 1 and g(−1) = 1. Then, g satisfies −1 ∈ Θ∞
and 1 = g(−1) ∈ ΘC (compare [BD99; FJ23]).

3.3 Boundary dynamics of Fatou components

The standard classification of invariant Fatou components may not be the most appropriate
when dealing with boundary dynamics. Indeed, it turns out that many boundary properties
depend only on the ergodicity or the recurrence of the radial extension g∗|∂D.

Definition 3.13. (Ergodicity and recurrence) Let (∂D,B, λ) be the measure space on
∂D defined by B, the Borel σ-algebra of ∂D, and λ, its normalized Lebesgue measure. Let
g : D → D be an inner function, and let g∗ : ∂D → ∂D be its radial extension, defined λ-almost
everywhere. We say that

(a) g∗ is ergodic, if for every A ∈ B such that (g∗)−1(A) = A, it holds λ(A) = 0 or λ(A) = 1;

(b) g∗ is recurrent, if for every A ∈ B and λ-almost every x ∈ A, there exists a sequence
nk → ∞ such that (g∗)nk(x) ∈ A.

This leads to the definition of ergodic (resp. recurrent) Fatou components as seen in the
introduction, according to g∗ : ∂D → ∂D being ergodic (resp. recurrent).

Next theorem, which can be easily deduced combining [DM91, Thm. G] and [Bar08,
Lemma 2.6], relates the usual classification of invariant Fatou components with ergodicity
and recurrence. Recall that a doubly parabolic Baker domain is a Fatou component U in
which iterates converge uniformly to ∞, and

ρU (f
n(z), fn+1(z)) → 0,

as n → ∞, for all z ∈ U . Equivalent definitions can be found in [Bar08], see also a summary
in [BZ12, Sect. 2].

Theorem 3.14. (Characterization of ergodic Fatou components) Let f be a
transcendental entire function, and let U be an invariant Fatou component. Then, U is
ergodic if and only if it is an attracting basin, a parabolic basin, a Siegel disk, or a doubly
parabolic Baker domain.
Moreover, attracting basins, parabolic basins and Siegel disks are always recurrent, while
hyperbolic and simply parabolic Baker domains never are. Doubly parabolic Baker domains
for which the Denjoy-Wolff point of the associated inner function is not a singularity for g
are recurrent.

In [BFJK19], conditions are given which imply recurrence, which are weaker than that
the Denjoy-Wolff point of the associated inner function is not a singularity.

The following theorem follows from the work of Doering and Mañé [DM91], a
groundbreaking approach to the study of the boundary dynamics of a Fatou component in
terms of the harmonic measure, relying on a deep study of the ergodic properties of the radial
extension g∗|∂D of the associated inner functions. Their work was continued in [BFJK19],
obtaining the following result.

Theorem 3.15. (Recurrence of the boundary map, [DM91; BFJK19]) Let f be a
transcendental entire function, and let U be an invariant Fatou component for f . If U is
recurrent, then ωU -almost every point has a dense orbit in ∂U . In particular, I(f)∩ ∂U (the
set of escaping points in ∂U) has zero harmonic measure.
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4 Ergodic Fatou components and boundary structure:
Theorem A and Corollary B

Ergodic Fatou components have similar topological boundary structure, as shown by the
results of Baker and Weinreich, Baker and Domı́nguez, and Bargmann, which describe cluster
sets and the accesses to infinity for these Fatou components.

Theorem 4.1. (Cluster sets and radial limits for ergodic Fatou components) Let f
be a transcendental entire function, and let U be an unbounded invariant Fatou component,
which we assume to be ergodic. Consider φ : D → U to be a Riemann map. The following
holds.

(a) (All cluster sets contain infinity, [BW91]) Then, ∞ ∈ Cl(φ, eiθ), for all eiθ ∈ ∂D.

(b) (Accesses to infinity are dense, [BD99; Bar08]) Moreover, if ∞ is accessible from U ,
then Θ∞ is dense in ∂D.

Remark 4.2. (Non-ergodic Fatou components) We note that ergodicity is a sufficient
condition, but not necessary. Indeed, there are examples of non-ergodic Fatou components
that satisfy Θ∞ is dense in ∂D [Bar08, Example 3.6]. Likewise, it is well-known that the
previous theorems do not hold for an arbitrary invariant Fatou components for which infinity
is accessible, as shown for example by univalent Baker domains whose boundaries are Jordan
curves [BF01].

Now we prove Theorem A, which we recall below.

Theorem A. (Topological structure of ∂U) Let f be a transcendental entire function,
and let U be an invariant Fatou component, such that ∞ is accessible from U . Assume U is
ergodic. Consider φ : D → U to be a Riemann map. Then, ∂U is the disjoint union of cluster
sets in C of φ, i.e.

∂U =
⊔

eiθ∈∂D

ClC(φ, e
iθ).

Moreover, either ClC(φ, e
iθ) is empty, or has at most two connected components. In

particular, if ClC(φ, e
iθ) is disconnected, then φ∗(eiθ) = ∞.

Proof. We shall prove first that all cluster sets are disjoint in C and its union is ∂U , i.e. if
p ∈ ∂U ∩ C, there exists a unique eiθ ∈ ∂D such that p ∈ ClC(φ, e

iθ).
To prove the existence of such eiθ it is enough to consider a sequence {zn}n ⊂ U such

that zn → p, and
{
wn := φ−1(zn)

}
n
⊂ D. Then, {wn}n must have at least one accumulation

point, which must be in ∂D. For any such accumulation point eiθ, we have p ∈ Cl(φ, eiθ).
To prove uniqueness, assume, on the contrary, that there exist eiθ1 , eiθ2 ∈ ∂D such that

p ∈ Cl(φ, eiθ1) ∩ Cl(φ, eiθ2), and eiθ1 ̸= eiθ2 . Since Θ∞ is dense in ∂D (Thm. 4.1), we can
choose eiα1 , eiα2 ∈ Θ∞ such that α1 < θ1 < α2 < θ2. The radial segments

rαi =
{
reiαi : r ∈ [0, 1)

}
,

i = 1, 2, give a partition of D. Since φ∗(αi) = ∞, φ(rα1) ∪ φ(rα2) give a partition of C (see
Fig. 4.1).
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Figure 4.1: Diagram of the setup of the proof of Theorem A.

Therefore, given any two sequences
{
w1
n

}
n
,
{
w2
n

}
n
⊂ D, with w1

n → eiθ1 and w2
n → eiθ2 ,

the corresponding sequences in U lie in different connected components of C ∖ (φ(rα1) ∪
φ(rα2)), for n large enough. Hence, they cannot accumulate at the same (finite) point,
leading to a contradiction.

To prove the second statement notice that ClC(φ, e
iθ) is disjoint from any other cluster

set. Therefore, any connected component of ClC(φ, e
iθ) is, in fact, a connected component of

∂U . Hence, by Proposition 3.10, each cluster set has either one or two connected components,
that must be unbounded, since the cluster set is connected in Ĉ. □

Remark 4.3. (Connected components per cluster set) We note that, for the the
exponential attracting basin in [DG87], all cluster sets have exactly one connected component
in C. However, the previous theorem is sharp, as shown by the function f(z) = z + e−z. For
the invariant Baker domains of this function, the cluster set of every point in Θ∞ has two
connected components [FJ23].

4.1 Siegel disks: Proof of Corollary B

For entire functions, it is known that Siegel disks have no accessible boundary periodic points
[Bar08, Corol. 3.15]. An easy consequence of Theorem A is that, if ∞ is accessible from the
Siegel disk, in fact there are no periodic points at all.

Corollary B. (Periodic points in Siegel disks) Let f be a transcendental entire function,
and let U be a Siegel disk, such that ∞ is accessible from U . Then, there are no periodic
points in ∂U .

Proof. Assume there exists p ∈ ∂U periodic, i.e. fn(p) = p, for some n ≥ 1. Then,
p ∈ Cl(φ, eiθ), for a unique eiθ ∈ ∂D, since cluster sets are disjoint (Theorem A). For a Siegel
disk, the associated inner function g is an irrational rotation, so it extends continuously to
∂D. Hence, by Lemma 3.11,

fn(ClC(φ, e
iθ)) ⊂ ClC(φ, g

n(eiθ)).

Now fn(p) = p ∈ ClC(φ, e
iθ) ∩ ClC(φ, g

n(eiθ)). But this intersection is empty unless
gn(eiθ) = eiθ, and this is a contradiction because g is an irrational rotation. □
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5 Technical Lemmas

In this section we prove some technical results which are the basis for the proofs of Theorems
C and D. Basically, we aim to relate the hyptothesis of being postsingularly separated (PS),
or strongly postsingularly separated (SPS), with the possibility of defining inverse branches
around points in ∂U . To do so, we construct in both cases appropriate neighbourhoods of
each component of ∂U , in which we can define all inverse branches globally.

First, recall that if a Fatou component is PS, then there exists a domain V , such that
V ⊂ U and

P (f) ∩ U ⊂ V.

Note that, in this case, P (f) ∩ ∂U may be non-empty, so inverse branches may not be
defined around points in ∂U . However, we can still define the inverse branches in a one-sided
neighbourhood of each connected component C of ∂U , or, equivalently, in sufficiently small
crosscut neighbourhoods. This is the content of Technical Lemma 1.

Technical Lemma 1. Let f be a transcendental entire function, and let U be an invariant
Fatou component, such that ∞ is accessible from U . Assume U is PS, and let φ : D → U be
a Riemann map.
Then, for any component C of ∂U , there exists a domain ΩC such that C ⊂ ΩC , ΩC is simply
connected, ΩC ∩ U is connected, and ΩC is disjoint from P (f) ∩ U .
In addition, for all eiθ such that Clρ(φ, e

iθ)∩C ⊂ C, the set φ−1(ΩC ∩U) contains a crosscut
neighbourhood of eiθ.

If, additionally, U is SPS, i.e. if there exists a simply connected domain Ω such that
U ⊂ Ω, and

P (f) ∩ Ω ⊂ V,

then inverse branches can be defined around each component of ∂U globally, i.e. for each
component C of ∂U there exists a simply connected domain ΩC such that all inverse branches
are well-defined in ΩC . Moreover, all inverse branches are locally contracting with respect to
the hyperbolic metric in a certain neighbourhood of ∂U (see Technical Lemma 2) and satisfy
the following property, which is crucial in the proof of Theorem D.

Definition 5.1. (Proper invertibility) Let f be a holomorphic function, and let U be an
invariant Fatou component. Let z ∈ ∂U . We say f is properly invertible (at z with respect
to U) if, there exists r > 0 such that for every w ∈ ∂U such that fn(w) = z there exists a
branch Fn of f−n which is well-defined in D(z, r), and satisfies

Fn(D(z, r) ∩ U) ⊂ U.

The definition of the inverse branches and their properties are collected in Technical
Lemma 2. In the sequel, let W := C∖ P (f), and denote by ρW the hyperbolic metric in W .
We use standard properties of the hyperbolic metric, which can be found e.g. in [CG93, Sect.
I.4], [BM07].

Technical Lemma 2. Let U be a Fatou component satisfying the assumptions of Technical
Lemma 1. If, additionally, U is SPS, then the domain ΩC can be chosen to satisfy the
following properties.

1. ΩC ⊂ W , so ΩC ∩ P (f) = ∅.
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2. For all z ∈ ∂U , there exists a neighbourhood Dz ⊂ W of z such that all branches Fn of
f−n are well-defined in Dz, Fn(Dz) ⊂ W and

ρW (Fn(x), Fn(y)) ≤ ρW (x, y), for all x, y ∈ Dz.

3. For all z ∈ ∂U , f is properly invertible at z with respect to U .

Sections 5.1 and 5.2 are devoted to prove the Technical Lemmas. Finally, Section 5.3,
which is not needed for the proofs of Theorems C and D, is dedicated to further comments on
the relationship between proper invertibility and SPS, and the connection with the concept
of local surjectivity.

5.1 Proof of Technical Lemma 1

We assume U to be PS. Then, by definition, there exists a domain V such that V ⊂ U and
P (f)∩U ⊂ V . Since ∞ is accessible from U , we can assume, without loss of generality, that
∞ is accessible from V . Indeed, if ∞ is not accessible from V , take a curve γ : [0, 1) → U ,
such that γ(0) ∈ V and γ lands at ∞. Then, redefine V to contain γ.

U

z

V
φ

D eiθ

φ−1(γ1)

γ1

γ2

γ3

γ4

ΩC ∩ U

Figure 5.1: Set-up of the proof of Technical Lemma 1 for PS Fatou components.

Now, consider C∖ V . Then, the boundary component C is contained in a component of
C ∖ V , say ΩC . By Theorem 2.2, ΩC is simply connected, because V ∪ {∞} is connected,
and, since V ⊂ U , ΩC ∩ U is connected. Since P (f) ∩ U ⊂ V , it holds that ΩC is disjoint
from P (f) ∩ U .

Next, let eiθ ∈ ∂D be such that Clρ(φ, e
iθ) ∩ C ⊂ C. We have to see that φ−1(ΩC ∩ U)

contains a crosscut neighbourhood of eiθ. Without loss of generality, we assume that V is
bounded by a collection of disjoint curves {γi}i∈I , each of them landing at ∞ from both ends.
By the Correspondence Theorem 3.8, each φ−1(γi) is a crosscut in D (possibly degenerate,
i.e. such that both its endpoints in ∂D are the same).

To end the proof, we have to see that the crosscut corresponding to

∂(φ−1(ΩC ∩ U)) ∩ D = ∂(φ−1(γi)),

for some i ∈ I, is non-degenerate. Assume, on the contrary, that it is degenerate with common
endpoint eiθ ∈ ∂D. By the Correspondence Theorem 3.8, the two endpoints of γi define the
same access to infinity (the one corresponding to eiθ), meaning that γ̂i is a Jordan curve in
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Ĉ and ∂U is contained in the connected component of Ĉ ∖ γ̂i which is not ΩC . Therefore,
for any sequence {zn}n ⊂ ΩC ∩ U with zn → ∂̂U , we have zn → ∞. This is a contradiction
with the fact that ΩC is a neighbourhood of C ⊂ ∂U . This ends the proof of the Technical
Lemma 1.

5.2 Proof of Technical Lemma 2

For SPS Fatou components, define ΩC to be the connected component of

Ω∖ V

in which C is contained (adjusting V so that ∞ ∈ V ). It is straightforward to see that
C ⊂ ΩC , ΩC is simply connected, ΩC ∩ U is connected, and ΩC is disjoint from P (f) ∩ U .

Now we prove that f is locally expanding in W = C∖P (f) with respect to the hyperbolic
metric ρW . Note thatW is an open neighbourhood of ∂U andW is backwards invariant under
f , i.e. f−1(W ) ⊂ W .

Proposition 5.2. (Set of expansion) Under the assumptions of Technical Lemma 2, the
following holds.

1. f : f−1(W ) → W is locally expanding with respect to the hyperbolic metric ρW , i.e.

ρW (z) ≤ ρW (f(z)) ·
∣∣f ′(z)

∣∣ , for all z ∈ f−1(W ).

2. For all z ∈ ∂U , there exists a neighbourhood Dz ⊂ W of z such that all branches Fn of
f−n are well-defined in Dz, Fn(Dz) ⊂ W and

ρW (Fn(x), Fn(y)) ≤ ρW (x, y), for all x, y ∈ Dz.

3. Moreover, if z and Fn(z) belong to the same connected component of W , then there
exists λ ∈ (0, 1) such that

ρW (Fn(x), Fn(y)) ≤ λρW (x, y), for all x, y ∈ Dz.

Proof. Let us check that W satisfies the required properties. Let ρW denote the hyperbolic
metric in W . Note that a priori W cannot be assumed to be connected, so we define
ρW component by component. Indeed, each connected component W̃ of W is a hyperbolic
domain, and hence admits a hyperbolic metric ρ

W̃
. Given z ∈ W , we define

ρW (z) := ρ
W̃
(z),

where W̃ stands for the connected component of W with z ∈ W̃ . Given z, w ∈ W , the
hyperbolic distance is defined as

ρW (z, w) := ρ
W̃
(z, w),

if z and w lie in the same connected component W̃ of W ; and ρW (z, w) = ∞, otherwise.
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1. Since W does not contain singular values, given a connected component W1 of f
−1(W ),

f : W1 → f(W1) is a holomorphic covering. Note that f(W1) is a connected component
of W . Indeed, f(W1) is connected, and hence contained in a connected component W2

of W . Since W does not contain singular values, it holds f(W1) = W2.

By Schwarz-Pick lemma [CG93, Thm. I.4.1], f is a local isometry, i.e. if z ∈ W1,

ρf−1(W )(z) = ρW1(z) = ρW2(f(z))
∣∣f ′(z)

∣∣ = ρW (f(z))
∣∣f ′(z)

∣∣ .
Since f−1(W ) ⊂ W , it holds

ρW (z) ≤ ρf−1(W )(z) = ρW (f(z))
∣∣f ′(z)

∣∣ , for all z ∈ f−1(W ).

2. Given z ∈ ∂U , we take Dz to be a hyperbolic disk in W of radius small enough so that
Dz is simply connected. Since W is backwards invariant and P (f) ∩W = ∅, it follows
that all branches Fn of f−n are well-defined in Dz and Fn(Dz) ⊂ W .

Now, let x, y ∈ Dz. Since Dz is a hyperbolic disk, it is hyperbolically convex, so there
exists a geodesic γ ⊂ Dz between x and y, and Fn(γ) is a curve joining Fn(x) and
Fn(y). Hence, by statement 1,

ρW (Fn(x), Fn(y)) ≤
∫
Fn(γ)

ρW (s)ds =

∫
γ
ρW (Fn(t))

∣∣F ′
n(t)

∣∣ dt =
=

∫
γ
ρW (Fn(t))

1

|(fn)′(Fn(t))|
dt ≤

∫
γ
ρW (t)dt = ρW (x, y),

since γ is taken to be a geodesic between x and y.

3. Let W1 be the connected component of W in which z and Fn(z) lie. Hence,
f−n(W1)∩W1 ̸= ∅. We claim that any connected component of f−n(W1) intersectingW1

is strictly contained in W1. Indeed, assume there exists n ≥ 1 such that fn(W1) = W1.
Then, for the map fn, W1 is a neighbourhood of z ∈ J (fn) for which⋃

m≥0

fn·m(W1) = W1 ⊂ W = C∖ P (f).

Since P (f) has more than one point, this would contradict the blow-up property of
J (fn).

Therefore, ρW1 < ρf−n(W1), and hence

ρW (w) < ρW (fn(w))
∣∣(fn)′(w)

∣∣ , for all w ∈ f−n(W1) ∩W1.

Without loss of generality, let us assume that the neighbourhood Dz of z is compactly
contained in W1. Thus, the continuous function

0 <
ρW (w)

ρW (fn(w)) |(fn)′(w)|
< 1

reaches a maximum in Dz. Therefore, there exists λ ∈ (0, 1) such that

ρW (Fn(x), Fn(y)) ≤ λρW (x, y), for all x, y ∈ Dz,

as desired.
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Thus, the proof of Proposition 5.2 is complete. □

Remark 5.3. (Strict expansion) One may ask if this open set W can be improved
so that the function is strictly expanding on it. This is always the case for hyperbolic
and subhyperbolic functions (see e.g [Mih12; BFR15; RS17]). The answer is negative for
arbitrary SPS Fatou components, as it can be seen for the doubly parabolic Baker domains
of f(z) = z + e−z (see [FJ23]).

Finally, to end the proof we have to see that for all z ∈ ∂U , there exists r > 0 such that
all branches Fn of f−n with Fn(z) ∈ ∂U are well-defined in D(z, r), and satisfy

Fn(D(z, r) ∩ U) ⊂ U.

We denote by C the connected component of ∂U with z ∈ C, and consider the
neighbourhood ΩC defined previously. Then, the proper invertibility follows from the
properties of the set ΩC . Indeed, since ΩC is simply connected and disjoint from P (f),
any inverse branch defined locally at z ∈ ∂U extends conformally to ΩC . By construction,
ΩC ∩U is connected, and so is Fn(ΩC ∩U). By the total invariance of the Julia and the Fatou
set, it follows that Fn(ΩC ∩ U) ⊂ U , as desired. This ends the proof of Technical Lemma 2.

5.3 Proper invertibility, strongly postsingular separation and local
surjectivity

Finally, in this section we discuss the necessity of the condition of being SPS. To prove
Theorem D, not only we need to have all inverse branches well-defined locally around every
point in ∂U , which could be achieved simply assuming

P (f) ∩ ∂U = ∅,

but also to have proper invertibility.
Then, the following question arises: it is sufficient to add the assumption of P (f)∩∂U = ∅

to the PS condition to have proper invertibility? The answer is negative in general, so the
hypothesis of being SPS is necessary. We prove this in Proposition 5.4.

We note that, if one could prove that any PS Fatou component with P (f) ∩ ∂U = ∅
is, automatically, SPS, then results of Theorem D (i.e. accessibility and density of periodic
boundary points, and density of escaping boundary points) would hold only assuming the PS
condition and P (f) ∩ ∂U = ∅.

Proposition 5.4. (Characterizations of proper invertibility) Let f be a transcendental
entire function, and let U be an invariant Fatou component, such that ∞ is accessible from
U . Assume U is PS and P (f) ∩ ∂U = ∅. Then, the following are equivalent.

(a) U is SPS.

(b) For each connected component C of ∂U , there exists an open neighbourhood ΩC of C
in which every branch Fn of f−n is well-defined, and, if there exists z ∈ ΩC ∩ U such
that Fn(z) ∈ U , then Fn(ΩC ∩ U) ⊂ U .

We shall rewrite the previous proposition in terms of boundary components and filled
closures (see Def. 2.3). We observe that U being SPS is equivalent to

P (f) ∩ fill(U) ⊂ U, and to P (f) ∩ fill(∂U) = ∅.
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Recall that fill(A) is closed and does not include the unbounded components of C ∖ A from
which ∞ is accessible. In particular, U ∩ fill(∂U) = ∅, if ∞ is accessible from U . Hence, in
this case, being SPS is equivalent to

P (f) ∩ fill(C) = ∅,

for all connected components C of ∂U . See Figure 5.3 below to have a geometric intuition.

Proposition 5.5. (Characterization of proper invertibility for boundary
components) Let f be a transcendental entire function, and let U be an invariant Fatou
component, such that ∞ is accessible from U . Assume U is PS and P (f) ∩ ∂U = ∅. Let C
be a connected component of ∂U . Then, the following are equivalent.

(a) For all z ∈ C, f is properly invertible at z with respect to U .

(b) P (f) ∩ fill(C) = ∅.

(c) There exists an open simply connected neighbourhood ΩC of C in which all branches Fn

of f−n are well-defined, and, either Fn(ΩC ∩ U) ∩ U = ∅, or Fn(ΩC ∩ U) ⊂ U .

Proof. We address first the equivalence between (b) and (c). To see that (b) implies (c),
observe that, by Technical Lemma 2, there exists a simply connected domain ΩC , disjoint
from P (f), such that C ⊂ ΩC and ΩC∩U is connected. Hence, ΩC∩U is simply connected, for
being the connected intersection of two simply connected sets. In such a domain, all branches
Fn of f−n are well-defined. Moreover, since ΩC ∩U is connected, so Fn(ΩC ∩U) is connected.
By the total invariance of the Fatou and Julia sets, it follows that either Fn(ΩC ∩U)∩U = ∅
or Fn(ΩC ∩ U) ⊂ U . Hence, (b) implies (c).

Conversely, we note that if all inverse branches are well-defined in ΩC , then P (f)∩ΩC = ∅.
In particular, since ΩC is a simply connected neighbourhood of C, it must contain fill(C)
(recall that fill(C) consists of C and the components of its complement from which infinity
is not accessible; hence, a simply connected neighbourhood of C includes fill(C)). Hence, we
have

P (f) ∩ fill(C) = ∅.

Therefore, (c) implies (b).
It is left to prove the equivalence between (a) and (c). We note that (c) implies (a)

trivially. Next, we prove that, if (c) does not hold, neither does (a).
By assumption, P (f) ∩ ∂U = ∅. Hence, for every z ∈ C, there exists a sufficiently small

disk D(z, r), r = r(z) > 0, such that every branch Fn of f−n is well-defined in D(z, r). On
the other hand, since U is PS, by Technical Lemma 1, there exists a simply connected domain
ΩC , such that ΩU := ΩC ∩ U is connected, simply connected and disjoint from P (f) ∩ U .

Since we are assuming that (c) does not hold, we claim that there exists a point z0 ∈ C
and n ≥ 1, such that a branch Fn of fn, well-defined in D(z0, r) does not extend conformally
to ΩU . Indeed, if (c) does not hold, then any neighbourhood ΩC of C given by the Technical
Lemma 1 would meet P (f) (outside U). Equivalently, for such ΩC and ΩU := ΩC ∩ U ,
any neighbourhood of ΩU is multiply connected (otherwise it would be a simply connected
neighbourhood of C ⊂ ΩC disjoint from P (f), so (c) would hold).

In particular, there exists a point z0 ∈ C and r > 0 so that D(z0, r) ∪ ΩU is multiply
connected and D(z0, r) ∪ ΩU surrounds points in P (f). Thus, there exists at least a branch
Fn of fn, well-defined in D(z0, r) does not extend conformally to ΩU , as claimed.
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Finally, we have to prove that, for such Fn, it does not hold

Fn(D(z, r) ∩ U) ⊂ U.

Indeed, take u0 ∈ D(z0, r) ∩ U , and consider the conformal extension of Fn to ΩU with
basepoint u0. Then, Fn|D(z0,r) is univalent, as well as Fn|ΩU

. However, since Fn does
not extend conformally to ΩU , Fn|D(z0,r)∪ΩU

is a multivalued function. Hence, there exists
w ∈ D(z0, r) ∩ ΩU such that w = fn(w1) = fn(w2), with w1 ∈ Fn(D(z0, r)), w2 ∈ Fn(ΩU ).
Hence w1 /∈ U , because otherwise w1 ∈ ΩU and Fn would be multivalued at w ∈ ΩU .
Therefore fn is not properly invertible with respect to U , as desired. □

From Proposition 5.5 we deduce Proposition 5.4.

Proof of Proposition 5.4. Observe that U being SPS is equivalent to say that, for every
boundary component C ⊂ ∂U ,

P (f) ∩ fill(C) = ∅.

Then, the equivalence (b)-(c) in Proposition 5.5 ends the proof. □

Finally, we shall give an intuition of how a non-SPS Fatou component would look like.
First, let us look at the following example of a rational map f which is not properly invertible.

Example 5.6. (Non-properly invertible function, [Sch97]) The function

f(z) =
64

(z + 3)(z − 3)2
− 3

considered in [Sch97] is not locally surjective with respect to the invariant attracting basin
U (in black in Fig. 5.2). Indeed, the neighbourhood marked in Figure 5.2 is mapped
conformally under f onto the other marked neighbourhood. It is clear that the corresponding
inverse branch send points in U to points in U and to points outside U (in its preimage V )
simultaneously. For a more precise description of the dynamics, we refer to [Sch97].

VU

f

Figure 5.2: Dynamical plane of f(z) = 64
(z+3)(z−3)2

− 3, which is not locally surjective.
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Note that the previous Fatou component satisfies having a bi-accessible boundary point.
This is never the case for Fatou components of transcendental entire functions: every finite
point in the boundary has a unique access from the Fatou component [Bar08, Thm. 3.14].
Moreover, if U is ergodic, every finite point z ∈ ∂U is contained in a unique cluster set
(Theorem A). Hence, it seems plausible that any PS Fatou component is, automatically,
SPS.

Indeed, a Fatou component not satisfying this condition would have a complicated
boundary: there would exist a connected component C of ∂U such that

P (f) ∩ fill(C) ̸= ∅.

Since we are assuming that P (f) ∩ C = ∅, it follows that there would exist a connected
component V of C∖C for which infinity is not accessible. By invariance of U and normality,
V must be a Fatou component; either an attracting basin, a preimage of it, or an escaping
wandering domain.

Moreover, if U is ergodic, by Theorem A, any connected component C of ∂U is either
a cluster set or it is contained in a cluster set. Hence, if U is a non-SPS Fatou component,
there would exist eiθ ∈ ∂D such that

P (f) ∩ fill(ClC(φ, e
iθ)) ̸= ∅.

See Figure 5.3.

U

V

Figure 5.3: Schematic representation of how a non-SPS Fatou component would look like. One may imagine
the boundary of U (in C) as a collection of curves (as in a Cantor bouquet). One of them, corresponding
to, say, ClC(φ, e

iθ) is not a Jordan curve, but it encloses a bounded region, V , which is a Fatou component,
by normality. For U to be non-SPS, this enclosed Fatou component V must contain a postsingular value. It
is precisely the presence of this postsingular value in fill(ClC(φ, e

iθ)) what prevents the definition of inverse
branches around ClC(φ, e

iθ).

Question 5.7. Let f be a transcendental entire function, and let U be an (ergodic) invariant
Fatou component, such that ∞ is accessible from U . If U is PS and P (f) ∩ ∂U = ∅, then is
U SPS?
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Finally, we discuss the relation of proper invertibility with local surjectivity, a closely
related notion used in [Sch97; Ima14], to study the accessibility of periodic points in the
boundary of invariant Fatou components. The definition of local surjectivity reads as follows.

Definition 5.8. (Local surjectivity) Let f be a holomorphic function, and let U be an
invariant Fatou component. Let z ∈ ∂U . We say f is locally surjective (at z with respect to
U) if there exists r > 0 such that

f(D(z, r) ∩ U) = f(D(z, r)) ∩ U.

It is easy to see that f being locally surjective on ∂U (understood as it is locally surjective
with respect to U at every point of ∂U) is equivalent to f being properly invertible on ∂U
(again, understood pointwise with respect to U). However, since we are interested in inverse
branches, the concept of proper invertibility is more convenient.

6 Postsingularly separated Fatou components and the
associated inner function: Theorem C

We prove the following version of Theorem C, which gives more details on the behaviour of
boundary orbits for the associated inner function. One should view this general version of
Theorem C as a significantly stronger version of Lemma 3.11 for PS Fatou components.

We use the notation Θ∞ and ΘC introduced in Section 3. Let us recall the definitions.

Θ∞ :=
{
eiθ ∈ ∂D : φ∗(eiθ) = ∞

}
ΘC := ∂D∖Θ∞ =

{
eiθ ∈ ∂D : Clρ(φ, e

iθ) ̸= {∞}
}

Theorem C. (General version) Let f be a transcendental entire function, and let U be an
invariant Fatou component, such that ∞ is accessible from U . Let φ : D → U be a Riemann
map, and let g := φ−1 ◦ f ◦ φ be the corresponding associated inner function. Assume U is
PS. Then, the following holds.

(a) (Finite principal points avoid singularities) Let eiθ ∈ ∂D. If eiθ ∈ ΘC, then eiθ is not a
singularity of g and g(eiθ) ∈ ΘC.

In particular, if, for some n ≥ 1, eiθ ∈ ∂D is a singularity for gn, then eiθ ∈ Θ∞.

(b) (Few singularities) For almost every eiθ ∈ ∂D (with respect to the Lebesgue measure),
there exists r := r(eiθ) > 0 such that g is holomorphic in D(eiθ, r). In particular, the
set Sing(g) has zero Lebesgue measure.

(c) (Backward and forward orbit at typical boundary points) For almost every eiθ ∈ ∂D
(with respect to the Lebesgue measure), there exists r := r(eiθ) > 0 such that all branches
Gn of g−n are well-defined in D(eiθ, r), for all n ≥ 0. Moreover, for every n ≥ 1, there
exists ρ := ρ(eiθ, n) > 0 such that gn is holomorphic in D(eiθ, ρ).

(d) (Radial limit g∗ at a singularity) Let eiθ ∈ ∂D be a a singularity for g, and assume
g∗(eiθ) exists. Then, either g∗(eiθ) ∈ D, and φ(g∗(eiθ)) ∈ U is an asymptotic value for
f ; or g∗(eiθ) ∈ Θ∞.
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Proof. We prove the different statements separately.

(a) Let eiθ ∈ ΘC. By Lemma 3.10, ClC(φ, e
iθ) is connected, so is f(ClC(φ, e

iθ)), and hence
it is contained in a component C of ∂U . Since U is assumed to be PS, by the Technical
Lemma 1, there exists a domain ΩC such that C ⊂ ΩC , ΩC is simply connected, ΩC ∩U
is connected, and ΩC is disjoint from P (f) ∩ U . Moreover, ΩC can be chosen so that
φ−1(ΩC ∩ U) is a crosscut neighbourhood of some eiα ∈ ∂D. Note that there are no
postsingular values of g in φ−1(ΩC ∩ U).

Note that, since eiθ ∈ ΘC, we can choose z ∈ Clρ(φ, e
iθ) ∩ C. Since z is a finite

principal point, for any r > 0, there exists a null-chain {Dn}n ⊂ D(z, r). We choose r
small enough so that f(D(z, r)) ⊂ ΩC . Hence, for all n ≥ 0, f(Dn) is a crosscut of U
contained in ΩC .

Since ΩC ∩ U is simply connected and disjoint from P (f) ∩ U , all inverse branches are
well-defined in ΩC ∩ U . In particular, there exists a branch F1 of f−1 and an inverse
branch G1 of g−1 such that

φ−1(F1(ΩC ∩ U)) = G1(φ
−1(ΩC ∩ U))

contains a crosscut neighbourhood of eiθ. Hence, any sufficiently small crosscut
neighbourhood DD around eiθ is mapped conformally under g to a crosscut
neighbourhood g(DD) around eiα. Thus, g(DD) ̸= D. This already implies that eiθ

is not a singularity (see Rmk. 3.12 and [Gar81, Thm. II.6.6]). By Lemma 3.11, it is
clear that g(eiθ) ∈ ΘC.

Finally, note that, if eiα is a singularity for g, then eiα ∈ Θ∞. The last statement
follows directly from the backwards invariance of Θ∞. Indeed, if eiα is a singularity
for the inner function gn (n ≥ 1 taken minimal), then gn−1(eiα) is a singularity for g.
Then, gn−1(eiα) ∈ Θ∞, so eiα ∈ Θ∞.

(b) Since Sing(g) ⊂ Θ∞, and λ(Θ∞) = 0, it follows that λ(Sing(g)) = 0. Hence, for
λ-almost every eiθ, there exists r = r(eiθ) > 0 such that g is holomorphic in D(eiθ, r).

(c) Again, the first statement follows from the same argument than in (a), applied to the
set of full measure ΘC. Indeed, for every point eiθ ∈ ΘC, there exists a boundary
component C such that ClC(φ, e

iθ) ⊂ C. by the Technical Lemma 1, there exists a
domain ΩC such that C ⊂ ΩC , ΩC is simply connected, ΩC ∩ U is connected, and ΩC

is disjoint from P (f) ∩ U . Moreover, φ−1(ΩC ∩ U) contains a crosscut neighbourhood
Nθ of eiθ. Since ΩC ∩ U is simply connected and disjoint from P (f) ∩ U , all inverse
branches Fn of fn are well-defined in ΩC ∩U . In particular, for each branch Fn of f−n,
there exists an inverse branch Gn of g−n such that

φ−1(Fn(ΩC ∩ U)) = Gn(φ
−1(ΩC ∩ U)).

Thus, all inverse branches Gn of gn are well-defined in Nθ. By considering g as its
maximal meromorphic extension, and using Schwarz reflection, we get that there exists
r := r(eiθ) > 0 such that all branches Gn of g−n are well-defined in D(eiθ, r), for all
n ≥ 0.

The second statement follows from the forward invariance of ΘC, by induction. Indeed,
for n = 1, if eiθ ∈ ΘC, then eiθ is not a singularity for g, so there exists a disk around

30



UU

z

f(z)

f

g

F1

G1

V

φ φ

D D

eiθ

eiα

Figure 6.1: Set-up of the proof of (a) for PS Fatou components. Given eiθ ∈ ΘC, we find a crosscut
neighbourhood around it which is mapped conformally onto another crosscut neighbourhood, implying that
eiθ is not a singularity for g.

eiθ in which g is holomorphic. Now, for all n ≥ 2, assume gn−2 is holomorphic in a
neighbourhood of eiθ. By (a), gn−1(eiθ) ∈ ΘC, so gn−1(eiθ) is not a singularity of g,
meaning that there exists a neighbourhood of gn−1(eiθ) in which g is holomorphic. This
already implies the existence of a neighbourhood of eiθ in which gn is holomorphic.

(d) We let eiθ ∈ ∂D be a singularity, and assume g∗(eiθ) exists. There are two possibilities:
either g∗(eiθ) ∈ D, or g∗(eiθ) ∈ ∂D. In the first case, it is clear that φ(g∗(eiθ)) must
be an asymptotic value for f . We shall prove that, in the second case, g∗(eiθ) ∈ Θ∞.
Assume, on the contrary, that g∗(eiθ) ∈ ΘC. Then, by (c), for some r > 0, all branches
of g−1 are well-defined in D(g∗(eiθ), r). This is a contradiction because eiθ was assumed
to be a singularity, and hence it cannot be mapped locally homeomorphically to g∗(eiθ).

□

Remark 6.1. We shall make the following remarks on Theorem C.

1. On [BFJK17, Prop. 2.7] it is proved that Sing(g) ⊂ Θ∞, for a general invariant Fatou
component (i.e. without the PS assumption). Hence, (a) show how the result can be
strengthened to Sing(g) ⊂ Θ∞, for PS Fatou components. Taking into account that
λ(Θ∞) = 0 and λ(Θ∞) = 1 for a wide class of Fatou components (compare Sect. 4),
we believe that our result is a noteworthy improvement.

2. Regarding (c), we note that, for almost every eiθ, inverse branches Gn of gn are well in
a disk of fixed radius (depending only on eiθ, but not on n). However, when iterating
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forward, we can only ensure that gn is holomorphic on a disk whose radius depends on
n. In the general case, the result cannot be improved. Indeed, if g∗ is ergodic and g|D
has infinite degree, it is shown in [BD99, Lemma 8], [Bar08, Thm. 1.4] that⋃

n≥0

Sing(gn) = ∂D,

where Sing(gn) stands for the set of singularities of the inner function gn, as defined in
Definition 3.1.

Hence, in general, there is no open disk around a boundary point which is never mapped
to a singularity of g.

3. Finally, we note that in the literature, there are two distinct ways of considering iteration
in ∂D for a given inner function g. On the one hand, the approach followed in [BD99;
Bar08] consists of truncating the orbit of a point when it falls into a singularity, as in
the iteration of meromorphic functions in C.
On the other hand, there is the approach of [DM91] of considering iteration on the set{

eiθ ∈ ∂D : (g∗)n(eiθ) exists for all n ≥ 0
}
,

which has full Lebesgue measure in ∂D. This procedure allows us to iterate at
singularities, as long as their radial limit under g is well-defined.

Using this approach, (d) tells us that, whenever we can iterate at a singularity, its orbit
either eventually enters D and hence converges to the Denjoy-Wolff point, or its orbit
is completely contained in Θ∞.

7 Dynamics on the boundary of unbounded invariant Fatou
components: Theorem D

Finally, we use the machinery developed in the previous sections to prove this more general
version of Theorem D.

Theorem D. (General version) Let f be a transcendental entire function, and let U be
an invariant Fatou component, such that ∞ is accessible from U . Assume U is SPS. Then,
the following holds.

(a) Periodic points in ∂U are accessible from U .

(b) If a component C of ∂U contains a periodic point, then every other point in C is
escaping.

(c) If, additionally, U is recurrent, then periodic points and escaping points are dense in
∂U .

Remark 7.1. The previous statement deserves some comments.
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• (Radial limit at periodic points)

Theorem D (a) states that, given a periodic point p ∈ ∂U , there exists eiθ ∈ ∂D such
that φ∗(eiθ) = p. If U is assumed additionally to be ergodic, such eiθ is unique, by
Theorem A, and it is radially periodic under g. The fact that eiθ is unique implies that
it has exactly the same period as p.

Furthermore, it is well-known that the boundary map g : ∂D → ∂D of any inner function
of finite degree (i.e. of a finite Blaschke product) is semi-conjugate to the shift map
σd in the space Σd of sequences of d symbols (see e.g. [IU23, Sect. 8.1]). Therefore,
each periodic point for σd in Σd (that is, periodic sequences) corresponds to a periodic
point for g in ∂D, except for the ones corresponding to 0 and d− 1, which are identified.
When f |U has finite degree, this gives an upper bound on the number of periodic points
of a given period in ∂U . Indeed, since g|∂D has exactly dn − 1 periodic points of period
n, there are at most dn − 1 periodic points of period n in ∂U .

• It follows trivially from Theorem D (b) that any boundary connected component of a
SPS Fatou component can have at most one periodic point.

• (Accessibility of escaping points)

In the case of escaping points, we may ask what can be said about their accessibility
from U . In [FJ23, Thm. B] it is proven that the Baker domains of f(z) = z+ e−z have
no accessible escaping point. However, the Baker domain of f(z) = z + 1 + e−z has
accessible escaping points, as it follows easily from [Evd16]. Hence, it remains as an
open problem to find conditions under which no escaping point is accessible from the
Baker domain.

Proof of the Theorem D. We prove the different statements separately.

(a) Periodic points in ∂U are accessible from U .

First note that, if U is SPS, any periodic point in ∂U must be repelling. Indeed, attracting
and Siegel periodic points lie in the Fatou set, while parabolic and Cremer periodic points
lie in P (f).

Let p be a periodic point in ∂U , which is repelling, and assume fn(p) = p. Let C be the
connected component of ∂U containing p. By the Technical Lemma 2, there exists a simply
connected domain ΩC containing the connected component C ⊂ ∂U , such that ΩC∩P (f) = ∅,
and ΩC ∩ U is connected.

Let Fn be the branch of f−n fixing p. It extends conformally to ΩC and, by the Technical
Lemma 2, Fn(ΩC ∩ U) ⊂ U . Note that, not only Fn is well-defined in ΩC , but its iterates
Fm
n , for all m ≥ 0.
Let r > 0 be such that D(p, r) ⊂ ΩC . Since p is repelling, choosing r smaller if needed,

we can assume Fn(D(p, r)) ⊂ D(p, r).
Let us choose z0 ∈ D(p, r) ∩ U and define zm := Fm

n (z0) ∈ D(p, r) ∩ U . Since ΩC ∩ U is
connected, there exists a curve γ ⊂ ΩC ∩ U connecting z0 and z1. Observe that {Fm

n }m is
well-defined and normal in ΩC , because Fm

n (ΩC) ⊂ W , for all m ≥ 0 (where W = C∖ P (f),
as introduced in Sect. 5, which is backwards invariant).

Thus, any limit function g must be constantly equal to p in D(p, r)∩ΩC , so Fm
n → g ≡ p
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uniformly on compact subsets of ΩC . In particular, Fm
n |γ → p uniformly. Hence,⋃

m≥0

Fm
n (γ)

is a curve in U landing at p, showing that p is accessible from U , as desired.

(b) If a component C of ∂U contains a periodic point, then every other point in C is
escaping.

Let p ∈ ∂U be a periodic point of f (which must be repelling), and denote by C the
connected component of ∂U for which p ∈ C. We have to prove that

C ∖ {p} ⊂ I(f).

Without loss of generality, assume p is fixed by f . By the Technical Lemma 2, there exists an
open neighbourhood of C, say ΩC , in which the branch F1 of f−1 fixing p is well-defined. In
fact, {Fn

1 }n is well-defined in ΩC and, as in the proof of (a), for every compact set K ⊂ ΩC ,
we have Fn

1 |K → p uniformly. Moreover, there exists r > 0 small enough so thatD(p, r) ⊂ ΩC

and F1(D(p, r)) ⊂ D(p, r) (see Fig. 7.1a).

ΩC

r

p

C

(a)

ΩC

p
K

K ′

(b)

K ′

F1

F1

(c)

Ω′
C

M

p

K

F1

(d)

Figure 7.1: Steps on the proof of (b).

Now, let z ∈ C ∖ {p}. To prove that z is escaping, we have to see that, for any compact
set K ⊂ C, there exists n0 such that fn(z) /∈ K, for all n ≥ n0. Since p is assumed to be
fixed, by continuity it follows that f(C) ⊂ C. Hence fn(z) ∈ C and, since C is unbounded,
it is enough to show that z escapes from any compact set in C.
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Hence, let us fix K compact subset of C and let us show that z escapes from K. To do so,
we will construct a domain Ω′

C ⊂ ΩC , forward invariant under F1, containing both p and K.
We will show that, if z does not escape from K, then {fn(z)}n should be entirely contained
in Ω′

C . Once we are in this situation, we will reach a contradiction using standard arguments
based on Schwarz-Pick lemma.

We start by constructing the set Ω′
C . To do so, we choose K ′ compact connected subset

of ΩC such that K ⊂ Int K ′ and p ∈ K ′ (see Fig. 7.1b). Moreover, without loss of generality,
we can choose K ′ so that there is a connected component of C ∩K ′ containing both K and
p. On the other hand, since K ′ is a compact subset of ΩC , we have Fn

1 |K′ → p uniformly, so
there exists N such that FN

1 (K ′) ⊂ D(p, r).
Let us define the following sets:

V :=
{
z ∈ Int K ′ : Fn

1 (z) ∈ ΩC , for all n ≤ N
}
∪D(p, r), Ω′

C :=
N⋃

n=0

Fn
1 (V ).

We note, on the one hand, that
C ∩ Int K ′ ⊂ V,

because, as f(C) ⊂ C, points in C ∩ Int K ′ do not leave ΩC under iteration. In particular,
the connected component of C ∩K ′ containing both K and p is in V . Hence, either V is a
connected open set, or V can be redefined to be the connected component of V containing
K. In both cases, K ⊂ V (see Fig. 7.1c).

Moreover, Ω′
C is also an open connected set, since it is the union of open connected sets,

all containing p. By definition, it is forward invariant under F1, and K is compactly contained
in Ω′

C . Observe that both F1 is well-defined and univalent in Ω′
C .

Since F1(Ω
′
C) ⊂ Ω′

C , we have, by Schwarz-Pick lemma,

ρΩ′
C
(p, F1(w)) = ρΩ′

C
(F1(p), F1(w)) < ρΩ′

C
(p, w),

for all w ∈ Ω′
C . Equivalently, if w, f(w) ∈ Ω′

C , it holds

ρΩ′
C
(p, w) < ρΩ′

C
(p, f(w)).

Let
M := max

w∈K
ρΩ′

C
(p, w),

(see Fig. 7.1d). We have K ⊂ DΩ′
C
(p,M), and F1(DΩ′

C
(p,M)) ⊂ DΩ′

C
(p,M). Moreover,

since DΩ′
C
(p,M) is compactly contained in Ω′

C , there exists λM > 1 such that

λMρΩ′
C
(w, p) ≤ ρΩ′

C
(f(w), p),

for all w such that w, f(w) ∈ DΩ′
C
(p,M).

Finally, let us show that the point z should escape from the compact K. Assume,
on the contrary, that fn(z) belongs to K, for infinitely many n’s. For these n’s it holds
fn(z) ∈ DΩ′

C
(p,M). Since DΩ′

C
(p,M) is backwards invariant under f , if z does not escape

from K, then
{fn(z)}n ⊂ DΩ′

C
(p,M).

Hence,
λn
MρΩ′

C
(z, p) ≤ ρΩ′

C
(fn(z), p),
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for all n ≥ 0, so ρΩ′
C
(fn(z), p) → ∞, as n → ∞. In particular, there exists n ≥ 0 such that

ρΩ′
C
(fn(z), p) > M , implying that fn(z) /∈ DΩ′

C
(p,M). This is a contradiction with the fact

that {fn(z)}n ⊂ DΩ′
C
(p,M).

Hence, z escapes from the compact setK, and applying the same argument to any compact
set K ⊂ C, we get that z ∈ I(f), as desired.

(c) If, additionally, U is recurrent, then periodic points and escaping points are dense in
∂U .

Let us start by proving the density of periodic points. Since U is recurrent, then ωU -almost
every boundary point has dense orbit in ∂U (Thm. 3.15), so it is enough to approximate
points in ∂U having dense orbit by periodic points in ∂U . Hence, we choose z0 ∈ ∂U with
dense orbit and ε > 0, and we want to show that there is a periodic point in D(z0, ε) ∩ ∂U .

The idea of the proof is to see that there exists an appropriate branch Fn of f−n defined
in the hyperbolic disk DW (z0, r0) satisfying that

Fn(DW (z0, r0)) ⊂ DW (z0, r0),

where W = C ∖ P (f). Then, it follows straightforward from Brouwer fixed-point theorem
that Fn has a fixed point p in DW (z0, r0). The fact that p ∈ ∂U is then due to proper
invertibility.

Assume z0 ∈ ∂U has a dense orbit, and choose r0 > 0 small enough so that

DW (z0, r0) ⊂ D(z0, ε)

and DW (z0, r0) is simply connected. By the Technical Lemma 2, r0 can be chosen small
enough so that, for all n > 0, any branch Fn of f−n is defined in DW (z0, r0) and, if
Fn(z0) ∈ ∂U , then Fn(DW (z0, r0) ∩ U) ⊂ U .

Choose F ∗
n branch of f−n and λ ∈ (0, 1) such that F ∗

n(z0) ∈ ∂U and

ρW (F ∗
n(z), F

∗
n(w)) ≤ λρW (z, w), for all z, w ∈ DW (z0, r0).

Note that this is possible by Proposition 5.2. Without loss of generality, we assume n = 1,
so the inverse branch we consider is F ∗

1 .
Now, consider W1 := F ∗

1 (DW (z0, r0)). Hence,

F ∗
1 : DW (z0, r0) → W1, f : W1 → DW (z0, r0),

are conformal. Moreover, for r0 small enough, W1 is disjoint from any other preimage of
DW (z0, r0). Consider r1 > 0 such that DW (F ∗

1 (z0), r1) ⊂ W1, and r < r1
2 < r0. Define

W2 := DW (F ∗
1 (z0), r). Observe that DW (z, r) ⊂ W1, for any z ∈ W2. See Figure 7.2.

Since the orbit of z0 is dense in ∂U , {fn(z0)}n visits infinitely many times W2. Hence,
we can choose n0 such that λn0 < 1

3 , and n1 such that fn1+1(z0) ∈ DW (z0, r) and

# {n ≤ n1 : f
n(z0) ∈ W2} ≥ n0.

Consider {zn := fn(z0)}n1+1
n=0 ⊂ W . Let F1,n be the unique branch of f−1 with F1,n(zn+1) =

zn, for n = 0, . . . , n1 (see Fig. 7.3). Each of these inverse branches F1,n is well-defined in
ΩCn , where Cn is the boundary component with zn ∈ Cn.

Define
Fn1

:= F1,0 ◦ · · · ◦ F1,n1 : DW (z0, r) −→ C.
Observe that Fn1 is a branch of f−n1 defined in DW (z0, r), such that Fn1(z0) ∈ ∂U . The
Technical Lemma 2 yields that Fn1(DW (z0, r) ∩ U) ⊂ U .
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Figure 7.2: Setting of the proof of (c).
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Figure 7.3: Schematic representation of {zn}n1+1
n=0 in ∂U , with n0 = 1 and n1 = 4, and how f maps these

points. We note that, since z4 ∈ W2, then F 4
1 = F ∗

1 .

Claim. It holds
Fn1(DW (z0, r)) ⊂ DW (z0, r).

Proof. Indeed, by Technical Lemma 2, each time we apply an inverse branch F1,n, the
hyperbolic distance ρW does not increase. That is, for all z, w ∈ DW (z0, r) and n ∈
{0, . . . , n1},

ρW (F1,n◦· · ·◦F1,n1(z), F1,n◦· · ·◦F1,n1(w)) ≤ ρW (F1,n+1◦· · ·◦F1,n1(z), F1,n+1◦· · ·◦F1,n1(w)).

Moreover, when the inverse branch we apply is F ∗
1 , the hyperbolic distance ρW not only

decreases, but it is contracted by the factor λ. We claim that this happens each time that zn
lies in W2, so at least n0 times. Indeed, note that, when zn ∈ W2,

F1,n ◦ · · · ◦ F1,n1(DW (z0, r)) ⊂ DW (zn, r) ⊂ W1,

and zn+1 ∈ DW (z0, r). Hence, F1,n coincides with F ∗
1 , and it acts as a contraction by λ in

F1,n ◦ · · · ◦ F1,n1(DW (z0, r)). Then,

ρW (Fn1(z), Fn1(w)) ≤ λn0ρW (z, w) <
1

3
r.
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In particular,

ρW (Fn1(z0), z0) = ρW (Fn1(z0), Fn1(zn1+1)) ≤ λn0ρW (z0, zn1+1) <
1

3
r.

Therefore, applying the triangle inequality, one deduces that Fn1(w) ∈ DW (z0, r), for any
w ∈ DW (z0, r), as desired. ■

Finally, since
Fn1(DW (z0, r)) ⊂ DW (z0, r),

Brouwer fixed-point theorem ensures the existence of a fixed point p for Fn1 in DW (z0, r),
which corresponds to a periodic point of f , which must be repelling for f and hence belongs to
the Julia set. Moreover, all w ∈ DW (z0, r) converge to p under iteration of Fn1 . In particular,
if we choose w ∈ DW (z0, r) ∩ U , we have wm := Fm

n1
(w) ∈ DW (z0, r) ∩ U with wm → p as

n → ∞, leading to a sequence of points in U approximating p, so p ∈ ∂U , as desired.
Finally, to see that escaping points are dense in ∂U , note that, (b) implies that every

periodic point in ∂U is approximated by escaping points in ∂U . Hence, since periodic points
are dense in ∂U (under the assumption of U recurrent), escaping points are also dense. □

8 Extension of the results to parabolic basins

Parabolic basins are always excluded when considering postsingulary separated Fatou
components, since the parabolic fixed point p is always in the postsingular set. However,
if this is the only point of P (f) in ∂U , i.e. if

P (f) ∩ ∂U = {p} ,

then we shall see that we are in a similar situation than the one considered in the sections
above and, with minor modifications, the proofs go through.

Indeed, on the one hand, note that the construction in Sections 5, 6 and 7 is done
independently for each connected component of ∂U (except proving that periodic points are
dense in ∂U , Thm. D (c)). On the other hand, parabolic basins are ergodic, so ∂U consists
of uncountably many components (Thm. A), and only one of them contains the parabolic
fixed point. Hence, for the rest of components of ∂U , the statements in Theorems C and
D hold. Moreover, as we will see, the connected component of ∂U containing the parabolic
fixed point can be treated separately, so in fact the statements in Theorems C and D hold
for every component of ∂U . This is the content of Theorems C’ and D’ which are analogous
to Theorem C and Theorem D, respectively.

Next, we define PS and SPS parabolic basins, and we state Theorems C’ and D’. Finally,
we give an idea of the proof.

Definition 8.1. (Postsingularly separated parabolic basins) Let f be a transcendental
entire function, and let U be an invariant attracting basin of a parabolic point p ∈ ∂U . We
say that U is postsingularly separated (PS) if there exists a domain V , such that V ⊂ U ∪{p}
and

P (f) ∩ U ⊂ V.

We say that U is strongly postsingularly separated (SPS) if there exists a simply connected
domain Ω and a domain V such that V ⊂ U ∪ {p}, U ⊂ Ω, and

P (f) ∩ Ω ⊂ V.
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The parabolic basin of f(z) = exp( z
2

2 − 2z) considered in [FH06, Ex. 4] is SPS, as well
as the one of f(z) = ze−z, considered in [BD99; FJ23].

Theorem C’. (Singularities for the associated inner function) Let f be a
transcendental entire function, and let U be an invariant parabolic basin, such that ∞ is
accessible from U . Let φ : D → U be a Riemann map, and let g := φ−1 ◦ f ◦ φ be the
corresponding associated inner function. Assume U is PS.
Then, the set of singularities of g has zero Lebesgue measure in ∂D. Moreover, if eiθ ∈ ∂D is
a singularity for g, then φ∗(eiθ) = ∞.

Theorem D’. (Boundary dynamics) Let f be a transcendental entire function, and let U
be an invariant parabolic basin, such that ∞ is accessible from U . Assume U is SPS. Then,
periodic points in ∂U are accessible from U . Moreover, both periodic and escaping points in
∂U are dense in ∂U .

To prove Theorems C’ and D’ it is also left to deal with the component of ∂U containig
the parabolic fixed point, and to explain how to adapt the proof periodic points are dense in
∂U , Thm. D (c). In the sequel, we denote by p the parabolic fixed point of U , and we fix the
Riemann map that satisfies φ∗(1) = p. Note that ClC(φ, 1) is a connected component of ∂U .

First note that, if we define the set of expansion W as in Technical Lemma 2, i.e.

W := C∖ P (f),

it follows that p /∈ W , since p ∈ P (f). Hence, W is no longer a neighbourhood of ∂U , but
of ∂U ∖ {p}, and we only have the expanding metric on ∂U ∖ {p}. This is not a problem
because the expanding metric ρW is only needed in the proof of density of periodic points
(Thm. D (c)), but in fact we do not need ρW defined at p. Indeed, it is enough to have ρW
defined in a neighbourhood of points whose orbit is dense in ∂U , and the point p does not
have a dense orbit.

We remark that it may not be possible to find an open neighbourhood Ωp of ClC(φ, 1)
disjoint from P (f) such that Ωp ∩ U is connected. As a counterexample, see Figure 8.1.
However, we prove that we can find a neighbourhood of ClC(φ, 1) where one inverse branch
is well-defined. This is enough to prove, in the PS case, that 1 is not a singularity for the
associated inner function ending the proof of Theorem C’; and, in the SPS case, that every
point in ClC(φ, 1)∖{p} is escaping. Hence, there are no periodic boundary points nor points
with dense orbit in ClC(φ, 1). This would finish the proof of Theorem D’.

Lemma 8.2. (Cluster set of 1) Let f be a transcendental entire function, and let U be
an invariant parabolic basin, such that ∞ is accessible from U . Let φ : D → U be a Riemann
map, and let φ∗(1) = p be the parabolic fixed point. Assume U is PS. Then, 1 is not a
singularity for the associated inner function.

In addition, if U is SPS,
ClC(φ, 1)∖ {p} ⊂ I(f).

Proof. In the sequel, we let F1 be the branch of f−1 defined in D(p, r), r > 0, such that
F1(p) = p. We shall prove the existence of a domain Ωp analogous to the one of Technical
Lemma 1.

Indeed, the construction of the domain Ωp follows the procedure of Technical Lemma 1,
applied not to P (f) ∩ U , but to the following set of singular values

SV (f, p) = {v ∈ C : v is a singularity for F1} .
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φ
1 = φ∗(0)

0R− P×
1
e

· · ·

Figure 8.1: Dynamical plane of f(z) = ze−z, which has a SPS parabolic basin U with parabolic fixed point
0. The function has only one asymptotic value (0) which is fixed, and one critical value (1/e), which converges
to 0. Hence P (f) ⊂ P ∪{0}, where P is a parabolic petal containing 1/e, and we can take Ω = C in Definition
8.1. This shows that U is SPS.

We note that SV (f, p) ⊂ P (f), and SV (f, p)∩D(p, r) = ∅. Therefore, SV (f, p)∩U does not
accumulate at any point of ClC(φ, 1), and the arguments of Technical Lemma 1 apply.

Note that Ωp is a simply connected domain with ClC(φ, 1) ⊂ Ωp, and Ωp ∩ U connected
and disjoint from SV (f, p) ∩ U . Hence, F1 is well-defined in Ωp ∩ U , and we apply the same
arguments as in Theorem C to the function F1|Ωp∩U to prove that 1 is not a singularity for
the associated inner function.

In the SPS case, Ωp is disjoint from SV (f, p), and hence F1 is well-defined in Ωp. To prove
that every point in the cluster set is escaping (except for the parabolic point), we follow the
proof of Theorem D (b), considering Ωp as defined above. □
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