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We prove a sharp monotonicity theorem about the distribution 
of subharmonic functions on manifolds, which can be regarded 
as a new, measure theoretic form of the uncertainty principle. 
As an illustration of the scope of this result, we deduce 
contractivity estimates for analytic functions on the Riemann 
sphere, the complex plane and the Poincaré disc, with 
a complete description of the extremal functions, hence 
providing a unified and illuminating perspective on a number 
of results and conjectures on this subject, in particular on 
the Wehrl entropy conjecture of Lieb and Solovej. In this 
connection, we completely prove that conjecture for the group 
SU(2), by showing that the corresponding extremals are only 
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Shape optimization the coherent states. Also, we show that the above (global) 
estimates admit a local counterpart and in all cases we 
characterize also the extremal subsets, among those of fixed 
assigned measure.
© 2025 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Main results and applications

In the recent works of the second and fourth authors [15] in the Euclidean case and 
of the first author [10] in the hyperbolic case, a new method was discovered for studying 
the distribution of analytic functions. In this paper we single out key properties required 
for this approach to work, in the process generalizing it to wider classes of functions and 
to new geometries, in particular the spherical geometry.

To state the main result, we need to introduce some notation first. Let M be a smooth 
n-dimensional Riemannian manifold without boundary. We assume that it satisfies an 
isoperimetric inequality, that is for all open sets A ⊂ M with compact closure and 
smooth boundary we have

|∂A|2m ≥ H(|A|M ), (1.1)

where | · |m is the n− 1-dimensional Hausdorff measure on M , | · |M is the n-dimensional 
volume on M associated to the metric, and H : (0, |M |M ) → (0,+∞) is a C1 function 
(if |M |M is finite, we extend it to H(|M |M ) = 0).

Theorem 1.1. Let M be an n-dimensional Riemannian manifold satisfying (1.1) and let 
u : M → R be a Morse function on M , u ∈ C2(M), such that for all t ∈ R the superlevel 
sets u−1([t,+∞)) are compact and ΔMu ≥ −c, for some constant c > 0 where ΔM is the 
Laplace–Beltrami operator on M . Put μ(t) = |u−1([t,+∞))|M and t0 = supp∈M u(p). 
Then μ(t) is locally absolutely continuous and

μ′(t) ≤ − 
H(μ(t))
cμ(t) (1.2)

for almost all t ∈ (−∞, t0).

Roughly speaking, this result tells us that u cannot be too concentrated in the measure 
theoretic sense, which can be regarded as a new form of the uncertainty principle.

The assumption that u is a Morse function, unlike every other one, is purely technical 
for this theorem to hold. For a general function u satisfying all the other conditions, we 
can get an almost equivalent result. To state it, it is convenient to define, for t1 < t2 < t0
and μ > 0, D(t1, t2, μ) := g(t1), where g(t) is the solution, on the interval [t1, t2], of the 
(backward) differential equation

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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g′(t) = − 
H(g(t))
cg(t) (1.3)

with initial condition g(t2) = μ, provided that such a solution exists.

Theorem 1.2. Let M be an n-dimensional Riemannian manifold satisfying (1.1) and let 
u : M → R be a function in C2(M) such that for all t ∈ R the sets u−1([t,+∞)) are 
compact and ΔMu ≥ −c for some constant c > 0, where ΔM is the Laplace-Beltrami 
operator on M . Put μ(t) = |u−1([t,+∞))|M and t0 = supp∈M u(p). Then for all t1 <

t2 < t0 we have

D(t1, t2, μ(t2)) ≤ μ(t1) (1.4)

Part of the result is that the solution D(t, t2, μ(t2)) exists for every t < t2. This a 
consequence of the above a priori bound, which prevents blow-up in finite time in the 
(backward) Cauchy problem. If u is a Morse function, then this theorem is a direct con-
sequence of Theorem 1.1 and a basic comparison principle for first-order ODE. If the 
function u is not Morse, then we can approximate it by Morse functions while preserv-
ing all the other assumptions and use the continuity of the solution to the differential 
equation on the initial conditions. For the reader’s convenience we put the deduction of 
the Theorem 1.2 from the Theorem 1.1 in the Appendix.

A version of this result was used in [15] and [10], the difference being that in these pa-
pers the authors worked with weighted analytic functions of the form f(z) = g(z)e−ϕ(z), 
with g holomorphic and ϕ having constant Laplacian, for which we have a lower bound 
of Δ log |f(z)| instead of Δ|f(z)|, which amount just to a simple change of variables. 
The advantages of Theorem 1.2 are first of all that we can consider many more different 
manifolds than just Euclidean and hyperbolic spaces, in particular we can also work in 
the spherical geometry, but more generally on simply-connected two-dimensional mani-
folds of bounded curvature. Another advantage is that the functions that we work with 
are no longer analytic, thus vastly enlarging the domain of applicability of this theorem.

As a consequence of the monotonicity result in Theorem 1.2 we will prove the following 
sharp functional inequality.

Theorem 1.3. Let F : R → R be a smooth increasing function such that limt→−∞ F (t) =
0 and G : [0, F (t0)] → R be a continuous convex function with G(0) = 0, for some t0 ∈ R. 
Let M be an n-dimensional Riemannian manifold satisfying (1.1) and let u : M → R

be a C2(M) function such that for all t ∈ R the sets u−1([t,+∞)) are compact and 
ΔMu ≥ −c for some constant c > 0, where ΔM is the Laplace-Beltrami operator on M , 
with ∫

M

F (u(p)) dVol(p) = 1. (1.5)

Let μ0(t) > 0 be a solution to the differential equation (1.3) on (−∞, t0), such that
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t0∫
−∞

F ′(t)μ0(t)dt = 1

and limt→t−0
μ0(t) = 0. Then u(p) ≤ t0 for all p ∈ M and

∫
M

G(F (u(p))) dVol(p) ≤
t0∫

−∞

G′(F (t))F ′(t)μ0(t)dt. (1.6)

Moreover, if G is not linear on [0, F (t0)], then equality in (1.6) is possible only if either 
both integrals are −∞ or |u−1([t,+∞))|M = μ0(t) for all t < t0.

The function F corresponds to the change of variables, for example F (t) = et if we 
want to consider log-subharmonic functions, while the function G corresponds to what 
we want to integrate, for example G(t) = tp if we want to consider Lp-norms.

Remark 1.4. Since we want to apply our theorem to logarithms of analytic functions, 
which can be 0 at some points, sometimes it is convenient for us to assume that u : M →
[−∞,∞) is continuous and C2 on u−1(R). This case follows from the above theorem since 
u−1(R) is still a manifold without boundary, u−1([t,+∞)) are compactly embedded into 
it and F (−∞) = G(0) = 0 so the integrals do not change.

By applying Theorem 1.3 to some particular instances of manifolds M and functions 
u it is possible to prove that in many occasions the most concentrated (normalized) 
functions in a reproducing kernel Hilbert space are given by the normalized reproducing 
kernels. This is particularly clear when the space consists of holomorphic functions and 
there is a group acting on M which is compatible with the reproducing kernel structure. 
If we quantify the concentration of the functions in terms of the Wehrl entropy, this is 
essentially the content of Section 4. We prove a generalized version of the conjecture, 
that gives as a corollary the hypercontractive embeddings among spaces.

There is also an analogous local problem, where we inquire which is the domain of 
a given measure where a normalized function in a reproducing kernel Hilbert space is 
mostly concentrated. Again the extremal functions for such problems are reproducing 
kernels and the extremal domains are the corresponding super-level sets. This is the 
content of Section 5.

Rupert Frank [7] has independently and simultaneously obtained analogous results to 
those in Sections 4 and 5 in the three classical geometric models: sphere, Euclidean plane 
and hyperbolic disk. We have chosen to present a streamlined proof in a more general 
setting that covers as a particular instance the classical cases. Moreover, our approach 
allows us to identify the maximizers in the local estimates; see Section 5.
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2. Proof of Theorem 1.1

Since u is a Morse function, we have |{p ∈ M : ∇u(p) = 0}|M = 0, which implies that 
μ(t) is locally absolutely continuous and the coarea formula holds in the following form

μ′(t) = −
∫

∂At

|∇u|−1dHn−1

for almost all t ∈ R, where At = u−1([t,+∞)), |∇u| stands for the length of ∇u in the 
tangent space and Hn−1 = | · |m is the n − 1-dimensional Hausdorff measure on M (cf. 
[6, Sections 3.2.12 and 3.2.46]). By Sard’s theorem, for almost all t we have ∇u 	= 0
where u = t, so that ∂At = u−1({t}) is a smooth submanifold, which is compact by the 
assumption that u−1([t,+∞)) is compact for all t ∈ R.

Next, we apply the Cauchy–Schwarz inequality on ∂At:

|∂At|2m =

⎛
⎝ ∫

∂At

dHn−1

⎞
⎠

2

≤
∫

∂At

|∇u|−1 dHn−1
∫

∂At

|∇u| dHn−1.

Now, ∇u is orthogonal to ∂At and pointing inside At. Thus, denoting by ν the unit 
outward normal to ∂At, we have |∇u| = −∇u · ν. Plugging this in and using Gauss–
Green’s theorem, we have

∫
∂At

|∇u| dHn−1 = −
∫

∂At

∇u · ν dHn−1 = −
∫
At

Δu dVol ≤ c|At|M = cμ(t).

By the isoperimetric inequality, we have |∂At|2m ≥ H(μ(t)). Combining everything 
and dividing by cμ(t) (note that here we used that t < t0, that is μ(t) > 0), we get

−μ′(t) ≥ H(μ(t))
cμ(t) .

Multiplying this by −1 we get the desired result.

Remark 2.1. It turns out that the claim of Theorem 1.1 is of local nature, and the 
assumption that every superlevel sets of u is compact can be weakened. In fact, the 
previous proof yields (without changes) the following more general result: if the superlevel 
sets {u ≥ t} are compact for t > τ (for some τ < t0), and ΔMu ≥ −c in the open set 
where u > τ , then μ(t) is locally absolutely continuous in (τ, t0), and (1.2) holds true for 
a.e. t ∈ (τ, t0).

3. Proof of Theorem 1.3

The following preliminary result will play a crucial role in the following.
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Lemma 3.1. With the same notation and assumptions as in Theorem 1.3, let μ(t) =
|u−1([t,+∞))|M and suppose μ 	= μ0 at some point, where μ0(t) in understood to be 
extended by 0 past t0. There exist t1 < t0 such that μ(t) ≥ μ0(t) if t ≤ t1 and μ(t) < μ0(t)
if t1 < t < t0. In particular, μ(t) = 0 for t ≥ t0. Moreover μ(t) > μ0(t) if t1 − t > 0 is 
large enough.

Note that this lemma already implies that u(p) ≤ t0 for all p ∈ M .

Proof. The condition (1.5) is equivalent to

∞ ∫
−∞

F ′(t)μ(t)dt = 1.

Hence

∞ ∫
−∞

F ′(t)μ(t)dt =
∞ ∫

−∞

F ′(t)μ0(t)dt.

Since F ′(t) ≥ 0 and F ′ is not identically zero on any subinterval, μ 	= μ0 and μ, μ0 are 
left-continuous, there should be t2 and t3 such that μ(t2) > μ0(t2) and μ(t3) < μ0(t3); 
in particular t3 < t0, because μ0(t) = 0 for t ≥ t0. By Theorem 1.2 for t ≤ t2 we have 
μ(t) > μ0(t) while for t3 ≤ t < t0 we have μ(t) < μ0(t). We denote by t1 the infimum of 
admissible t3’s. The conclusion is then clear. �
Proof of Theorem 1.3. As in Lemma 3.1 we set μ(t) = |u−1([t,+∞))|M for t ∈ R.

The left-hand side of (1.6) is equal to

t0∫
−∞

G′(F (t))F ′(t)μ(t)dt,

because μ(t) = 0 and G(0) = 0 for t ≥ t0 by Lemma 3.1.
Observe that this latter integral could be −∞ but not +∞. Indeed, the positive part 

of G′(F (t)) is bounded outside of the vicinity of t0 and near t0 we have that μ(t) is 
bounded while 

∫ t0
−∞ G′(F (t))F ′(t) dt = G(F (t0)) < ∞ is convergent. The same can be 

said for the right-hand side of (1.6). Moreover it is clear that we have an equality in (1.6)
if μ(t) = μ0(t) for t < t0.

Now, if the right-hand side of (1.6) is −∞ then G′(x) < 0 for x > 0 small enough and

t∫
−∞

G′(F (t))F ′(t)μ0(t)dt = −∞,
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if t0 − t > 0 is large enough, because G′ is bounded below on the compact subintervals 
of (0, F (t0)]. By Lemma 3.1 the same holds with μ0 replaced by μ, which implies that 
the left-hand side of (1.6) is −∞ as well.

Suppose now that both sides of (1.6) are finite. Let t1 be as in Lemma 3.1. We must 
have

t0∫
−∞

G′(F (t))F ′(t)(μ0(t) − μ(t))dt =
t1∫

−∞

(G′(F (t)) −G′(F (t1)))F ′(t)(μ0(t) − μ(t))dt

+
t0∫

t1

(G′(F (t)) −G′(F (t1)))F ′(t)(μ0(t) − μ(t))dt ≥ 0

where in the last step we used Lemma 3.1 and that G′ is non-decreasing. To be precise, 
G′ is in fact defined only almost everywhere, but the above formulas hold true if G′ is 
understood e.g. as the left derivative, so that it is an everywhere defined non-decreasing 
function on (0,+∞) (and the pointwise value G′(F (t1)) makes sense).

If we have equality in the latter estimate, we have

(G′(F (t)) −G′(F (t1)))(μ0(t) − μ(t)) = 0

for almost every t < t1 and for almost every t ∈ (t1, t0), hence for almost every t < t0. 
Since μ(t) < μ0(t) if t ∈ (t1, t0) we have G′(F (t)) = G′(F (t1)) for almost every t ∈
(t1, t0). On the other hand by Lemma 3.1 μ0(t) < μ(t) for t < t, for some t < t0. Hence 
G′(F (t)) = G′(F (t1)) for almost every t < t. Since G′(F (t)) −G′(F (t1)) is non-positive 
and non-decreasing for t < t1 we deduce that G′(F (t)) = G′(F (t1)) for every t < t1. 
Summing up, G′(F (t)) = G′(F (t1)) for almost every t < t0 (in fact, for every t < t0) and 
therefore G(t) is affine on (F (−∞), F (t0)) = (0, F (t0)), and therefore linear on [0, F (t0)], 
because G is continuous and G(0) = 0. �
4. Applications, the generalized Wehrl conjecture

In [18], Wehrl conjectured that among all Glauber states, the coherent states minimize 
the Wehrl entropy. To be more precise, we recall the basic terminology.

We are given a locally compact group G and a unitary representation T of G on 
a Hilbert space H. We fix a vector ψ ∈ H and denote by H ⊂ G the subgroup that 
leaves ψ invariant by the action T on elements of H up to a unimodular factor, i.e., 
T [h](ψ) = eiθhψ for all h ∈ H. Let X = G/H. In many instances, the Haar measure on 
G induces a measure μ on X that is invariant under the action of G. Then for any coset 
x ∈ X we take a representative g(x) and define the state vx = T [g(x)](ψ). This vector is 
well-defined up to a unimodular factor that may change with the representative g(x) that 
has been chosen. These vectors are the coherent states. For every u ∈ H and every x ∈ X
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we may form u(x) = 〈u, vx〉. In this way, we may think of H as a reproducing kernel 
Hilbert space of functions over X. We have that 〈vx, vy〉 = K(x, y) is the reproducing 
kernel for H, i.e., for all v ∈ H, v(x) =

∫
X
K(x, y)v(y) dμ(y).

Given a vector v ∈ H of norm one we define the Wehrl entropy as

∫
X

−|v(x)|2 log |v(x)|2 dμ(x).

The conjecture is that this is minimized for the coherent states. Namely, the conjecture 
postulates that among the functions with unit norm the reproducing kernels are the 
most concentrated. Sometimes a more general conjecture is formulated, replacing the 
function f(x) = x log(1/x) in the Wehrl entropy definition by any other concave function 
f : [0, 1] → R.

This conjecture was originally formulated by Wehrl in [18] for Glauber states. In this 
original setting H is the Fock space of entire functions such that 

∫
C |f(z)|2e−|z|2dA(z) <

∞, X = C and G is the Heisenberg group. It was proved by Lieb that the coherent 
states are minimizers in [11]. Later on, Carlen in [5] found a new proof that moreover 
confirmed that these are the unique minimizers.

In [11] Lieb extended the conjecture to the case of Bloch states. In this case, the group 
is SU(2) and H is a space of holomorphic polynomials of degree up to j endowed with the 
Fubini–Study metric. The coherent states associated are the corresponding reproducing 
kernels, see Subsection 4.1 for details. Thirty-six years later, in [12] Lieb and Solovej 
proved that the reproducing kernels are minimizers for the Wehrl entropy. The fact that 
these are the only minimizers remained open. They expect that a similar result should 
hold for any semi-simple Lie group.

In [14] they formulated the analogous problem for the group SU(1, 1) where the 
reproducing kernel Hilbert space is the Bergman space and X is the unit disk and 
proved some partial cases. The full conjecture in this case was proved in [10]. We will 
see now how all these cases and possibly many other instances of the Wehrl conjecture 
follow from our scheme. As a bonus, we will prove the uniqueness of the minimizers, thus 
setting the last piece of the Lieb conjecture for SU(2).

4.1. Bloch coherent states

In [12] Lieb and Solovej proved the generalized Wehrl conjecture that states that the 
Wehrl entropy is minimized at the coherent states in the Hilbert spaces of the irreducible 
representations of SU(2). They did not prove that the coherent states alone minimize 
the entropy. In [13] they extended their results to symmetric SU(N) coherent states.

To define the space of functions that we will consider, we first introduce the spherical 
measure on C, which corresponds to the metric inherited from the Euclidean metric 
restricted to the sphere of radius 1 

2
√
π

transported to C by the stereographical projection. 



A. Kulikov et al. / Advances in Mathematics 479 (2025) 110423 9

Namely, on C � z = x+iy we consider the Riemannian metric π−1(1+|z|2)−2(dx2+dy2)
and the corresponding measure

dm(z) = 1 
(1 + |z|2)2

dxdy

π
.

We will also sometimes denote the spherical measure of the set A by |A|M = m(A).

Definition 1. Let j ∈ N. We define Pj as the finite dimensional space of polynomials:

z 
→
j∑

k=0

ckz
k,

with inner product:

〈f, g〉 = (j + 1)
∫
C

f(z)g(z) 
(1 + |z|2)j dm(z)

and reproducing kernel

Kj(z, w) = (1 + zw)j .

The functions Kj(·, w) are the coherent states.

For each p > 0 the p-(quasi-)norm of f ∈ Pj is defined as

‖f‖pPj ,p
:= (pj/2 + 1)

∫
C

∣∣∣∣ f(z) 
(1 + |z|2)j/2

∣∣∣∣
p

dm(z).

The factor (pj/2 + 1) is introduced to guarantee that ‖1‖Pj,p = 1. Thus, the subhar-
monicity of |f |p and integration in polar coordinates yield |f(0)| ≤ ‖f‖Pj ,p. There is an 
invariance of the space Pj under a subgroup of the Möbius transformations that preserve 
the spherical metric, specifically, for any α, β ∈ C such that |α|2 + |β|2 = 1 the map 

Tα,βf = (βz + ᾱ)jf
(

αz−β̄
βz+ᾱ

)
is an isometry of Pj for all p. This is, in fact, the unitary 

representation of SU(2) on Pj .
This entails that for all f ∈ Pj and all p > 0 we have

sup 
z∈C

|f(z)| 
(1 + |z|2)j/2 ≤ ‖f‖Pj ,p. (4.1)

Then the conjecture of Bodmann [3, Conjecture 3.5] is that

‖f‖Pj ,q ≤ ‖f‖Pj ,p (4.2)
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when 1 ≤ p ≤ q and equality is achieved if and only if f is a multiple of the reproducing 
kernel. The generalized Wehrl conjecture in this context is that for any f ∈ Pj normalized 
such that ‖f‖Pj ,2 = 1, we have

Sj(|f |2) := −(j + 1)
∫
C

|f(z)|2
(1 + |z|2)j ln |f(z)|2

(1 + |z|2)j dm(z) ≥ j

j + 1 .

This inequality follows from (4.2) by observing that ∂‖f‖p

∂p (2) ≤ 0 or directly from the 
theorem below.

Our aim is to prove the following theorem.

Theorem 4.1. Let G : [0, 1] → R be a continuous convex function such that G(0) = 0, 
j ∈ N, p > 0. Then the maximum value of

∫
C

G

(
|f(z)|p

(1 + |z|2)pj/2
)
dm(z) (4.3)

subject to the condition that f ∈ Pj and ||f ||Pj ,p = 1, is attained for f(z) = (βz + ᾱ)j, 
for any α, β ∈ C, |α|2 + |β|2 = 1. If G is not linear on [0, 1], then these are the only 
maximizers.

The first part of the statement corresponds to Theorem 2.1 in [12]. The uniqueness 
of the maximizers is new. We observe that the expression in (4.3) is always finite, since 
m(C) = 1 is finite.

Proof. Take M to be the sphere in R3 of radius 1 
2
√
π

with the Riemannian metric inher-
ited from R3. Paul Levy’s isoperimetric inequality for the sphere (see e.g. [16]) says that 
for any open set A ⊂ M with smooth boundary we have

|∂A|2H1 ≥ 4π|A|M − 4π|A|2M .

Thus, we have (1.1) with H(x) = 4πx(1 − x). For any polynomial f ∈ Pj , take u =
log

(
|f(z)| 

(1+|z|2)j/2

)
, pull it back to the sphere via the stereographic projection and extend 

to the North Pole N by continuity u(N) = log(|cj |), where cj is the coefficient of zj in 
f(z). We will apply Theorem 1.3 (and Remark 1.4) to the function u and M .

The spherical Laplacian in stereographic coordinates is ΔM = π(1 + |z|2)2Δe, where 
Δe is the ordinary Euclidean Laplacian, thus

ΔMu = π(1 + |z|2)2Δe log(|f |) − π(1 + |z|2)2Δe log(1 + |z|2)j/2 ≥ −2πj

and F (t) = (pj/2 + 1)ept. We assume that the polynomial is normalized, i.e.,
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1 = ‖f‖pPj ,p
=

∫
C

F (u(z))dm(z).

In order to apply Theorem 1.3, we identify μ0. The function μ0(t) is the solution to

g′(t) = 4πg(t) − g2(t)
−π2jg(t) = g(t) − 1

j/2 
,

with the normalization

(pj/2 + 1)
t0∫

−∞

peptμ0(t) dt = 1

and limt→t−0
μ0(t) = 0. The solution is attained when t0 = 0 and μ0(t) = 1− e2t/j when 

t ∈ (−∞, 0). This is exactly

m
({

z ∈ C : log 1 
(1 + |z|2)j/2 > t

})
,

thus f = 1 attains the maximum. Any other coherent state Tα,β1 = (βz+ᾱ)j , with |α|2+
|β|2 = 1 has the same distribution function, thus it will also attain the maximum. Let us 
check that they are the only maximizers. Indeed, if f ∈ Pj is a maximizer with ‖f‖Pj ,p =
1 we may assume (after an application of Tα,β) that supz∈C

|f(z)| 
(1+|z|2)j/2 is attained at z = 0

(note that it must be attained somewhere since the sphere is compact). Subharmonicity 
implies that |f(0)| ≤ 1 and the equality is attained only when f is constant, which can 
be seen by integrating in polar coordinates and applying subharmonicity to the function 
|f(z)|p on each circle {|z| = r} and noting that subharmonicity is strict for large enough 
r unless f is constant. On the other hand by Theorem 1.3 if f is a maximizer then 
|u−1([t,+∞))|M = μ0(t) > 0 if t < 0. Thus supu = 0, i.e., supz∈C

|f(z)| 
(1+|z|2)j/2 = 1. �

4.2. Glauber coherent states

For p > 0, α > 0, we consider the Bargmann–Fock space of entire functions f of one 
complex variable z = x + iy with p-(quasi-)norm

pα

π

∫
C

∣∣∣f(z)e−α|z|2
∣∣∣p dA(z) < ∞,

with dA(z) = dxdy. For p = 2 we have a reproducing kernel Hilbert space and the 
coherent states are given by eαāz−α|a|2/2, with a ∈ C, see e.g. [19].

The result that follows from Theorem 1.3 is:
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Theorem 4.2. Let G : [0, 1] → R be a convex function such that G(0) = 0. Let α > 0, 
p > 0. Then the supremum of the functional

∫
C

G
(∣∣∣f(z)e−α|z|2/2

∣∣∣p) dA(z) (4.4)

subject to the condition that f ∈ H(C) and

pα

π

∫
C

∣∣∣f(z)e−α|z|2/2
∣∣∣p dA(z) = 1 (4.5)

is attained at f(z) = eαāz−α|a|2/2 for any a ∈ C. If G is not linear on [0, 1], and this 
supremum is finite (i.e. > −∞), then these are the only maximizers, up to a unimodular 
factor.

We emphasize that the above functional takes values in [−∞,+∞) and its supremum 
can be finite or −∞, depending on G. This theorem for a general convex function G
was proved by Lieb and Solovej in [12]. The fact that the minimizers are unique for a 
general convex function is new, as far as we know. For the classical Wehrt entropy, the 
uniqueness was proved by Carlen in [5].

Proof. The operators

Taf(z) = eαāz−α|a|2/2f(z − a),

with a ∈ C, are an isometry in the Fock spaces. Moreover, under the assumption (4.5), 
|f(z)e−α|z|2/2| ≤ 1 for all z ∈ C (see e.g. [19]). The result follows by applying The-
orem 1.3 using the classical isoperimetric inequality in the plane, that is (1.1) with 
H(x) = 4πx (see e.g. [16]), and taking u = log(|f(z)|e−α|z|2/2), hence Δu = −2α, and 
F (t) = pα

2π e
pt. Here μ0(t) = −2πt/α for t ∈ (−∞, 0); hence t0 = 0. The uniqueness of 

the maximizers follows as in Subsection 4.1 (here the supremum supz∈C u is attained 
because limz→∞ |f(z)|e−α|z|2/2 = 0, cf. [19]). �
4.3. SU(1,1) coherent states

Now we consider, for α > 0, p > 0, the weighted Bergman space of analytic functions 
f in the unit disk D ⊂ C, with p-(quasi-)norm

∫
D

(α− 1)|f(z)|p(1 − |z|2)α dm(z) < ∞,

where
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dm(z) = dxdy 
π(1 − |z|2)2

is the area element, for z = x + iy. When p = 2 we obtain a reproducing kernel Hilbert 
space, and the coherent states are given by (1 − zā)−2α/p, a ∈ D; see [8].

The issue addressed in the previous subsections was reformulated for these spaces as 
a function theory problem in [14]. This problem had been considered, and some partial 
solutions found in [4] and [1]. Finally, the following theorem was proved in [10, Theorem 
1.2 and Remark 4.3].

Theorem 4.3. Let G : [0, 1] → R be a continuous convex function such that G(0) = 0. 
Let α > 1, p > 0. The supremum of the functional

∫
D

G
(
|f(z)|p(1 − |z|2)α

)
dm(z) (4.6)

subject to the condition that f ∈ H(D) and
∫
D

(α− 1)|f(z)|p(1 − |z|2)α dm(z) = 1

is attained at f(z) = (1−|a|2)α/p

(1−zā)2α/p for any a ∈ D. If G is not linear on [0, 1], and this 
supremum is finite (i.e. > −∞), then these are the only maximizers, up to a unimodular 
factor.

Proof. Again this is now a corollary of Theorem 1.3 where the manifold is D endowed 
with the hyperbolic metric, the function u(z) = log(|f(z)|(1 − |z|2)α/p), the function 
F (t) = (α − 1) exp(pt) and we have the isoperimetric inequality (1.1) in the hyperbolic 
space with H(x) = 4π(x+x2) (see e.g. [16]). The Laplace–Beltrami operator now is given 
by ΔD = π(1 + |z|2)2Δe, where Δe is the Euclidean Laplace operator. A straitforward 
computation shows that

ΔDu ≥ −4πα/p,

which yields μ0(t) = e−pt/α − 1 for t ∈ (−∞, 0); hence t0 = 0. The uniqueness of the 
maximizers follows as in Subsection 4.1. �
5. Local estimates: Faber–Krahn inequalities

In this section we prove a local counterpart of the estimate in Theorem 1.3. A similar 
result had first appeared in the special case of Glauber coherent states in [15]. The 
following theorem provides a far-reaching generalization of that result, and the proof is 
even simpler.
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Theorem 5.1. Under the same assumption and notation of Theorem 1.3, suppose in addi-
tion that G(x) > 0 for x > 0. Then for every set Ω ⊂ M and every u as in Theorem 1.3
we have

∫
Ω 

G(F (u(p))) dVol(p) ≤
|Ω|M∫
0 

G(F (μ−1
0 (s)))ds. (5.1)

Moreover equality in (5.1) is possible for some u as above and Ω with |Ω|M > 0 if and 
only if |u−1([t,+∞))|M = μ0(t) for all t < t0 and Ω = u−1([t,+∞)), with t = μ−1

0 (|Ω|M )
(up to null sets) if |Ω|M < |M |M , or Ω = M if |Ω|M = |M |M .

Observe that the additional assumption G(x) > 0 for x > 0 implies that G : [0,+∞) →
R is strictly increasing. Also, we have the characterization of the maximizers without 
any further assumption on G (such as non-linearity).

Proof. For u as in the statement, let μ(t) = μu(t) = |u−1([t,+∞))|M , t ∈ R, be its 
distribution function and u∗(s) = inf{t : μ(t) < s}, for 0 ≤ s < |M |M , its non-increasing 
rearrangement. If |Ω|M < |M |M , let Ω̃ ⊂ M be any subset with |Ω̃|M = |Ω|M and 
u−1((t,+∞)) ⊂ Ω̃ ⊂ u−1([t,+∞)), with t = u∗(|Ω|M ) (up to null sets). If |Ω|M = |M |M , 
let Ω̃ = M . Then it is easy to check that

∫
Ω 

G(F (u(p))) dVol(p) ≤
∫

Ω̃

G(F (u(p))) dVol(p) =
|Ω|M∫
0 

G(F (u∗(s)))ds (5.2)

where the equality follows from the fact that u and u∗ are equi-measurable and the 
Fubini theorem. Hence we are going to prove that

s ∫
0 

G(F (u∗(τ)))dτ ≤
s ∫

0 

G(F (μ−1
0 (τ)))dτ (5.3)

for 0 ≤ s ≤ |M |M . This is clear if μ(t) = μ0(t) for t < t0. Suppose then that μ 	= μ0 at 
some point. Consider the function

ϕ(s) :=
s ∫

0 

G(F (μ−1
0 (τ)))dτ −

s ∫
0 

G(F (u∗(τ)))dτ

for 0 ≤ s < |M |M . Clearly ϕ is continuous and ϕ(0) = 0. As a consequence of Lemma 3.1, 
ϕ is strictly increasing on [0, μ0(t1)]; indeed, for t1 < t < t0 we have μ(t) < μ0(t) which 
implies that μ−1

0 (s) > u∗(s) for 0 < s < μ0(t1). Similarly, on [μ0(t1), |M |M ) ϕ is non-
increasing (in fact strictly decreasing for s < |M |M large enough). Finally,
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lim 
s→|M |−M

ϕ(s) =
|M |M∫
0 

G(F (μ−1
0 (τ)))dτ −

|M |M∫
0 

G(F (u∗(τ)))ds

=
t0∫

0 

G′(F (t))F ′(t)μ0(t)dt−
∫
M

G(F (u(p))) dVol(p) > 0

where the latter inequality follows from Theorem 1.3. As a consequence, ϕ(s) > 0 for 
0 < s < |M |M . This concludes the proof of (5.1).

The characterization of the cases of equality also follows from the above discussion. 
The claim about Ω follows from (5.2), since in that case equally occurs in (5.2) and the 
level sets u−1({t}) have zero measure, because μ0(t) is continuous (if |Ω|M = |M |M , 
hence Ω̃ = Ω, we also use the fact that G(F (u(p))) is continuous and strictly positive on 
M). �

We now specialize the above result to the three geometries (spherical, Euclidean, 
hyperbolic). We begin with the spherical case and we use the notation of Subsection 4.1; 
in particular, for z = x + iy ∈ C, dm(z) = 1 

(1+|z|2)2
dxdy
π . Recall that m(C) = 1.

Theorem 5.2. Let G : [0, 1] → R be a continuous convex function such that G(0) = 0 and 
G(x) > 0 for x > 0. Let j ∈ N, p > 0. Then for every f ∈ Pj with ||f ||Pj ,p = 1 and 
Ω ⊂ C,

∫
Ω 

G

(
|f(z)|p

(1 + |z|2)pj/2
)
dm(z) ≤

m(Ω)∫
0 

G((1 − s)pj/2)ds. (5.4)

Equality occurs in (5.4) for some f and Ω with m(Ω) > 0 if and only if f(z) = (βz+ ᾱ)j
for some α, β ∈ C, |α|2 + |β|2 = 1 and Ω is (up to a null set) a superlevel set of 
|f(z)|/(1 + |z|2)j/2 (which is a disk in C) if m(Ω) < 1, or Ω = C if m(Ω) = 1.

Proof. We apply Theorem 5.1, by arguing as in the proof of Theorem 4.1. In particular 
we have μ0(t) = 1− e2t/j for t ∈ (−∞, 0), hence if u(z) := log(|f(z)|/(1 + |z|2)j/2) is an 
extremal function, its maximum value is t0 = 0, and the maximum of |f(z)|/(1+ |z|2)j/2
is 1. This gives the desired extremal functions. �

Similarly we obtain the following results for Glauber and SU(1, 1) coherent states, 
that we state without proof.

The following result generalizes [15, Theorem 3.1], which corresponds to the special 
case p = 2, α = π and G(x) = x. Here C is endowed with the Lebesgue measure 
dA(z) = dxdy, with z = x + iy. We also write |Ω| = A(Ω).

Theorem 5.3. Let G : [0, 1] → R be a continuous convex function such that G(0) = 0 and 
G(x) > 0 for x > 0. Let α > 0, p > 0. Then for every f ∈ H(C) satisfying
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pα

π

∫
C

∣∣∣f(z)e−α|z|2/2
∣∣∣p dA(z) = 1

and Ω ⊂ C, we have

∫
Ω 

G
(∣∣∣f(z)e−α|z|2/2

∣∣∣p) dA(z) ≤
|Ω|∫
0 

G
(
e−pαs/(2π)

)
ds. (5.5)

Equality occurs in (5.5) for some f and Ω with |Ω| > 0 if and only if f(z) = eαāz−α|a|2/2, 
for some a ∈ C, up a unimodular factor, and Ω is (up to a null set) a superlevel set of 
|f(z)|e−α|z|2/2 (which is a disk in C) if |Ω| < ∞, or Ω = C if |Ω| = ∞.

Finally, the following result generalizes [17, Theorem 3.1], which corresponds to the 
particular case p = 2, G(x) = x. Here the unit disk D is endowed with the measure 
dm(z) = 1 

(1−|z|2)2
dxdy
π , for z = x + iy ∈ D.

Theorem 5.4. Let G : [0, 1] → R be a continuous convex function such that G(0) = 0 and 
G(x) > 0 for x > 0. Let α > 1, p > 0. Then for every f ∈ H(D) satisfying

∫
D

(α− 1)|f(z)|p(1 − |z|2)α dm(z) = 1

and Ω ⊂ C, we have

∫
D

G
(
|f(z)|p(1 − |z|2)α

)
dm(z) ≤

m(Ω)∫
0 

G((1 + s)−α)ds. (5.6)

Equality occurs in (5.6) for some f and Ω with m(Ω) > 0 if and only if f(z) = (1−|a|2)α/p

(1−zā)2α/p

for some a ∈ D, up to a unimodular factor, and Ω is (up to a null set) a superlevel set 
of |f(z)|(1 + |z|2)α/p (which is a disk in D) if m(Ω) < ∞, or Ω = D if m(Ω) = ∞.

6. Appendix, proof of Theorem 1.2

First we establish the Theorem in the case when u is a Morse function (we may assume 
that u is not constant, so that μ(t) > 0 for every t < t0). In this case, by Theorem 1.1, u
is locally absolutely continuous on (−∞, t0) and satisfies the differential inequality (1.2)
for a.e. t < t0. Now consider an arbitrary t2 < t0, and let g(t) be the solution of the 
(backward) Cauchy problem

g(t2) = μ(t2), g′(t) = − 
H(g(t))
cg(t) , t ≤ t2, (6.1)
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whose existence on some interval (a, t2] is guaranteed by the smoothness of H > 0 and 
the fact that μ(t2) > 0. On this interval, combining (1.2) and (6.1), by a standard 
comparison theorem for ODEs (see e.g. [2, Chapter 1]) we obtain that g(t) ≤ μ(t) and, 
since μ is locally bounded due to the assumption that the level sets {u ≥ t} are compact, 
this prevents blow up in finite time for g(t). Therefore, the existence of the solution g(t)
(together with the bound g(t) ≤ μ(t)) propagates t ≤ a, and eventually one obtains (1.4)
as claimed.

Now let u be as in Theorem 1.2. Since Morse functions are dense in the strong C2

topology on M (see e.g. [9, Chapter 6, Theorem 1.2]), we can pick a sequence un of 
Morse functions such that |u− un| < 1 

n , |Δu− Δun| < 1 
n .

Let An(t) = u−1
n ([t,+∞)), μn(t) = |An(t)|M and A(t) = u−1([t,+∞)). Fix numbers 

t1 < t2 < t0. Note that for all t < t0 − 1 
n we have An(t + 1 

n ) ⊂ A(t) ⊂ An(t − 1 
n ). 

Applying Morse version of the theorem to the function un we get for big enough n

Dn

(
t1 + 1 

n
, t2 −

1 
n
, μn

(
t2 −

1 
n

))
≤ μn

(
t1 + 1 

n

)
,

where Dn(t3, t4, μ) is the solution to the differential equation

g′(t) = − H(g(t)) 
(c + 1 

n )g(t)

at t3 with initial condition g(t4) = μ. Number n should be so big that min(c, t0 − t2, t2 −
t1) > 2 

n .
By the inclusions for the sets An(t), A(t) we have μn(t2− 1 

n ) ≥ μ(t2) and μn(t1+ 1 
n ) ≤

μ(t1). Applying continuity to the solution of the differential equation on the parameters 
and the initial conditions and the fact that D(t3, t4, μ) ≤ D(t3, t4, ν) if μ ≤ ν we get

D(t1, t2, μ(t2)) ≤ μ(t1),

as required.
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