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(modified from Garcés et al., 2020).

Reconstruction of the Iberia-Eurasia margin and surrounding areas in the
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domains are indicated. PB: Parentis basin; LP: Landes plateau; BCB:
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OB: Organya basin; MsB: Maestrat basin; VB: Vocontian basin; DI:
Durance isthmus; SPB: South Provence basin; FMB: Figueres-Montgti
basin; PrB: Perell6 basin; MGB: Montmell-Garraf Basin; BB: Barcelona
basin. Red square indicates the area of study (modified from Tavani e al,

2018).
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al. (2014), Orti et al. (2017) and Escudero-Mozo ¢z al. (2017).
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Penedes Basin; PB: Penedes Basin; VP: Valles Basin; GH: Garraf High;
BP: Barcelona Plain; CMH: Collserola-Montnegre High; MH: Montseny
High; BF: Barcelona Fault; BMB: Barcelona-Maresme Basin; MAZ:
Marmellar Accommodation Zone.
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showing folds and cleavage/foliations. B) Carboniferous slates and red
sandstones with cleavage/foliations.

A) Permian-Mesozoic thicknesses across the Ebro Basin and the central
Catalan Coastal Ranges. Upper reference datum corresponds to the base
of the Tertiary. Mesozoic thicknesses based on Salas (1987), Lanaja (1987)
and ICGC (2005); Permian based on Marzo (1980), Marzo and Calvet
(1985) and Loépez-Gomez (2002). Horizontally not-to-scale.  B)
Tectonostratigraphic map of the central Catalan Coastal Ranges at the end
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Fig. 1.25

Fig. 1.26

Fig. 1.27

Fig. 1.28

of the late Jurassic - early Cretaceous extensional phase. St-1: Senant-1
well; StS-1: Sant Sadurni-1 well.

Triassic outcrops in the Gaia-Montmell High. Sp indicates bedding
orientation A) Quartz clast-rich conglomerates and red lutites Lower
Buntsandstein facies; B) Quartz clast-rich Lower Buntsandstein
conglomerate facies; C) Fine laminated Lower Muschelkalk (Mul) marine
carbonate facies; D) Deformed (see folds in the upper left corner of the
image) Middle Muschelkalk (Mu2) red-beds and evaporitic facies; E)
Foliated and faulted Upper Muschelkalk (Mu3) marine carbonate facies;
F) Keuper fine detrital and evaporite facies.

Chrono-lithostratigraphic diagram showing the Upper Jurassic-Lower
Cetaceous succession recognized in the Montmell-Garraf Basin compiled
from Salas et al. (2001), Moreno-Bedmar ¢7 al. (2017) and Martin-Closas ez
al. (2021).

Not-to-scale schematic chrono-lithostratigraphic panel for the Paleocene-
Eocene units outcropping between Vallespinosa and Cabra del Camp
towns (see Figure 1.20 for location). Numbers in the panel indicate the
four major lithostratigraphic assemblages defined in the atea by
Colldeforns ez al. (1994a and b): 1) basal continental unit (Mediona Fm.)
and a lower marine unit (Orpi Fm.); 2) Pontils-Cornudella Group; 3)
Santa Maria Group, and 4) Barbera-Anoia Group.

Paleogene outcrops of the central southeastern margin of the Ebro Basin
in the Cabra-Vallespinosa area. A) Mediona and Ozpi formations (marine
carbonatic basal succession) on top of Upper Triassic Keuper; B)
Mediona Fm., continental unit constituted by alluvial mudstones affected
by intense pedogenic processes; C) Lacustrine limestones alternating with
versicoloured mudstones of the Santa Candia Fm.; D) Red mudstones
with minor sandstone and carbonate bed intercalations of the Carme Fm.;
E) Sulphate evaporites and lacustrine carbonates of the Valldeperes Fm.;
F) Lacustrine and palustrine limestones with interbedded marls and cherts
bearing beds of the Bosc d'en Borras Fm.; G) Shallow matine fine-grained
sandstones of the Vallespinosa Fm.; H) Red beds of the Montblanc Fm.;
I) Cabra del Camp Mb. verticalized bed (Montblanc Fm.); ]) Inverted beds
of the Cabra del Camp Mb. (Montblanc Fm.); K) Sant Miquel del
Montclar massive conglomerates with centimetric to decimetric carbonate
clasts.

1.5. Problem approach and methodology

Fig. 1.29

Fig. 1.30

Fig. 1.31

Flow diagram showing the three phases that covers the performed
research.

Simplified geological map of the central Catalan Coastal Ranges indicating
the areas where has been performed the stratigraphic recognition and
characterization of specific stratigraphic successions and the gathering of
structural data: 1) Triassic successions in Querol in the centre of the
Miramar-Gaia Domain (1) and the Miramar Range (1"); 2) Lower
Cretaceous successions in Coll de Santa Cristina - La Rubiola at the
Montmell Domain; 3) Upper Jurassic-Lower Cretaceous (Early
Valanginian) successions; 4) Upper Jurassic-LLower Cretaceous
successions nearby la Juncosa del Montmell town; 5) Paleogene units
preserved both in the southeastern margin of the Ebro Basin between
Vallespinosa and Cabra del Camp.

Geological map of the Gaia-Montmell High and surrounding areas
(modified from ICC, 2017). The map includes the location of the
constructed sections: A) Gaia-Montmell Section; B) Marmellar Section
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and C) Cabra Section. The map also shows the acquired parametric M'T
soundings along the Gaia-Montmell Section.

Fig. 1.32 Senant-1, Sant Sadurni-1 and Martorell-1 boreholes (St-1, SS-1 and Ma-1 Page 52
respectively in the map) used during the construction of the structural
sections and tectonostratigraphic maps (modified from Lanaja, 1987).
PH: Prades High; MR: Miramar Range; ECB: El Camp Basin; ECF: El
Camp Fault; GMH: Gaia-Montmell High; VPB: Valles-Penedes Basin;
VPE: Valles-Penedes Fault; GMtH: Garraf-Montnegre High; BE:

Barcelona Fault; BB: Barcelona Basin.

Fig. 1.33 A) Cabra de Camp Mb. (Montblanc Fm.) verticalized conglomerate bar; Page 55

B) Example of yellowish centimetric Mesozoic bioclastic clast sampled
from the Cabra del Camp Mb.; C) Example of Mesozoic reddish
centimetric bioclastic clast sampled from the Cabra del Camp Mb; D)
Paleochannel bottom outcrop in conglomerates of the Cabra del Camp
Mb. used for paleocurrent measurements; E) Ripples at the bed top of
marine-continental transitional facies. Dashed white arrow indicates the
paleocurrent direction.

CHAPTER 2: First Publication

Mesozoic structural inheritance in the Cenozoic evolution of the central Catalan Coastal
Ranges (western Mediterranean): Structural and magnetotelluric analysis in the Gaia-

Montmell High. (Marin et al., 2021).

Fig. 1 Schematic ~ structural map of the Catalan Margin (Western Page 60
Mediterranean). ECB: El Camp Basin; ECF: El Camp Fault; GMtH:
Garraf-Montnegre High; GMH: Gaia-Montmell High; MR: Miramar (2 of 15)
Range; PH: Prades High; VPB: Valles-Penedes Basin; VPE: Valles-
Penedes Fault; MH: Montseny High; BE: Barcelona Fault; BB: Barcelona
Basin; GUT: Gandesa-Ulldemolins Thrust; PVT: Portalrubio-Vandellos
Thrust; PeB: Perell6 Mesozoic Basin; EMB: Eastern Maestrat Mesozoic
Basin; St-1: Senant-1 well. Red stars in the Prades High indicate the
location of the two MT soundings recorded on top of Paleozoic rocks.
(For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 2 Geological map of the Gaia-Montmell High and surrounding areas. The Page 61
map includes the location the Gaia-Montmell and the Marmellar cross- 3 of 15
sections (Figs. 5 and 6 respectively) and the acquired parametric MT (3 of 15)
soundings along the Gaia-Montmell Section. M-labelled thick dashed line
indicates the approximate location of the Mesozoic succession-type
described by Salas (1987) in the Marmellar area. Black dots are village
locations used in the text to facilitate the explanations. See Fig. 1 for the
exact location of the Senant-1 well.

Fig. 3 Chronostratigraphic chart of the study and the adjoining areas. Main Page 62
tectonic events are indicated. Major unconformities are labelled as
follows. MU Messinian Unconformity; MAU: Middle Albian (4 of 15)
Unconformity; VU: Variscan Unconformity. Lithostratigraphy has been
compiled from Orti (1974), Anadén ez al. (1978), Colombo (1986), Lanaja
(1987), Salas (1987), Casas and Permanyer (1991), Calvet and Marzo
(1994), Cabrera and Calvet (1990), Salas ¢# a/. (2001), Mercedes-Martin e
al. (2014), Ozt et al. (2017) and Escudero-Mozo ef al. (2017).



Fig. 4 Gaia-Montmell Section showing the Alpine structure at the linkage zone Page 64
between the Neogene Valles-Penedés and El Camp faults in the central
Catalan Coastal Ranges. See location of the section in Fig. 3. The hatched (6 of 15)
area labelled with “T” indicates the zone of distributed shear at the upper
tip of the Gaia-El Camp Thrust. B) Detail of the structure of the
L'Arbogar deformation strip.

Fig. 5 A) Riera del Marmellar outcrop exemplifying collected structural data and Page 65
stereographic plots (lower hemisphere) with measured fault planes and
slip directions in the present-day and their orientations after unfolding (7 of 15)
the bedding. B) Marmellar Section showing the structure at the NE sector
of the Montmell Domain and adjoining Miramar-Gaia Domain areas.
Location of the Riera del Marmellar and Guardiola de Font-Rubi
outcrops are indicated with a red star. See Fig. 3 for the location of the
section and the outcrop in map view. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 6 A) Final magnetotelluric 2D model of the Gaia-Montmell Section Page 67
showing the differentiated conductive (C labels) and resistive (R labels)
bodies. B) The model with the interpreted stratigraphic boundaries (black (9 of 15)
lines), faults (red lines) and the top of the Variscan basement (dashed
white line). White stars indicate the location of the MT soundings (see
Fig. 3 for their location). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 7 Sequential structural restoration of the Gaia-Montmell Section applying Page 69
flexural slip and bed length preservation. A) Present-day after the latest
Oligocene- Neogene extension. B) Early Oligocene (end of the Paleogene (11 of 15)
compression). C) Late Cenomanian (end of the Late Jurassic-Early
Cretaceous extension). No vertical exaggeration.

Fig. 8 Schematic geological map of the Gaia-Montmell High showing the major Page 70
Neogene extensional faults and their related relay ramps. (12 of 15)

CHAPTER 3: Second Publication

Paleogene kinematics of the central Catalan Coastal Ranges: temporal constraints from
magneto-chronology and provenance analysis in synorogenic deposits in the SE margin of the

Ebro Basin (NE Spain). (Marin ef al., 2025)

Fig.1 Schematic diagram of a thick-skinned fold-and-thrust belt, which includes Page 80
an inverted extensional basin and its related foreland basin. Ti to Tv stand
for relative timing of deformation. End-member thrusting sequences (lof 25)
(forward-breaking and break-back) are also specified. Other
combinations of relative timing imply out-of-sequence thrusting.

Fig. 2 A) Geologic map of NE Iberia showing the major Cenozoic structural Page 81
units including its three bounding orogenic belts: the Pyrenees and the 2 of 25)

intraplate Iberian and Catalan ranges. Cenozoic foreland basin-fill is
highlighted in orange. Coordinates in geographical system. Labels 1 and
2 respectively correspond to the Prades Block and the Montserrat-Sant
Llorenc del Munt areas referred in the text. B) Geological map of the
Gaia-Montmell High in the central Catalan Coastal Ranges and adjoining
areas. The area corresponds to the linkage zone between the Neogene
Montmell-Valles Fault System and El Camp Fault. Coordinates in UTM
kms. C) Cross-section across the Gaia-Montmell High and its
neighbouring areas. The hatched area labelled with “T” indicates the zone



Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

of distributed shear at the tip of the Gaia-El Camp Thrust (modified from
Marin et al., 2021). Legend for B and C is the same.

A) Mesozoic thicknesses across the central Catalan Coastal Ranges and
the present-day offshore Barcelona-Maresme Basin. Upper reference
datum corresponds to the base of the Tertiary. Mesozoic thicknesses
based on Salas (1987), Lanaja (1987) and ICGC (2005). B)
Tectonostratigraphic map of the central Catalan Coastal Ranges and
offshore areas at the end of the late Jurassic - early Cretaceous extensional
phase. Ben E-1: Barcelona Marina E-1 well; StS-1: Sant Sadurni-1 well.

A) Geological map of the SE margin of the Ebro Basin between Cabra
del Camp and Vallespinosa locations based on Catrrera ez al. (2020) and
extended towards the northeast using the map from Colldeforns
(unpublished). Labels i, i’, i” stand for the Pontils magnetostratigraphic
logs from Beamud ¢ al, (2012). The basal portion of the
magnetostratigraphic log corresponding to the Carme Fm. present in
Figure 8, is located in the map shown in Figure 1 of the supplementary
material. Label j indicates the location of the Rocafort de Queralt
magnetostratigraphic log from Barbera ez a/l. (1999, 2001). The location of
the cross-section in Figure 5 is shown. The map uses UTM projection for
zone 31N (ETR96 datum) and the coordinates are in meters. B) Not-to-
scale schematic lithostratigraphic panel for the Eocene units. Numbers in
the panel indicate the four major lithostratigraphic units defined in the
area by Colldeforns ez al. (1994a and b): 1) basal continental unit (Mediona
Fm.) and a lower marine unit (Orpi Fm.); 2) Pontils-Cornudella Group;
3) Santa Maria Group, and 4) Barbera-Anoia Group.

A) Geological cross-section of the SE margin of the Ebro Basin across
the locality of Cabra del Camp. The section includes the NW frontal
structure of the Catalan Coastal Ranges (Cabra-Carme Monocline). B)
Field image of the limit between the Triassic and the succession of the
foreland. See map in Figure 2 for location at regional scale and map in
Figure 4 for a detail section location in the study area.

A) Paleochannel bottom outcrop in conglomerates of the Cabra del
Camp Mb. used for paleocurrent measurements. B) Ripples at the bed
top of marine-continental transitional facies. Dashed white arrow
indicates the paleocurrent direction. C) Stereographic plot of paleocurrent
measurements in the Cabra Fm. around the Cabra del Camp (n = number
of measurements). See map in Figure 4 for location. D) Restored
paleocurrent directions showing the predominant direction of the
sediment supply.

Clast microfacies. A) Photomicrograph of a grainstone texture from the
Ypresian Orpi Fm. showing two _Akeolina tests (left) and one of
Opertorbitolites (upper right). Sampling site 1. B) Detail of a pebble-sized
clast with ostracods giving rise to a wackestone texture. Santa Candia Fm.
(late Ypresian-Bartonian?). Sampling site 1. C) Close-up view of a
packstone clast (centre to right) with small foraminifera and a section of
a bivalve. Basal part of the Orpi Fm. (Ypresian). Sampling site 1. D) Sand-
sized clast exhibiting a grainstone texture with ooids perhaps eroded from
the Cenomanian Can Xuech Fm. Note the presence of an orbitolinid
within the conglomerate matrix (right). Sampling site 1. E) Close-up view
of a dolomitized miliolid and peloidal grainstone of Barremian-Aptian
age. Sampling site 2. F) Photomicrograph of a recrystallized limestone
exhibiting abundant sections of calcarecous green algae. Cretaceous?
Sampling site 2. G) Detail of an orbitolinid grainstone of Barremian-
Aptian age. Sampling site 3. H) Pebble-sized clast of Aptian age showing
a "bacinellid" fabric. Sampling site 3. I) Barremian-Aptian grainstone
texture exhibiting a section of a belemnite rostrum (centre) under cross
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polarized light. Note the presence of an orbitolinid in the lower left part
of the image. Sampling site 4.

Fig. 8 Magnetostratigraphy of the Pontils section. A) Magnetostratigraphic Page 90
section and correlation to the GPTS (Gradstein ¢ af., 2020). PO and RO 12 of 25
correspond to Pontils and Rocafort de Queralt fossil sites, respectively, (12 of 25)
with their attribution to Mammal Paleogene Reference Levels in brackets.
White squares in the VGP graph represent type 3 directions, discarded to
build the local magnetostratigraphy. B.A. Gp., B.B. and R.B-M stand for
Barbera-Anoia Group, Bosc d'en Borras and Riu de Boix-Montblanc
formations in the stratigraphic column. B) Sedimentation rates values and
evolution for the Pontils section. Blue arrow: Bartonian transgressive
event at the base of Santa Maria Group. Orange arrow: time of
disconnection from the ocean of the Ebro Basin.

Fig. 9 Source area age attribution of the upper Eocene clasts in the central SE Page 91
margin of the Ebro Basin. Clast type classification: A: Ypresian 13 of 25
wackestones-packstones. B: Alveolina limestone. C: Cenomanian ooidal (13 of 25)
grainstones. D: Lacustrine limestones (Barremian-Aptian, Upper
Cretaceous, Ypresian. E: Barremian-Aptian: orbitolinid limestone. F:
Barremian Aptian grainstones. G: Undifferentiated Cretaceous limestone.
H: Undifferentiated Cretaceous or Early Eocene dolostones.

Fig. 10 Schematic sequential structural restoration of the Gaia-Montmell Section Page 94
applying flexural slip and bed length preservation. A) late Lutetian pre-
compressional stage. B) late Lutetian — middle Bartonian syn- (16 of 25)
compressional stage. C) middle Bartonian to late Priabonian latest stages
of the compressional stage. No vertical exaggeration.

Fig. 11 Geological cross-section of the SE margin of the Ebro Basin across the Page 95
locality of Cabra del Camp showing the tectono-sequences differentiated 17 of 25
by the tectono-stratigraphic analysis. See Figure 4 for section location. (17 0f 25)

CHAPTER 4: Third Publication

Fluid-rock interaction control on fault reactivation: A review of the Montmell-Vallés Fault

System, central Catalan Coastal Ranges (NE Iberia). (Marin et al., 2023)

Fig.1 A) Schematic geological map of NE Iberia showing the three major Page 108
structural units bounding the Ebro Basin: the Pyrenees to the North, the 2 of 16
Iberian Range to the SW, and the Catalan Coastal Ranges (CCR) to the (2 of 16)
SE. The trace of the Montmell-Vallés Fault System (MVES) is highlighted
with a thick blue line. The limits of the southern, central, and northern
domains of the CCR are indicated in orange (names and dashed lines).
Black squares indicate the location of Figs. 2, 5 and 6. The map in
geographical coordinates. B) Detail of the central Catalan Coastal Ranges
highlighting the three sectors of the Montmell-Valles Fault System
indicated in the text. The location of the structural sections and seismic
profile shown in Fig. 3 is also indicated. BF: Barcelona Fault; BP:
Barcelona Plain; VP: Valles Basin; PB: Penedes Basin; GH: Garraf High;
GMH: Gaia-Montmell High; MH: Montseny High; CMH: Collserola-
Montnegre High; PeB: Perellé Basin; MAZ: Marmellar Accommodation
Zone. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 2 Simplified geological map of the central Catalan Coastal Ranges Page 109
highlighting the major Cenozoic faults and the sectors of the Montmell-
Valles Fault System indicated in the text. Star symbols indicate the
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Fig. 3

Fig. 4

Fig. 5

Fig. 6

Table 1

Table 2

Table 3

location of fluid flow analysis in fault planes performed by (1) Travé ez al.,
1998, (2) Belaid ez al., 2008, (3) Baqués ez al., 2010, (4) Baqués e al., 2012,
(5) Baqués ez al., 2014, (6) Cantarero et al., 2014a, (7) Marcén ez al. (2018),
(8) Travé and Calvet (2001), (9) and Cantarero ez a/. (2014c¢). The location
of the structural sections and the seismic profile shown in Fig. 3 is also
indicated. VB: Vallés Basin; PB: Penedes Basin; BPB: Baix Penedés Basin;
ECB: El Camp Basin; MAZ: Marmellar Accommodation Zone (Marin ef
al., 2021); Ma-1: Martorell-1 borehole; SS-1: San Sadurni-1 borehole.
Paleogene alluvial and fan-delta systems: SLM: Sant Lloreng del Munt
alluvial fan and fan delta; Mr: Montserrat fan delta; SMM: Sant Miquel del
Montclar alluvial fan.

Structural sections across the central Catalan Coastal Ranges: i: Llobregat
section based on sutrface structural, fission track and Martorell-1 oil
exploratory well data, i(s): PV-2 seismic profile with the interpretation of
the Valles-Penedes Fault with the base of the Vallés-Penedés Basin infill
and intrabasinal lower to middle Miocene reflectors (modified from
Bartrina ez al, 1992; see location in Fig. 1B); ii: Gaia-Montmell Section
(modified after Marin ef al., 2021). See location of the sections in Fig. 2.

Tectonostratigraphic maps and conceptual cross-sections showing the
Late Jurassic (A) to late Miocene (C) evolution of the central Catalan
Coastal Ranges. Map A includes sketched stratigraphic columns of the
Mesozoic. On each map and cross-section active faults are shown with
thick colored traces and lines, and previous inactive faults with thinner
black lines.

Schematic map of the Montmell-Valles Fault System showing fault
damage zone characteristics of three sectors (A, B and C) during the
different Late Jurassic- Early Cretaceous, Paleogene and late Oligocene-
Neogene tectonic deformational stages. Fluid and petrological
descriptions compiled after Travé and Calvet (2001), Baqués ez a/. (2008),
Baqués ez al. (2010), Baqués ez al. (2012), Baqués ez al. (2014) and Cantarero
et al. (2014a, 2014c). Llobregat Relay Ramp from Belenguer ¢z a/. (2012).
Magnetotelluric data (MT) from Marin et a/. (2021).

A: Geological section of the Valles-Penedeés Fault in the northern sector
of the Montmell Valles Fault System showing the characteristics of the
fault zone. Zoomed area: sketch of the Colonia Sedé outcrop highlighting
Neogene fractures related to the hangingwall damage zone. B: Geological
section across the Montmell Fault in the Marmellar Accommodation
Zone area in the southern sector of the Montmell Valles Fault System
(modified from Marin ez al., 2021). Zoomed area: sketch of the Riera de
Marmellar outcrop highlighting Mesozoic, Paleogene and Neogene
fractures related to the hangingwall damage zone (modified from Baqués
et al., 2012). Fracture types are not to scale. A and B sections located in
Fig. 3.

Characteristics of the northern sector (Valles area) of the Montmell-
Valles Fault System. Compiled from Anadén ez a/. (1985), Julia and
Santanach (1984, 1998), Camps and Morera (2014) and Cantarero ez al.
(2014a).

Characteristics of the central sector (Penedes area) of the Montmell-
Valles Fault System. Compiled from Amigd (1984) and Baqués ez al.
(2012).

Characteristics of the southern sector (Montmell area) of the Montmell-
Valles Fault System. Compiled from Belaid ez a/. (2008), Baqués e al.
(2010, 2012, 2014) and Marin ez al. (2021).
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CHAPTER 5: Discussion

5.2. Mesozoic configuration of the central Catalan Coastal Ranges

Fig. 5.1

Fig. 5.2

Fig. 5.3

Fig. 5.4

Simplified geological map of the central Catalan Coastal Ranges
highlighting the major Cenozoic faults and the sectors of the Montmell-
Valles Fault System. The location of the Gaia-Montmell Section as well
as the three main sectors of the Montmell-Vallés Fault System are also
indicated. VB: Vallés Basin; PB: Penedés Basin; BPB: Baix Penedeés Basin;
ECB: El Camp Basin; MAZ: Marmellar Accommodation Zone; Ma-1:
Martorell-1 borehole; SS-1: San Sadurni-1 borehole. Paleogene alluvial
and fan-delta systems: SLM: Sant Lloren¢ del Munt alluvial fan and fan
delta; Mr: Montserrat fan delta; SMM: Sant Miquel del Montclar alluvial
fan. The subsurface distribution of the Jurassic-Cretaceous is based on
Lanaja (1987) and Bartrina ef al. (1992).

Sequential structural restoration of the Gaia-Montmell Section. A)
Present-day after the latest Oligocene-Neogene extension. B) Early
Oligocene (end of the Paleogene compression). C) Late Cenomanian (end
of the Late Jurassic-Eatly Cretaceous extension). Restoration performed
with the software Dynel 2D®. No vertical exaggeration.

A) 3D schematic view of the base of the Late Jurassic-Early Cretaceous
rift basin system developed in the central CCR. Sn-1: Senant-1 well; SS-
1: Sant Sadurni-1 well; Ma-1: Martorell-1 well; Bc E-1: Barcelona E-1 well.
B) Schematic cross-sections across the rift basin system (see location in
Figure 5.3A) showing the main basins and sub-basins and the
cotresponding extensional faults. Orange portion in section i’
corresponds to the present-day location of the GMH.

A) Schematic cross section highlighting the primary morphology of
magma-poor rifted margins showing the main tectonic domains
(modified from Chenin ¢z al., 2017); B) Reconstruction of a synthetic
crustal section across the Alpine-European margin and the former Alpine
Tethys rift system. Abbreviations: hyperext.: hyperextended; dom.:
domain; C) Reconstruction of a synthetic crustal section showing the
proximal domain of the Ibetian/Ebro margin across the central Catalan
Coastal Ranges; D) Schematic map showing the succession of rifting
events and in Western Europe and the location of sections i-i' and ii-ii'
(modified from Chenin ez al., 2022).

Page 127
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5.3. Paleogene compression and tectonic inversion in the central Catalan Coastal Ranges

Fig. 5.5

Fig. 5.6

Schematic sequential structural restoration of the Gaia-Montmell Section
applying flexural slip and bed length preservation. A) late Lutetian pre-
compressional stage. B) late Lutetian — middle Bartonian syn-
compressional stage. C) middle Bartonian to late Priabonian latest stages
of the compressional stage. The images include the location of the later
compressional structures. See approximate location of the reconstructed
section in Figure 5.1. No vertical exaggeration.

Geological cross-section of the SE margin of the Ebro Basin across the
locality of Cabra del Camp (Cabra Section in Figure 5.1). The section
includes the NW frontal structure of the Catalan Coastal Ranges (Cabra-
Carme Monocline) as well as the location of the Cabra del Camp Mb.
(Montblanc Fm.) sampling sites referred in the text.
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Fig. 5.7

Fig. 5.8

Fig. 5.9

Fig. 5.10

Fig. 5.1

Magnetostratigraphy of the Pontils section. A) Magnetostratigraphic
section and correlation to the GPTS (Gradstein ¢ a/., 2020). PO and RO
correspond to Pontils and Rocafort de Queralt fossil sites, respectively,
with their attribution to Mammal Paleogene Reference Levels in brackets.
White squares in the VGP graph represent type 3 directions, discarded to
build the local magnetostratigraphy. B.A. Gp., B.B. and R.B-M stand for
Barbera-Anoia Group, Bosc d'en Borras and Riu de Boix-Montblanc
formations in the stratigraphic column. B) Sedimentation rate values and
evolution for the Pontils section. Blue arrow: Bartonian transgressive
event at the base of Santa Maria Group. Orange arrow: time of
disconnection from the ocean of the Ebro Basin.

Tectonostratigraphic map showing the end of the positive inversion of
the Mesozoic faults and contractional footwall short-cuts in the central
Catalan Coastal Ranges at late Oligocene (approximately 28My). The
location of the Gaia-Montmell Section and the section in Figure 10 are
also indicated.

Schematic map of the Montmell-Valles Fault System showing fault
damage zone characteristics of three sectors (A, B and C) during the
Paleogene compressional phase. Fluid and petrological descriptions
compiled after Travé and Calvet (2001), Baqués ¢z a/. (2008, 2010, 2012,
and 2014), and Cantarero ez a/. (2014a and 2014c).

Structural reconstruction of the northern sector of the central Catalan
Coastal Ranges and the Valencia Trough domain at the end of the
compressional stage (late Oligocene - Chattian, approximately 28Ma). An
estimate location of the limit of the Late Jurassic-Early Cretaceous rift
basin is shown with red dashed-lines. Depth of the basal detachment
corresponding to the top of the reflective crust based on Fernandez and
Banda (1990), Sabat ez al. (1997) and Roca et al. (2004) (modified from
Gaspar-Escribano e al., 2004).

Time chart showing the periods of tectonic activity of each individual
major fault in the southern and northern sectors of the Central Catalan
Coastal Ranges during the Pyrenean Orogeny (see the location of the
sectors in Figure 5.1). Ages for the southern sector are based on the
results of this research. Ages for the northern sector are based on
previous publications (e.g., Lopez-Blanco ez al, 2000a; Lopez-Blanco,
2002; Parcerisa ez al., 2007; Gaspar-Escribano e al., 2004).
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5.4. Neogene extension and negative inversion in the central Catalan Coastal Ranges

Fig. 5.12

Fig. 3.13

Fig. 5.14

Fig. 5.15

Schematic geological map of the Gaia-Montmell High pointing out the
major Neogene extensional faults. Up to three relay ramps linking
extensional faults are present in the area.

Structural cross-section across the Gaia-Montmell High illustrating the
age of the different faults that are present in the area as well as their
reactivation during the Cenozoic.

Tectonostratigraphic map showing the end of the extensional motion of
the Valles-Penedes, El Camp and Baix Penedés faults and related
extensional short-cuts in central Catalan Coastal Ranges at late Tortonian
(approximately 7My). The locations of the Gaia-Montmell Section
(Figure 5.13) and the Llobregat Section (Figure 5.15) are indicated.

Llobregat section across the northern sector of the MVES (Vallés area)
(modified from Bartrina ez al, 1992). See location in Figure 5.14.
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Fig. 5.16

Schematic map of the Montmell-Vallés Fault System showing fault
damage zone characteristics of three sectors (A, B and C) developed
during the latest Oligocene-Neogene extensional phase. Fluid and
petrological descriptions compiled after Travé and Calvet (2001), Baqués
et al. (2008), Baqués e al. (2010), Baqués ef al. (2012), Baqués ez al. (2014)
and Cantarero ef al. (2014a and 2014c). Magnetotelluric data (MT) from
Marin et al. (2021) included in Chapter 2.
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RESUM

Les Serralades Costaneres Catalanes (CCR en les seves sigles en angles), localitzades al NE de la
Peninsula Ibérica, corresponen a una de les unitats estructurals alpines que limiten la Conca de ’Ebre i
en constitueixen el seu limit SE. Aquesta unitat és també la porcié emergida del marge continental que
delimita la Fossa de Valencia al NO. Actualment, aquesta es caracteritza per una configuracié de tipus
basin-and-range amb orientacié NE-SO que consisteix en una serie de blocs amb direccié6 ENE a NE,
limitats per falles regionals que mostren un patré escalonat a la dreta. L’evolucié geologica alpina de les
CCR és complexa i inclou fins a tres fases tectoniques principals que donen lloc a la seva configuracié
actual: (1) una fase extensiva multiepisodica des del Permia superior fins a 'Aptia, (2) una fase

compressiva durant el Paleogen, i (3) una fase extensiva de 'Oligoce superior al Mioce mitja.

En aquest context de fases tectoniques superposades, la heréncia estructural s’ha postulat com un factor
clau en el control de l'evolucié tectonica de I'area. Aquesta heréncia s'ha basat en dos aspectes
fonamentals: 1) la idea general del control exercit per la configuracié de les conques mesozoiques sobre
l'evoluci6 tectonica cenozoica de area (és a dir, els limits de la conca mesozoica es troben alineats amb
les tendéncies estructurals paleogenes i neodgenes posteriors), i 2) la proposta d’inversié negativa de les
estructures contractives del Paleogen durant el Neogen, fets que explicarien la configuraci6 actual de
les CCR. Tanmateix, les particularitats i 'abast d’aquesta heréncia estructural, inclosos els mecanismes
que impulsen la deformacié cortical tant durant la contraccié com la formacié de conques, segueixen
sent objecte de discussio. Es creu que aquests mecanismes son claus per comprendre una area amb
possibles multiples reactivacions de falles. Mentre que la majoria dels estudis recents ofereixen
interpretacions fragmentades, aquesta tesi doctoral cobreix la totalitat del domini central de les CCR
(des de la Conca d’El Camp al sud a 'extrem nord-est de la Conca del Vallés-Penedes) y proporciona
una reconstrucci6 integral de la seva evolucié tectonica des del Mesozoic fins a I'actualitat mitjangant
un enfoc multidisciplinari. Aquest estudi presta especial atencié a I’Alt Gaia-Montmell (GMH) per tres
raons principals. Primer, la successié mesozoica en aquest alt es troba ben preservada, particularment
les unitats jurassiques i cretaciques. Segon, I'area correspondria també amb l'area font de les successions
sinorogeniques preservades a la part central del marge sud-est de la Conca de I’Ebre, la interpretacio
previa de la qual suggeria la presencia d’una discordanca progressiva que enregistra 'evolucio tectonica
paleogena de les CCR. I tercer, el GMH correspon a la zona de relleu entre dues estructures neogenes
majors, el Sistema de Falles Montmell-Valles (MVES en les seves sigles en angles) 1 la Falla I’El Camp.
Aquesta tesis doctoral es basa en analisis geologics 1 geofisics jut a la revisié 1 integracié de tots els
estudis sobre interaccions fluids-roca disponibles per aquesta regi6, contribuint aix{ a un model

geodinamic refinat de la zona.

Les investigacions realitzades inclouen I'analisi de dades de camp procedents de cartografia geologica,

la recopilaci6 de dades estructurals i estratigrafiques, la recollida de mostres per a analisis
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magnetoestratigrafiques 1 de procedencia, I'adquisicié de dades magnetotel-luriques (MT) 1 la
caracteritzacié de zones de falles al llarg dels diferents sectors del MVES. Les dades estructurals i
estratigrafiques (p.e., inclinacié i orientacié d'estrats i falles) es van utilitzar per a la construccié de tres
seccions estructurals en localitzacions clau: les seccions de Gaia-Montmell, Marmellar i Cabra. Les
dades de MT adquirides al llarg de la seccié Gaia-Montmell, junt amb les dades de pous d'exploracié
petrolifera disponibles, han permes delimitar i caracteritzar els estils estructurals presents en 'escor¢a
superior. Aquesta seccié geologica va ésser balancejada per mitja de tecniques de restitucié estructural,
els resultats de la qual mostren l'evolucio tectonica de l'area en dos moments clau: el final de l'extensio
del mesozoica i el final de la compressié paledgena. A més a més, l'estudi magnetoestratigrafic i de
procedeéncia realitzats al marge sud-est de la Conca de I'Ebre permeten un refinament precis de les edats
de les formacions paleogenes estudiades, restringint el moment de la sedimentaci6 sinorogenica, aixi
com la caracteritzaci6 de les arees font. En conseqiiencia, aquests resultats han permes realitzar una

precisa reconstruccié de la deformacié compressiva paledgena.

L'evolucié tectonoestratigrafica durant el Cenozoic de l'area central de les CCR va estar altament
controlada per la seva heréncia estructural mesozoica. Durant el Mesozoic, el MVFES va constituir el
limit nord-oest de la Conca del Montmell-Garraf d'edat Jurassic tarda-Cretaci inferior. El limit nord-
est d'aquesta conca estaria situat diversos quilometres al nord de l'actual riu Llobregat, tal com
suggereixen els sediments detritics paledgens sintectonics en aquesta part del marge de la Conca de
I'Ebre. A més, aquesta conca mesozoica hauria format part d'un sistema més ampli que incloia una altra
falla de basament (Falla de Barcelona), també amb rumb ENE i cabussament SE. Les conques del
Montmell-Garraf i de Barcelona conformarien el domini proximal o l'inici del domini d'aprimament

del marge continental que separava el Bloc de I'Ebre del Tetis occidental.

Dos episodis successius d'inversié tectonica van caracteritzar 'evolucié cenozoica del sector central de
les CCR. El primer, relacionat amb la convergencia entre Iberia i Eurasia durant el Paleogen, va reactivar
el MVES. Com a resultat, es van desenvolupar importants short-cuts de bloc inferior dirigits cap al NO,
entre els quals s'inclou el encavalcament de Gaia-El Camp. L'edat precisa de la inversié tectonica i
l'emplacament dels encavalcaments durant aquest petiode s'ha proporcionat mitjancant analisis
tectonoestratigrafiques que inclouen analisis de procedencia i magnetostratigrafia en sediments
sinorogeénics dipositats al matge SE de la Conca de I'Ebre. Els resultats revelen que la inversié del
MVEFS va comencar al Bartonia i va continuar fins al Priabonia tarda, mentre que I'emplacament de
l'encavalcament de Gaia-El Camp va tenir lloc al Priabonia. Aquest segon petiode compressiu es va
caracteritzar per un rapid augment de les taxes de sedimentacié, seguit d'una disminucié durant el

Priabonia tarda, interpretada com el preludi del final de la fase compressiva paleogena a l'area d'estudi.

El segon episodi d'inversié tectonica es va produir quan les estructures compressives paledgenes van

ser reactivades en extensié durant el Neogen. Al GMH, aquesta fase es va caracteritzar per una



reactivacié aparentment restringida de la Falla de Montmell i la transmissié de l'extensié amb la
formaci6 d'una nova falla de major cabussament al bloc supetior de la falla: la Falla del Baix Penedes.
La reactivaci6 extensiva de l'encavalcament de Gaia-El Camp es manifesta també amb el
desenvolupament d'un conjunt de falles extensives al flanc postetior de I'Anticlinal de Carme-Cabra,
que corresponen i coincideixen amb l'extrem NE de la Falla d'El Camp. Aquest episodi d'inversio
tectonica negativa va donar lloc al desenvolupament de diferents zones d'acomodacié entre les falles

principals, que es caracteritzen per la presencia de rampes de relleu amb estructures tipus breaching-fanlts.

La reactivacié del MVES mostra diferéncies al llarg del seu rumb durant ambdues fases d'inversié
tectonica. Aquestes diferencies semblen estar relacionades amb el desacoblament de la deformacié
entre les parts més superficials 1 profundes del pla de falla a causa de la seva geometria interpretada
com a tipus kinked-planar (formada per diversos panells planars amb diferents inclinacions) 1 el
corresponent canvi d'inclinacié de >60° en supetficie a 30° en profunditat. Els panells més profunds i
de menor inclinacié es van reactivar de manera contractiva durant el Paleogen i com extensiva durant
el Neogen, mentre que les parts més someres amb major inclinacié només van mostrar reactivacions
localitzades. La capacitat de les falles mesozoiques per reactivar-se i la distribucié espacial de la
deformaci6é semblen, no obstant aixo, estar també influenciades per les diferéncies presents a les
diferents zones de falla heretades. Les observacions de les interaccions fluid-roca indiquen que, a més
de la geometria de la falla, les diferéncies litologiques de la roca hoste (granits i metasediments
siliciclastics al sector nord del MVES davant de roques carbonatades als sectors central i sud) van
controlar el tipus de precipitacié mineral i ciments associats a la circulacié de fluids. Aquests canvis van
donar lloc a variacions en les propietats mecaniques de les roques de falla resultants (bretxes cimentades
davant farina de falla) al llarg de la falla, fet que va controlar significativament la seva reactivacié. La
inversi tectonica va ser efectiva en arees amb predominanga de farina de falla no cohesiva a la zona
de falla preexistent (formada a arees amb granits paleozoics i metasediments siliciclastics caracteritzant
la roca hoste), mentre que la reactivaci6 de la falla va ser limitada o fins i tot nul-la en arees on la zona
deformada preexistent estava formada per bretxes altament cimentades i cohesionades (arees amb

potents successions de carbonats mesozoics).

Els resultats d’aquest treball i Penfocament multidisciplinari adoptat ofereixen un matc
tectonoestratigrafic refinat per al sector central de les CCR des del Mesozoic fins a P'actualitat. Aix{
mateix, els resultats assolits proporcionen una interpretacié detallada de la influéncia de I’herencia
estructural mesozoica. D’aquesta heréncia, destacaria la importancia de les geometries de falla i 'efecte
de les heterogeneitats litologiques sobre les propietats mecaniques resultants de les zones de falla
heretades en els diversos sectors com a factors clau en la reactivacié de falles i la transmissio d’esforcos

tectonics a I’area estudiada.

XV



xvi



PARAULES CLAU

Paraules clau de la tesis i codis UNESCO

e Ciéncies de la terra i l'espai (250000)
e Geologia (250600)

e Geologia estructural (250620)

e Tectonica (250707)

e Geologia regional (250601)

e  Palcomagnetisme (250704)

e  Paleogeografia (550508)

xvii



xviii



ABSTRACT

The Catalan Coastal Ranges (CCR), located at the NE of the Iberian Peninsula is one of the alpine
structural units that limit the Ebro Basin and it constitutes its southeastern boundary. Moreover, this
unit is also the onshore portion of the continental margin that bounds the Valencia Trough to the NW.
It is nowadays characterized by a NE-SW trending basin-and-range configuration that consists in setries
of ENE- to NE-striking blocks bounded by major faults displaying a right-stepping en-echelon pattern.
The Alpine geological evolution of the CCR is complex and includes up to three main tectonic phases
that shaped its distinguishing present-day configuration: (1) a multiepisodic extensional phase from the
late Permian to the Aptian, (2) a compressional phase during the Paleogene, and (3) a latest Oligocene-

middle Miocene extension.

Within this scenario of superimposed tectonic phases, structural inheritance has been previously
postulated as a key factor of control on the tectonic evolution of the area. This inheritance has often
been related to two main aspects: the general idea of the control exerted by the Mesozoic basin
configuration on the Cenozoic tectonic evolution of the area (i.e., the limits of the Mesozoic basin
appear aligned to subsequent Paleogene and Neogene structural trends), alongside the proposed
negative inversion of Paleogene contractional structures during the Neogene, facts that would explain
the present-day configuration of the CCR. However, the particularities and extent of this structural
inheritance including the mechanisms driving crustal deformation during contraction and basin
formation were still under discussion. These mechanisms are believed to be key in the understanding
of an area with potential multiple fault reactivations. While most of the recent studies offer fragmented
interpretations, the present Ph.D. thesis covers the central domain of the CCR, between the El Camp
Basin in the south to the northeast end of the Valles-Penedés Basin, aiming to provide a comprehensive
reconstruction of its tectonic evolution from the Mesozoic to the present-day using a multidisciplinary
approach. Special attention was paid to the Gaia-Montmell High for three main reasons. First, this area
is characterized by its preserved Mesozoic succession, particularly the presence Jurassic and Cretaceous
strata; second, the area would also correspond to the source of sediments of the well-preserved
synorogenic successions deposited in the central part of the southeast margin of the Ebro Basin, the
previous interpretation of which suggested the presence of a progressive unconformity that recorded
the Paleogene tectonic evolution of the CCR; and third, the Gaia-Montmell High corresponds to the
relay between two major Neogene structures, the Montmell-Valles Fault System (MVES) and the El
Camp Fault. These three factors make this area of the CCR an appropriate candidate for the proposed
objectives. The research involved geological and geophysical analysis together with the review and
integration of the available fluid-rock interactions studies in the region, thereby contributing to a refined

geodynamic model of the region.
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The performed investigations comprised the analysis of field data from geological mapping, the
collection of structural and stratigraphic data, gathering samples for magnetostratigraphic and
provenance analysis, the acquisition of magnetotelluric (MT) data as well as the characterization of fault
zones in the different sectors along MVFES. Structural and stratigraphic data (e.g., dip and orientation
of bedding and faults) were used for the construction of three structural cross-sections at key locations:
the Gaia-Montmell, the Marmellar, and the Cabra sections. MT data acquired along the Gaia-Montmell
Section, alongside data from available exploratory wells, allowed the constraint and characterization of
the structural styles present in the upper crust. This geological section was balanced via structural
restoration techniques, the results of which illustrate the tectonic evolution of the area at two key time-
steps: the end of the Late Jurassic-Early Cretaceous extension and the end of the Paleogene
compression. Moreover, the magnetostratigraphic and provenance analysis performed in the southeast
margin of the Ebro Basin allowed an accurate refinement of the ages of the studied Paleogene
formations, hence allowing to constrain the timing of the synorogenic sedimentation and the
identification of the source areas. Accordingly, these results made possible a precise reconstruction of

the Paleogene compressional deformation.

The Cenozoic tectonostratigraphic evolution of the central CCR was highly controlled by its Mesozoic
structural inheritance. During the Mesozoic, the MVES constituted the northwest limit of the Late
Jurassic-Early Cretaceous Montmell-Garraf Basin. The northeastern limit of this basin would be located
several kilometres north of the present-day Llobregat River valley as suggested by syn-tectonic
Paleogene detrital sediments in the Ebro Basin margin next to this area. Moreover, this basin belonged
to a larger basin system that included another ENE-trending, SE-dipping basement fault displaying a
right-stepped en-echelon arrangement: the Barcelona Fault. Together, the Montmell-Garraf and the
Barcelona basins conformed the proximal to, perhaps, the initial necking domain of the continental

margin that separated the Ebro Block from the Alpine-Ligurian Tethys.

Two successive episodes of tectonic inversion characterized the Cenozoic evolution of central CCR.
The first one, related to the convergence between Iberia and Eurasia during the Paleogene, reactivated
the MVES as compressional. As a result, major NW-directed basement footwall shortcuts including the
Gaia-El Camp Thrust developed. The precise timing of inversion and thrust emplacement during this
period has been provided by the tectono-stratigraphic analysis involving provenance analysis and
magnetostratigraphic dating performed in synorogenic sediments deposited in the SE margin of the
Ebro Basin. These analyses reveal that the inversion of the Montmell-Vallés Faults System started in
the Bartonian and continued up to the late Priabonian, and that the emplacement of the Gaia-El Camp
Thrust took place from eatly to late Priabonian. A rapid increase of the sedimentation rates
characterized this second contractional pulse, followed by a decrease during late Priabonian, which can

be interpreted as the prelude of the end of the Paleogene compressional phase in the area.



The second episode of tectonic inversion occurred when the previously formed compressional
structure during the Paleogene became reactivated as extensional during the Neogene. In the Gaia-
Montmell High, this phase was characterized by a limited reactivation of the Montmell Fault and the
transmission of the extension to the formation of a hangingwall short-cut: the Baix Penedés Fault. The
reactivation of the Gaia-El Camp Thrust was also attested by the development of an array of
extensional faults in the backlimb of the Carme-Cabra Anticline that corresponds to the NE-end of El
Camp Fault. This episode of negative inversion resulted in the development of accommodation zones

between the major faults characterized by the presence of relay ramps with breaching faults.

The reactivation of the MVFES showed differences along strike during both phases of tectonic inversion.
These differences appeared to be related to the decoupling of the deformation from surface to depth
due to its interpreted kinked-planar geometry and the change of fault dip from >60° at surface to 30°
at depth. The deeper and less dipping panels of the fault system were reactivated (as contractional
during the Paleogene and as extensional during the Neogene), whereas the highly dipping shallower
parts of the fault system only show localized reactivations. The ability of the Mesozoic faults to be
reactivated and the spatial distribution of the deformation appear also influenced by differences the
inherited fault rocks. The observations from fluid-rock interactions denote that, alongside the fault
geometries, different rock-host lithologies (granites and siliciclastic metasediments in the north of the
MVES versus carbonate rocks in the central and southern sectors) controlled the type of mineral
precipitation and cementation product of fluid circulation. These resulted in changes in the mechanical
properties of the resulting fault rocks (gouge versus cemented breccias) along the fault trend,
significantly controlling its reactivation. Tectonic inversion was effective in areas with non-cohesive
fault gouge in the pre-existent fault core (areas with Paleozoic granites and siliciclastic metasediments
characterized as host-rock), whereas fault reactivation appeared limited or even precluded in areas
where the pre-existent damage zone was formed by highly cemented and cohesive breccias (areas with

thick Mesozoic carbonate successions).

The results of the present research and the multidisciplinary approach adopted herein offer a refined
tectono-stratigraphic framework for the central Catalan Coastal Ranges from the Mesozoic to the
present-day and provide a detailed interpretation of the influence of the Mesozoic structural
inheritance. It emphasizes the importance of fault geometries and the effect of the lithological
heterogeneities on the resulting mechanical properties of the inherited fault zones as key factors on

fault reactivation and the transmission of the tectonic stresses in the studied area.
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RESUMEN

Las Cordilleras Costeras Catalanas (CCR en sus siglas en inglés), ubicadas en el NE de la Peninsula
Ibérica, corresponden a una de las tres unidades estructurales alpinas que delimitan la Cuenca del Ebro
y constituyen su limite sureste. Esta unidad es también la porcién emergida del margen continental que
limita la Surco de Valencia al NO. Actualmente, dicha unidad estructural se caracteriza por una
configuracion de tipo basin-and-range con una orientacion NE-SO, compuesta por una serie de bloques
con direcciéon ENE a NE delimitados por fallas regionales que presentan un patron escalonado hacia
la derecha. La evolucion geoldgica alpina de las CCR es compleja e incluye hasta tres fases tectonicas
principales que han dado lugar a su configuracién actual: (1) una fase extensiva multiepisédica desde el
Pérmico tardio hasta el Aptiense, (2) una fase compresiva durante el Paledgeno, y (3) una fase extensiva

desde el Oligoceno tardio hasta el Mioceno medio.

En este escenario de fases tectonicas superpuestas, la herencia estructural se ha postulado como un
factor clave en el control de la evolucion tecténica del area. Esta herencia se ha basado en dos aspectos
principales: 1) la idea general del control ejercido por la configuracion de las cuencas mesozoicas sobre
la evolucién tecténica cenozoica del area (es decir, los limites de la cuenca mesozoica aparecen alineados
con las tendencias estructurales paledgenas y nebgenas posteriores), y 2) la propuesta de inversion
negativa de las estructuras contractivas paledgenas durante el Nedgeno, hechos que explicarfan la
configuracion actual de las CCR. Sin embargo, las particularidades y el alcance de esta herencia
estructural, incluidos los mecanismos que impulsan la deformacion de la corteza terrestre tanto durante
la deformacién contractiva y la formacién de cuencas, siguen siendo objeto de discusion. Se cree que
estos mecanismos son clave para comprender un area con posibles multiples reactivaciones de fallas.
Mientras que la mayoria de los estudios recientes ofrecen interpretaciones fragmentadas, esta tesis
doctoral cubre el dominio central de las CCR en su totalidad (desde la Cuenca de El Camp al sur hasta
el extremo NE de la Cuenca del Vallés-Penedes) y proporciona una reconstruccion integral de su
evolucién tecténica desde el Mesozoico hasta la actualidad mediante un enfoque multidisciplinar. Este
estudio presta especial atencion al Alto del Gaia-Montmell (GMH) por tres razones principales.
Primero, la sucesién mesozoica en este alto se encuentra bien preservada, particularmente las unidades
jurasicas y cretacicas. Segundo, el area se corresponderia también con el area fuente de las sucesiones
sinorogénicas preservadas en la parte central del margen sureste de la Cuenca del Ebro, cuya
interpretacion previa en el area de estudio sugerfa la presencia de una discordancia progresiva que
registra parte de la evolucién tectonica paledgena de las CCR. Y tercero, el GMH se corresponde con
la zona de relevo entre dos estructuras neégenas mayores, el Sistema de Fallas Montmell-Valles (MVES
en sus siglas en inglés) y la Falla de El Camp. La tesis doctoral se basa en analisis geolégicos y geofisicos
junto con la revisién e integracién de todos los estudios sobre interacciones fluido-roca disponibles

para esta region, contribuyendo asi a un modelo geodinamico refinado de la zona.
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Las investigaciones realizadas incluyen el analisis de datos de campo procedentes de cartografia
geologica, la recopilacion de datos estructurales y estratigraficos, la recogida de muestras para analisis
magnetoestratigraficos y de procedencia, la adquisicion de datos magnetoteliricos (MT), asi como la
caracterizacion de zonas de fallas en diferentes sectores a lo largo del MVES. Los datos estructurales y
estratigraficos se utilizaron para la construccion de tres secciones estructurales en ubicaciones clave: las
secciones de Gaia-Montmell, la de Marmellar y la de Cabra. Los datos de MT adquiridos a lo largo de
la seccién Gaia-Montmell, junto con datos de pozos de exploracién petrolera disponibles, permitieron
delimitar y caracterizar los estilos estructurales presentes en la corteza superior. Esta seccion geologica
fue balanceada mediante técnicas de restitucion estructural, cuyos resultados ilustran la evolucién
tectonica del area en dos momentos clave: el final de la extension del Jurasico tardio-Cretacico
temprano y el final de la compresion paleégena. Ademas, el estudio magnetoestratigrafico y de
procedencia realizados en el margen sureste de la Cuenca del Ebro permiten un refinamiento mads
preciso de las edades de las formaciones paledgenas estudiadas, restringiendo el momento de la
sedimentacion sinorogénica, asi como la caracterizacion de las areas fuente. En consecuencia, estos

resultados han permitido realizar una reconstruccion precisa de la deformacion compresiva paledgena.

La evolucion durante el Cenozoico del area central de las CCR estuvo altamente controlada por su
herencia estructural mesozoica. Durante el Mesozoico, el MVES constituy6 el limite NW de la Cuenca
del Montmell-Garraf de edad Jurasico tardio-Cretacico temprano. El limite NE de esta cuenca estaria
ubicado varios kilémetros al norte del actual valle del rfo Llobregat, tal y como sugieren los sedimentos
detriticos palebgenos sintectonicos en esta parte del margen de la Cuenca del Ebro. Ademas, esta
cuenca mesozoica formaba parte de un sistema mas amplio que inclufa otra falla de basamento (Falla
de Barcelona) con rumbo ENE y buzamiento SE. Las cuencas del Montmell-Garraf y de Barcelona
conformarfan el dominio proximal o el inicio del dominio de adelgazamiento del margen continental

que separaba el Bloque del Ebro del Tethys occidental.

Dos episodios sucesivos de inversién tectonica caracterizaron la evolucién cenozoica del sector central
de las CCR. El primero, relacionado con la convergencia entre Iberia y Eurasia durante el Palebgeno
reactivé el MVES. Como resultado, se desarrollaron importantes short-cuts de bloque inferior dirigidas
hacia el NO, entre las que se incluye el cabalgamiento de Gaia-El Camp. La edad precisa de la inversién
tecténica y el emplazamiento de cabalgamientos durante este periodo ha sido proporcionada mediante
los analisis tectonoestratigraficos que incluyen andlisis de procedencia y magnetoestratigrafia en
sedimentos sinorogénicos depositados en el margen SE de la Cuenca del Ebro. Los resultados revelan
que la inversion del MVFES comenzé en el Bartoniense y continud hasta el Priaboniense tardio, mientras
que el emplazamiento del cabalgamiento del Gaia-El Camp tuvo lugar en el Priaboniense. Este segundo
periodo estuvo marcado por un riapido aumento de las tasas de sedimentacién, seguido por una
disminuciéon durante el Priaboniense tardio, interpretada como el preludio del final de la fase

compresiva paledgena en el area de estudio.



El segundo episodio de inversion tecténica se produjo cuando las estructuras compresivas palebgenas
fueron reactivadas extensivamente durante el Nedgeno. En el GMH, esta fase estuvo caracterizada por
una reactivacion aparentemente restringida de la Falla de Montmell y la transmision de la extension con
la formacién de una nueva falla de mayor buzamiento en el bloque superior de la falla: la Falla del Baix
Penedes. La reactivacion extensiva del cabalgamiento Gaia-El Camp se evidencia con el desarrollo de
un conjunto de fallas extensivas en el flanco posterior del Anticlinal de Carme-Cabra, que corresponden
y coinciden con el extremo NE de la Falla de El Camp. Este episodio de inversion tectonica negativa
resulté en el desarrollo de diferentes zonas de acomodacion entre las fallas principales, que se

caracterizan por la presencia de rampas de relevo con estructuras tipo breaching-fanlts.

La reactivacion del MVES mostr6 diferencias a lo largo de su rumbo durante ambas fases de inversion
tectonica. Estas diferencias parecen estar relacionadas con el desacople de la deformacion entre las
partes mas superficiales y profundas del plano de falla debido a su geomettia interpretada como de tipo
kinked-planar (formada por varios paneles planares con diferentes buzamientos) y su correspondiente
cambio de buzamiento de >60° en superficie a 30° en profundidad. Los paneles mas profundos y de
menor buzamiento se reactivaron contractivamente durante el Pale6geno y extensivamente durante el
Neodgeno, mientras que las partes mds someras con mayor inclinacion solo mostraron reactivaciones
localizadas. La capacidad de las fallas mesozoicas para reactivarse y la distribucion espacial de la
deformacion parecen no obstante estar también influenciadas por las diferencias presentes en las zonas
de falla heredadas. Las observaciones de las interacciones fluido-roca denotan que, ademas de la
geometria de falla, las diferencias litologicas de la roca huésped (granitos y metasedimentos
siliciclasticos en el norte del MVES contra rocas carbonatadas en los sectores central y sur) controlaron
el tipo de precipitacién mineral y cementos asociados a la circulacién de fluidos. Estos cambios
resultaron en variaciones en las propiedades mecanicas de las rocas de falla resultantes (brechas
cementadas contra polvo de falla) alo largo de la direccién de la falla, lo que control6 significativamente
su reactivacion. La inversion tectonica fue efectiva en areas con harina de falla no cohesiva en la falla
preexistente (formada en las areas con granitos paleozoicos y metasedimentos siliciclasticos
caracterizando la roca huésped), mientras que la reactivaciéon de la falla fue limitada o incluso nula en
areas donde la zona deformada preexistente estaba formada por brechas altamente cementadas y

cohesivas (generadas en areas con potentes sucesiones de carbonatos mesozoicos).

Los resultados de este trabajo y el enfoque multidisciplinar adoptado ofrecen un marco
tectonoestratigrafico refinado para el sector central de las CCR desde el Mesozoico hasta la actualidad.
Asimismo, los resultados alcanzados proporcionan una interpretacion detallada de la influencia de la
herencia estructural mesozoica. De esa herencia destacarfa la importancia de las geometrias de falla y el
efecto de las heterogeneidades litologicas sobre las propiedades mecanicas resultantes de las zonas de
falla heredadas en los diversos sectores como factores clave en la reactivacion de fallas y la transmision

de esfuerzos tectdnicos en el area estudiada.
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1.1. Motivation and objectives of the research

In basin analysis, tectonostratigraphy is a discipline that analyses the effects of tectonics on
lithostratigraphy (Berthelsen, 1978) and integrates both tectonic and stratigraphic data analysis in order
to understand the geological evolution of an area. This type of analysis allows interpreting the
relationship between tectonic activity (e.g., faulting and folding) and changes in the depositional
patterns of sedimentary layers. Therefore, tectonostratigraphic analysis helps in identifying how
sedimentary basins form, evolve, and are structured due to tectonic forces through time. These studies
can also comprise the reconstruction of paleoenvironments by interpreting how deformation
influenced sedimentation types and patterns (e.g., depositional systems, environments as well as
thickness and lateral distribution of their deposits), which in turn are closely controlled by specific

tectonic settings (e.g., rift, passive margin, foreland, etc.).

The reconstruction of the evolution of a basin and its dynamics is often critical for natural resource
exploration such as oil, gas, or minerals as well as the assessment of geohazards (Allen and Allen, 1990;
Hantschel and Kauerauf, 2009). Most of oil and gas traps are associated with tectonic structures such
as folds and faults, being their distribution subject to the type of tectonic setting. Tectonostratigraphic
analysis helps identify these reservoirs by understanding where and how sediments accumulated and
were furtherly deformed in specific areas or regions. Additionally, stratigraphic traps, unconformities
and source-to-sink relationships (showing how sediments are transported and deposited) are controlled

by tectonics, which may have an impact on exploration success.

Dating the ongoing processes plays a critical role in tectonostratigraphy because it allows to accurately
relate specific tectonic events to the deposition of sedimentary layers over geological time.
Understanding when tectonic events, such as faulting or folding, occurred helps in deciphering the
sequences of deposition, erosion and deformation. This temporal framework is key for reconstructing
basin evolution because allows identifying periods of tectonic activity or quiescence. Specifically, in
resource exploration, timing control is fundamental, for instance, for predicting critical moments
between the maturation, migration and trapping of hydrocarbons (Magoon, 1987; 2009; Makeen ¢f .,
2016). Thus, accurate dating ensutes linking tectonic events to the stratigraphic record, offering insights
for making informed decisions. In this scenario, the geometrical and genetic analysis of syn-tectonic
strata and growth geometries (Riba, 1976; Suppe ¢ a/., 1992) has been broadly used to understand the
kinematics of individual structures (e.g., Vergés and Mufioz, 1990; Suppe ez al., 1992; Burbank e# al.,
1992; Hardy e7 al., 1996; Ford et al., 1997; Vergés et al., 2002; Salvini and Storti, 2002; Fernandez ez al.,
2004).

When paying attention on the tectonic evolution of NE Iberia we observe that the Ebro Basin is

surrounded by three orogenic belts that developed heterochronously from the Late Cretaceous to the
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Paleogene: the Pyrences to the north, the Iberian Range to the southwest, and the Catalan Coastal

Ranges (CCR) to the southeast (Figure 1.1).
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Figure 1.1. Geologic map of NE Iberia showing the major Cenozoic structural units including the three orogenic
belts bounding the Ebro Basin: the Pyrences, the Iberian Range, and the Catalan Coastal Ranges. Cenozoic
foreland basin-fill is highlighted in orange. Coordinates in geographical system. Labels A, B and C respectively
correspond to Montserrat-Sant Lloreng del Munt, Pontils-Cabra del Camp and Montsant areas. Labels PH, GMH
and GH respectively correspond to the Prades Block, the Gaia-Montmell High and the Garraf High.

The Ebro Basin-fill records the evolution of these three structural units as it is illustrated by many
studies of world-class examples of growth strata documented along the three margins (e.g., Riba,
1973,1976; Anadén, 1978; Anadén ez al., 1985, 1986; Vergés and Mufioz, 1990; Suppe ¢ al., 1992, 1997,
Colombo, 1994; Ford ez al, 1997; Loépez-Blanco, 2002; Gémez-Paccard ef al, 2011). Given this
scenario, sedimentation in the southeastern margin of the Ebro Basin records the Paleogene tectonic
evolution of the Catalan Coastal Ranges. Growth strata geometries have been here documented at
different locations in the central part of the margin (e.g., Montserrat-Sant Lloren¢ del Munt, Pontils-
Cabra del Camp, Montsant; Figure 1.1). Tectonostratigraphic analysis in these areas reveal the
interactions between the Paleogene compression and the related response of the sedimentary systems
(Anadoén, 1978; Anadon et al., 1985, 1986; Colombo, 1994; Lépez-Blanco ef al., 2000a, b; Lépez-Blanco,
2002; Gémez-Paccard et al., 2011). Precisely, the work performed by Anadon ¢# 4/ (1986) in the Pontils-
Cabra del Camp area suggested the presence of a composite progressive unconformity in this part of
the Ebro Basin margin (Figure 1.2), the genetic and structural characteristics of which are re-visited in

this work.
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Clast composition and paleocurrent indicators found in Paleogene alluvial fan and fan-delta
conglomerates deposited along the SE margin of the Ebro Basin suggest that their source areas
corresponded to the adjacent emerged regions of the Catalan Coastal Ranges during the Paleogene.
(Anadon et al., 1986; Colombo, 1994; Lépez-Blanco, 2002). The tectonic evolution of the Catalan
Coastal Ranges plays then a key role on the observed patterns in the sedimentary successions deposited
along the southeast Ebro Basin margin and their potential progressive incorporation in the orogenic
wedge. Hence, their genetic and structural analysis helps decipher the coeval tectonic evolution of its

source area.
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Figure 1.2. A) Geological map of the Pontils-Cabra del Camp area showing the distribution of the Sant Miquel
del Montclar conglomerates. B) Geological cross-section showing a composite progressive unconformity
involving Paleogene (mainly Eocene) strata in the forelimb of the Cabra-Carme Anticline (redrawn from Anadon

et al., 19806).

The geology of the Catalan Coastal Ranges is complex due to a multi-episodic tectonic history that
involved multiple periods of extension and compression since, at least, late Paleozoic times (Fontboté,

1954). Fault reactivation and tectonic inversion has been appointed in several works to describe its
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evolution, most of them appointing to the extensional reactivation of Paleogene contractional faults
during Neogene times (e.g., Fontboté, 1954; Gaspar-Escribano 7 al., 2004; Lépez-Blanco ef al., 2000
Marcén et al, 2018). The control played by pre-Cenozoic structures has commonly been pootly
constrained although previously presumed by regional observations. These assumptions were mostly
supported by significant changes in the Mesozoic stratigraphic thicknesses and sedimentary
environments hence implying a sort of structural control (Esteban and Robles, 1976; Salas and Casas,
1993; Salas et al., 2001). Esteban and Robles (19706) justified these stratigraphic observations with the
potential presence of basement faults that would have controlled the differential subsidence, the limits
of which coincided with the direction and trend of the main longitudinal and transversal fractures (i.e.,
regional faults) in the Catalan Coastal Ranges. The delineation of several sectors and domains with
distinct subsidence outlined the limits of a preliminary Mesozoic basin system configuration and, to

some extent, the structural control on these depocentres (Figure 1.3).
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Figure 1.3. Map illustrating Cretaceous outcrops in the central and southern Catalan Coastal Ranges classified
by their thicknesses. The map also shows the main inferred structural lineaments (redrawn from Esteban and

Robles, 1976).

Oher studies suggested the Cenozoic reactivation of Mesozoic extensional faults (Roca and Guimera,
1992; Gémez and Guimera, 1999) as well as the control the Mesozoic succession had on the growth
of Paleogene contractional structures (Anadén ef al, 1985; Guimera and Alvaro, 1990). Moreover,
works based on geochemical investigations in crustal-scale fault damage zones (i.c., fluid circulation,
mineral neoformation) disclosed multiple reactivations in response to the tectonic evolutionary stages
affecting the Iberian Peninsula since the Mesozoic (e.g., Baqués ¢7 al, 2013; Cantarero et al., 2014).
Nevertheless, before this research, the timing of the potential reactivation and the formation of the
contractional structures responsible for the build-up of the Catalan Coastal Ranges during the
Paleogene remained uncertain because of the following reasons: 1) the lack of preserved syn-kinematic
strata at key locations; 2) the fact that the Neogene extensional phase dismantled the previously formed

Paleogene contractional structure and its direct observation and interpretation is only possible in the
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preserved structural highs, and 3) the lack of subsurface data coverage in the region, thus being the

interpretation of the deep structure mostly inferred from surface geology.

Within this context, several questions can be addressed in order to fill the understanding gaps and drive
the activities performed in this thesis. Each of the below questions are considered as the main objectives

of the research, which have been resolved by the research papers included in this dissertation:

1. How is the structure of the preserved source areas of the synorogenic strata, which were deposited
and preserved in the central southeast margin of the Ebro Basin during the Paleogene
compressional phase? What was the tectonic evolution of this area since the Mesozoic to the
present-day?

2. How are the fault zones of the major structures involved in the Paleogene deformation (i.e.,
Montmell-Valles Fault System) characterized along-strike and which were the processes controlling
the main differences observed during its reactivation/inversion?

3. What are the tectonostratigraphic relationships between the observed compressional structures in
the source area and the geometries and sedimentary environments displayed in the basin margin?

When did the reactivation start?

To address the above-mentioned three points a fit-for-purpose technical approach has been planned
and implemented. This approach includes: 1) field work in both the source area (Gaia-Montmell High,
Figure 1.1), the adjoining Neogene basins and the adjacent Ebro Basin margin; 2) the acquisition,
processing, and interpretation of magnetotelluric data along a 2D profile in the Gaia-Montmell High;
3) the construction and structural restoration of a 2D crustal-scale geological section across the Gaia-
Montmell High; 4) the review of all the fluid-rock interaction works published in the area of interest;
5) a provenance analysis involving the study of clasts from synorogenic strata and paleotransport
directions; and 6) the acquisition and analysis of a new magnetostratigraphic section of well-exposed
synorogenic strata in the central southeastern Ebro Basin margin. A detailed explanation of all these

methodologies and techniques is provided in section 1.5.

The current research work aims to provide a comprehensive reconstruction of the tectonostratigraphic
evolution of the central Catalan Coastal Ranges highlighting the role of the Mesozoic structural
inheritance and inversion tectonics, to bridge the conceptual gaps left by early studies and contribute

to a more refined understanding of the processes driving the formation of this orogenic belt.
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1.2. Structure and coherency of the memoir

This memoir is structured into a preface section and four main chapters, each contributing to the key
research objectives and reflecting the format of a dissertation based on a compilation of papers
published in peer-reviewed international research journals and special volumes. This organization aims
at providing a comprehensive narrative that bridges the general concepts and the individual studies

while offering a broader context and discussion of their impact.

Chapter 1 starts with setting the stage for the dissertation by outlining the motivation behind the
research (section 1.1). It discusses the broader significance of the study, explaining why the topics of
tectonic inversion and synorogenic sedimentation are important and how these fit into the larger field
of structural geology. This section reflects on the academic interests of this research and provides a
rationale for why the particular steps of the study were undertaken. Further on, the structure and
organization of the dissertation is presented offering a roadmap for readers to understand how the
document is arranged (section 1.2). It briefly describes the content of each chapter, highlighting how
they contribute to the overall research objectives. This overview helps readers navigate the dissertation
and understand the logical flow of the research. The section concludes by explaining the coherence and
relationships between the three papers included in the dissertation. It outlines how the papers are
interrelated, emphasizing their individual contributions and how they collectively form a unified study

that addresses the research gaps and objectives.

The chapter continues with the foundation for the dissertation by introducing the main research
problem and situating it within the context of existing literature on tectonic inversion. It begins with a
detailed literature review (section 1.3) covering key theoretical frameworks and concepts related to
tectonic inversion processes. This section includes and summarizes the key studies that have
contributed to the current understanding of the field. The review pretends to identify potential
knowledge gaps and justifies the need for further research, which the subsequent papers aim to address.
Following the literature review, an overview of the geological setting of the study area is presented to
provide the essential context for the research (section 1.4). This section describes the regional tectonic
evolution, and the main stratigraphic units present in the study area, which are essential for
understanding the results of the papers. The setting is presented in terms of its relevance to tectonic
inversion processes and how this context influences the evolution of the studied area. Lastly, section
1.5 outlines the problem approach and the methodology and instrumental techniques used across the
three peer-review publications included in this dissertation. This section describes the data collection
and analysis techniques, including fieldwork, geophysical and laboratory methods, as well as any
modelling approaches employed. The methodology is explained in detail to provide a clear

understanding of the tools and instrumental approaches that support the results of the published
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papers. It also highlights how these methods are suited to answering the research questions stated in

the motivation and objectives section.

Chapters 2, 3 and 4 include the results obtained from the three peer-reviewed research papers that
form the core of this dissertation. Each publication addresses specific aspects of the research questions
stated in the motivation section, with a focus on distinct but interrelated topics. A direct reproduction
of the SCI publications alongside the information of the journal, their quality indexes and DOI are
included in each chapter. The complete references of the three papers included in this dissertation are

the following:

o Publication 1: Marin, M., Roca, E., Marcuello, A., Cabrera, L., Ferrer, O., 2021. Mesozoic
structural inheritance in the Cenozoic evolution of the central Catalan Coastal Ranges (western
Mediterranean):  Structural and magnetotelluric analysis in the Gaia-Montmell High.

Tectonophysics, 814, 228970.

o Publication 2: Marin, M., Carola, E., Beamud, B., Bover-Arnal, T., Lépez-Blanco, M., Garcés, M.,
Roca, E., Costa, E., Ferrer, O., Cabrera, L., 2025. Paleogene kinematics of the central Catalan
Coastal Ranges: temporal constraints from magneto-chronology and provenance analysis in

synorogenic deposits in the SE margin of the Ebro Basin (NE Spain). Geologica Acta 23.2, 1-25.

~

o Publication 3: Marin, M., Roca, E., Baqués, V., Cantarero, 1., Cabrera, L., Ferrer, O., Travé, A.,
2023. Fluid-rock interaction control on fault reactivation: A review of the Montmell-Vallés Fault

System, central Catalan Coastal Ranges (NE Iberia). Global and Planetary Change, 220, 104011.
1 -/ /doi 1.1016/ioloplacha 202210401

While each paper is presented as a standalone study, these chapters emphasize how their results
contribute to the overall objective of the investigation. Key points of convergence are noted as well as
any divergences in methodology or findings, thus setting the stage for the later integration and

discussion in the following chapter.

Chapter 5 corresponds to the critical linking section of the dissertation, synthesizing the findings from
the three research papers and discussing their regional implications. This chapter plays a key role in
unifying the distinct, yet interconnected, studies offering a comprehensive view of how each paper
contributes to the research objectives. This section goes beyond the individual results presented in
chapter 2 to engage in a deeper discussion of how the presented conclusions relate to the regional
understanding. Therefore, chapter 3 bridges some gaps between the studies, creating an interrelated

description that connects the methodologies, and outcomes. Moreover, chapter 3 incorporates bits of
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the theoretical frameworks supporting each study, and how they collectively enhance the answers to
the research questions. In addition to the thematic links, this chapter reflects on the limitations of the
methodologies used in the studies. A comparative analysis is done to assess the strength of the research
design, providing a view of how the different methods employed contribute to the outcomes. Finally,
the chapter includes some theoretical implications of the results and connects the research to the
literature. By presenting the research as an interconnected body of work, this chapter highlights the

significance of the dissertation as a coherent whole.

The tinal Chapter 6 provides a concise summary of the conclusions drawn from the dissertation. It
revisits the key outcomes from the research papers and their synthesis, addressing the practical
implications of the research. Additionally, it offers considerations for future research, identifying
potential areas of further investigation that could build on top of the findings presented in this

dissertation.

This dissertation ends with the list of references cited in the text, followed by the annexes and data
repositories, which contain the detailed supplementary material that has been used in the research (e.g.,
field, magnetotelluric and magnetostratigraphic data), enabling validation of the findings presented in

this dissertation.
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1.3. Overview of inversion tectonics

This section aims to explain essential concepts and terminology relevant to the research presented in
the papers included in chapter 2 of this dissertation, laying the groundwork for the general discussion
in chapter 3. This review establishes a coherent framework of the main principles in inversion tectonics,
with a particular focus on the associated geometries, kinematic aspects, and the main control factors of
fault reactivation. The concepts explained here are intended to guide the reader through the theory of
inversion tectonics, ensuring coherency and consistency of key concepts. Hence, this section provides

the context for the obtained results and frames the discussions incorporated in the dissertation.

Most of the concepts about inversion tectonics here explained have been previously reviewed by
Cooper and Williams (1989), Coward (1994), Buchanan and Buchanan (1995) and, more recently,
Cooper and Warren (2020) and Tari ¢f a/. (2020). These works mainly focus on positive inversion. Tari

et al. (2023), however, have recently done a deep analysis focussed on negative inversion.

1.3.1. Definition and concept of inversion tectonics

The concept of inversion tectonics and structural inheritance was originally proposed from the 1970s,
when it was recognized the influence of pre-existing geological features on subsequent tectonic
deformation (e.g., Ziegler, 1974; Kent, 1975; Bally, 1984). These works introduce the idea that ancient
rift-related fault systems and pre-orogenic features may control how orogenic belts later develop and
evolve. However, at that time, the mechanisms behind structural inheritance were not fully understood
and its role in later structural evolution remained speculative. The analytical tools and geophysical
techniques available then were limited, and the different levels of structural complexities of reactivated

inherited structures were not fully comprehended.

Numerous authors have proposed definitions for tectonic inversion. Here we summarize some of the
most relevant. Bally (1984) described inversion as inverted extensional features in which basins, half-
grabens, or graben systems are compressed and turned inside out reactivating pre-existing normal faults
in a contractional regime (Figure 1.4). Williams e# a/. (1989) defined the inversion of a fault-controlled
sedimentary basin as the uplift and partial or complete extrusion of its sedimentary fill when subjected
to contraction or transpression. This definition specifically addresses cases where faults controlling a
basin formation undergo reversal under a contractional regime, transforming depocenters into positive
structures and leading eventually to exhumation. In the same year, looking at it from a more regional
perspective, Cooper e al. (1989) suggested that tectonic inversion could also be defined as a change in
the structural elevation of a regional level during a subsequent deformation phase. On the other hand,
Allaby (2013) defines inversion tectonics as the process by which a pre-existing fault is reactivated in
either compression or extension. Compression leads to positive inversion of pre-existing extensional

faults, resulting in uplift, whereas negative inversion caused by extension leads to subsidence and

11



12

General Introduction M. Marin, 2025

faulting. This is perhaps a first key definition in which the distinction between two main types of
tectonic inversion, positive and negative, is emphasized. More recently, Zwaan ez a/. (2022) define basin
inversion as the reversal of subsidence in a (rift) basin due to compressional tectonics, resulting in the

uplift and/or exhumation of the basin’s sedimentaty infill, with or without reactivation of previously

established normal faults.

Figure 1.4. Synoptic examples of positive and negative inversion tectonics in the evolution from a rifted margin
to a fold-and-thrust belt, including thin- and thick-skinned deformation examples. A) Rift basin underneath
continental margin; B) Thin-skinned fold-and-thrust belt without significant inversion; C) Hybrid Thin- and
thick-skinned fold-and-thrust belt with positive inversion; D) Post-orogenic extension with negative inversion

(modified from Granado ez al., 2017).

Positive inversion has been recognised in basins at different scales and within different tectonic settings
such as orogens like the Pyrenees (e.g., Bon and McClay, 1995; Lopez-Mir ¢7 al., 2015) or the Atlas (e.g.,
Perez et al., 2019); passive margins like the North Atlantic (e.g., Garcia-Senz ef al., 2020; Stephenson ez
al., 2020); strike-slip systems like Sumatra (e.g., Schliiter e7 a/, 2002); delta systems developed in
subduction related settings like Barram Delta in Brunei (e.g., Motley ¢7 a/., 2003). On the other hand,
negative inversion has been also documented in different tectonic scenarios such as collapsed orogens
like the Devonian basins in Norway (e.g., Osmundsen e7 a/., 1998); extension within fold-thrust belts
like the Rocky Mountains in Alberta (e.g., Power and Williams 1989); or in strike-slip systems like the
San Andreas fault system in California (e.g., Wakabayashi e# a/., 2004).

Tectonic inversion must be differentiated from fault reactivation. Tectonic inversion involves a change
in the direction of the fault motion, whereas fault reactivation refers to the renewed movement along
an existing fault plane. Fault reactivation may refer either to the same direction as the original fault
movement or to a different direction depending on the stress conditions. Accordingly, tectonic
inversion can be considered as a specific type of fault reactivation in which the motion direction

changes over geological time.
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From a chronostratigraphic perspective, assessing any case of tectonic inversion requires identifying
the sedimentary sequences associated with each tectonic phase. Ideally, pre-rift, syn-rift, post-rift and,
if preserved, syn-inversion sequences should be recognized within any inverted basin (Figure 1.5). This

approach essentially enables the deciphering of the tectonic evolution of a basin or a specific structure.

SEQUENCES

[ | Syn-inversion
B Post-rift

B Syn-rift

[ Pre-rift

Figure 1.5. Schematic example of an inverted half-graben related to a listric fault showing the tectono-sequences
associated to each tectonic phase. The positive inversion causes the contractional reactivation of the inherited
listric fault that propagates upward into the undeformed post-rift units, the uplift of the basin-fill, and the
development of a footwall short-cut. A) End of the post-rift phase; B) end of the inversion phase (modified after
Cooper ¢t al., 1989).

1.3.2. Positive inversion

1.3.2.1. General concept

Positive inversion involves the reactivation of an extensional fault or a fault system under
compressional regimes (Bally 1984). The process develops characteristic features depending on fault
orientation, the extent of sediment infill, and the defined as inversion ratio (see below), among several
other control factors. Bally (1984) accounts to the amount of recovery of the pre-existent extensional
displacement of the fault during the inversion. Upon a compressional regime, pre-existing faults that
developed growth sedimentation during the extension may exhibit mixed normal and reverse offsets
depending on the level of inversion. This concept is generally known as "inversion ratio", which
quantifies this shift as the proportion of contractional displacement relative to the syn-rift thickness,
allowing assessment of whether inversion is "partial" or "complete" (De Paor and Eisenstadt, 1987;
Williams ez al., 1989) (Figure 1.6). Intermediate cases of inversion are illustrated by a pre-rift sequence
still showing a net extensional pattern (Figure 1.6B and C), whereas the post-rift sequence may present

shortening and structural features related to the compression/inversion (Figure 1.6A). Accordingly, the
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amount of (positive) inversion can be assessed using a conceptual "null point" (“null line” in three
dimensions) (De Paor and Eisenstadt, 1987; Gibbs, 1987; Williams ¢z a/., 1989), which separates the net
contraction from the net extension along a fault. The “null point” migrates down the fault plane during
progressive migration until reach the stage of total inversion when it will cease to exist, and no

extensional offset is present across the fault for the pre-rift sequence (Figure 1.6D).

———

Figure 1.6. Conceptual sections illustrating the inversion ratio showing the degree of inversion of an inverted

fault using the null point position. A) Extensional graben with no inversion; B) Minor inversion of the extensional

graben; C) Major inversion; D) Complete inversion (modified from Williams ¢ a/., 1989).

Different degrees of inversion may occur across a basin-system but also within a single inverted
depocentre. Hence, basins may exhibit varying structural styles across domains or sectors, some also
experiencing multiple phases of extension and inversion (De Paor and Eisenstadt, 1987; Cooper ¢f al.,
1989). The incorporation of a rift basin into the structural framework of a fold-and-thrust belt would
represent an end-member case. In these cases, traces of their extensional past may still be preserved
and revealed through fault displacements and stratigraphic records along and across the inherited fault
systems (MacGregor, 1995). The controlling factors of these potential differences are described later
in the section. Nevertheless, the analysis and assessment of the tectonic inversion also depend on their
depth. For example, a case near the surface would perform differently than an inverted fault beneath a
thick foreland sedimentary sequence. This positioning has implications for their analysis depending on
the data and technique used of their study (e.g., seismic imaging), because it may or may not allow the
recognition of changes in the sedimentary depocentres or the determination of the relative timing of
inversion from cross-cutting relationships. In some cases, methods like analogue sandbox modelling
(e.g., Buchanan and McClay, 1991; Nalpas ¢7 al., 1995; McClay, 1995; Amilibia ez al., 2005; Jagger and
McClay, 2006; Bonini ez al., 2012; Moragas ¢ al., 2017, Roma e# al., 2018a and b; Zwaan et al., 2020,
Dooley and Hudec, 2020; Ferrer ez al., 2016, 2023; Mit6 et al., 2023; Wilson et al., 2023; Krzywiec ef al.,
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2024) or numerical models (e.g., Gerya and Yuen, 2007; Ruh, 2017; Ruh and Vergés, 2018; Granado e#
al., 2021) are used to overcome these limitations and therefore better predict subsurface geometries
allowing the observation of the fault systems, their related folding and the deformation patterns under

controlled conditions that mimic natural cases.
1.3.2.2. Geometries associated to positive tectonic inversion

Tectonic inversion can be identified by the geometries that develop during the inversion process. These
associated geometries commonly include, but are not limited to, those listed in this section. Given the
thick-skinned character of the Paleogene compressive tectonics in the Catalan Coastal Ranges, the
descriptions of the geometries in this section exclude the ones related to or resulting from the presence
of salt and/or regional detachments and, therefore, it focusses on thick-skinned tectonics. Figure 1.7

illustrates a generalized summary of the geometries associated to positive tectonic inversion.

growth anticline

half-graben

pop-up growth anticline

[ Pre-extension [l Syn-extension _~ Inverted extensional fault

Figure 1.7. Inversion structures: A) Extensional half-graben; B) Arrowhead or harpoon structure developed as
the result of an inverted half-graben; C) By-pass thrusts and buttressing; D) Complex combination including

back-thrusts, buttressing, pop-up structure and footwall short-cut (adapted from Granado and Ruh, 2019).

e Arrowhead or harpoon structures: these structures are probably the most classic geometric
feature used for the recognition of an inverted semi-graben and form for partially inversion of the
extensional growth strata of a single half graben (arrowhead) or a set of them (harpoon) (Figure
1.7B). They typically develop in response to low-angle fault reactivation and are commonly
recognized in seismic data (e.g., Goudswaard and Jenyon, 1988; McClay, 1995).

e Footwall short-cut thrusts: developed due to the contractional reactivation of extensional faults,
these are new reverse faults that cut through the footwall to accommodate compressional

deformation (Huyghe, and Mugnier, 1992) (Figure 1.7D).
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Growth anticlines: contractional reactivation causes the uplift of the extensional basin, forming
anticlines in the hanging wall of the reactivated faults (Figure 1.7D). These structures frequently
exhibit significant thickening of syn-extensional sequences towards the anticline crest, which
correspond to the maximum depth of the extensional depocenter. Arrowheads and harpoons
structures are formed by the uplifted extensional growth strata defining a growth anticline. When
inversion occurs asymmetrically across a half-graben, it can produce monoclines within the
inverted half-graben close or above the inverted fault. The resulting anticlines are asymmetric, with
a steeper forelimb (eventually overturned) and a gently dipping backlimb away from the reactivated
fault (Withjack ez al., 1995).

Hangingwall buttressing and back-thrusting: when a previously extensional fault is reactivated
under compression, its hangingwall may expetience restricted movement or "buttressing” against
the footwall block. This process may result in the internal deformation of the hangingwall strata
the associated geometries of which may help on the recognition and characterization of the tectonic
inversion. Common buttressing geometries concentrated in the inverted faut hangingwall are: 1) a
sudden increase of folded layers and tilted blocks due to resistance at the fault plane; 2) the presence
of foreland-facing folds often with steeply dipping or overturned forelimbs adjacent to the main
fault; 3) back thrusts dipping opposite to the primary inverted fault may develop as a response to
the stress redistribution in the hangingwall layers (Figure 1.7C and D), and to relieve stress by
allowing additional shortening. Mechanical contrasts within hangingwall layered sediments can
influence on the presence and pattern of these structures in less competent strata (Cooper and

Warren, 2020 and references therein).

Deformation and shortening within the hanging wall via buttressing and the formation back thrusts
(hangingwall-vergent thrusts) may be significant before the reactivation of the master extensional
fault (Colpron ez al., 1998). Buttressing effect may also increase as the fault planes steepen, especially
near the fault tip where compression concentrates. Additionally, hangingwall buttressing is
important in determining the strain distribution in inverted structures. The above listed
complexities can help distinguish between an inverted structure from a standard compressive

feature during interpretation.

Forced Folds: they form above reactivated faults as a reaction to the compressive stress into the
overlying sedimentary layers. To some extent, they can be considered within the buttressing
category since they form as hanging walls and are uplifted and compressed against reactivated
faults. In inversion, forced folds often show asymmetry with steeply dipping forelimbs and gentler
back limbs. In sandbox analogue models, forced folding is influenced by the angle and depth of
the reactivated faults and the competency of the layers involved (Ferrer e al., 2023).

Pop-up structures: these structures are thrust faults that propagate outward from a graben

structure due to the contraction and inversion of a pre-existing extensional feature (Buchanan and
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McClay, 1992). The referred works exemplify these geometries like a pop-up or pseudo-flower
structure bounded by high-angle inverse faults and rooted at the main inverted fault plane (Figure
1.7D).

e Hangingwall bypass thrusts: develop within the hangingwall of the inverted fault along the
trajectory of the ramp section of the main detachment and propagate upwards (Figure 1.7C),
thrusting the extensional ramp syncline over the inverted rollover anticline (Ferrer e a/., 2016). In
areas where the pre-existing extensional faults display little or no reactivation, bypass thrusts are
often present, the geometry of which are strongly controlled by the extensional fault architecture

with thrust ramps located at pre-existing extensional fault steps (Butler, 1989).

1.3.3. Negative inversion
1.3.3.1. General concept

Negative inversion refers to the reactivation of pre-existing compressional structures, such as thrust
faults, in an extensional context. This process is essentially the opposite of positive inversion, where
extensional structures are reactivated in a compressional regime. Negative inversion is seen less
frequently than positive inversion and may have special importance in areas with a history of
subsequent compressional and extensional tectonic regimes (Tari ez al, 2023). Accordingly, the
geometries associated to negative tectonic inversion can also be used to provide insights into the
geological evolution of an area, such as a change of regime in an area previously dominated by

compression to the development of extensional features such as normal faults and vice-versa.

Negative inversion has recently been documented in several regions like the Rocky Mountains (Bally
and Snelson., 1980), Arctic Canada (Connors and Houseknecht, 2022), the Betic Chain in Spain
(Garcia- Duefias ef al., 1992) and the Apennines in Italy (Tavani ef 4/, 2023). The Rockies and Canadian
Arctic cases exemplify how the post-orogenic reactivation of pre-existing thrust planes as normal faults
formed structural traps and influenced on hydrocarbon migration. On the other hand, in the
Mediterranean region, negative inversion has been related to post-orogenic slab rollback and crustal
stretching associated with back-arc basin formation (e.g., Apennines, Tavani et a/., 2023; Catalan Coastal
Ranges, Fontboté ¢f al., 1990; Roca and Guimera, 1992). A comprehensive compilation of negative

inversion cases has been recently published by Tati ez a/. (2023).
1.3.3.2. Geometries associated to negative inversion

Negative inversion displays kinematic patterns that include specific structures consequence of the
extensional reactivation of pre-existing compressional faults. The resulting geometries are often more

difficult to identify than those associated with positive inversion. However, these structures show
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perhaps less complexities than its positive counterpart. The geometries are briefly described below and

illustrated in the Figure 1.8.
NEGATIVE INVERSION

SEQUENCES
[ syn-inversion
[

[ |Pre-inversion

FAULTS
" Pre-existing thrust

Hangingwall (extensional)
~ short-cut

" Inverted fault

Figure 1.8. Cartoon summary of geometries associated to negative inversion tectonics. Note the short-cut
extensional fault developed within the hangingwall of the partially inverted pre-existing thrust, which develops a
half-graben with growth strata. The tectono-sequences associated to the tectonic phases are also indicated

(modified from Tari ¢/ al., 2023).

e Hangingwall short-cut faults: these structures occur during inversions when a normal fault is
created within the hangingwall of the pre-existing compressional fault or thrust sheet reactivated
in its deeper part and abandoned in its shallower part (Huyghe, and Mugnier, 1992) (Figure 1.8).
They are formed to accommodate the new stress direction. This type of structure contrasts with
its counterpart positive inversion in two different aspects: positive inversion short-cuts involve
low-angle thrusts developed in the footwall of the extensional fault (structure 2 in Figure 1.7)
(McClay, 1995), whereas steep short-cut extensional faults developed in the hangingwall generally
characterize negative inversion (Figure 1.8) (Tari ez a/, 2023). Extensional short-cut faults are
normally detached at a ramp segment of the original thrust plane, where the extensional forces are
most likely to nucleate. Unlike positive inversion, negative inversion frequently includes the
formation of hangingwall short-cuts with independency of the inversion degree. In some cases,
negative inversion exhibits listric (curved) faulting patterns, where extensional forces reactivate the
lower-angle segments of thrust planes. Half-grabens may develop above these structures as seen,
for instance, in the Apennines (Tavani ez a/, 2023).

e [Extensional growth strata patterns: negative inversion may develop growth strata arrangements
within the previously mentioned half-grabens above the hangingwall short-cuts. These geometries
are characterized by a progressively thickening of the sedimentary packages against the inverted

fault, which may be a key indicator seen in seismic profiles (Figure 1.8).

1.3.4. Main controls on tectonic inversion and fault reactivation

Inversion structures exhibit diverse geometries and complexities. This section outlines the first-order

controls that determine whether a basin undergoes inversion and how structures develop during this
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inversion. In general, pre-existing faults are expected to represent areas of weakness within the
surrounding undeformed rock, such as the development of fault gouge that may reduce the cohesive
strength compared to the unaltered rock from which it originates (Sibson, 1977; Sibson, 1985). Hence,
once formed, faults are likely to reactivate under new or renewed stress fields. However, several factors
such as the geometry of the pre-existing fault (e.g., McClay, 1990; Buchanan and McClay, 1992), the
effect of the sedimentary successions (e.g., Tari ez al., 2020) or the rheology of the crust (e.g., Ziegler ez
al., 2001) control the type and extent of the inversion processes and resulting geometries. These factors
have mostly been studied based on positive inversion tectonic case studies, although they must also be
considered in negative inversion cases. Additionally, some of the controls can be co-dependent, having
their interplay a notable significance. These interactions would highly influence the degree of inversion,
the resulting structural style, and the distribution of deformation and strain within the resulting inverted
basin. This fact highlights that inversion dynamics cannot be attributed to isolated factors but rather to
a combination of controls that shape the overall structural and mechanical response of an inverted

basin.
1.3.4.1. Geometrical aspects

The geometrical characteristics of the pre-existing extensional fault or fault system mostly refers to the
dip of the fault plane and its orientation relative to the regional stress. These are crucial in determining
whether or how the faults will be reactivated during inversion. Commonly, one would assume in terms
of fault dip geometry that steeply dipping faults will generally require higher compressional stresses to
reactivate rather than low-dipping faults. Therefore, fault dip differences will influence the resulting

structural style during and after fault reactivation and inversion. Extensional fault systems show a wide

variety of fault geometries (McClay, 1990) (Figure 1.9).

[ Post-extension
I Syn-extension
[ Pre-extension

Figure 1.9. Main types of normal faults: A) Listric fault; B) Planar fault with a horizontal detachment at depth;
C) Planar rotational or domino-style faults (compiled from Gillcrist ef al., 1987, McClay 1992 and Buchanan and
McClay, 1992).

The 2D geometric classification of extensional faults proposed by Wernicke and Burchfield (1982)

include two main categories of normal faults: 1) listric faults that tend to be curved and sole out into a
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basal horizontal detachment at depth with a rollover anticline at its hangingwall (e.g., Gibbs, 1984); and
2) planar extensional faults differentiating non rotational faults (e.g., Anderson, 1951; Sibson, 1985)
and rotational or domino-style faults (e.g., Buchanan and McClay, 1992; Jagger and McClay, 2018).
Further complexities and combinations of these endmember 2D fault geometries as well as dip

variations of the detachment at depth should also be considered (e.g., Ferrer ez al., 2010).

Listric extensional faults curve and flatten at depth, developing fault-bend fold anticlines in the
hangingwall known as a rollover (Gibbs, 1984; Figure 1.9A). When inverted, this extensional rollover
fold becomes accentuated, uplifting the sedimentary fill in the hangingwall with a thrust that cuts
through the post-rift sequence (Figure 1.10A). The reactivation is more pronounced in gently dipping
areas, with displacement decreasing as the fault dip increases. Depending on the intensity of inversion
and the dip of the extensional fault, different structures may form, ranging from gentle anticlines in
mild inversion to complex systems including hangingwall imbricated thrusts, backthrusting, and
footwall short-cut thrusts, in cases of highly inverted faults with steep upper parts that would not

reactivate (Figure 1.10A, see description of the different type of resulting structures in section 1.3.2.2.).

As shown by experimental sandbox analogue models (e.g., Dooley ¢z a/., 2005; Withjack and Schlische,
20006; Ferrer ez al., 2014, 20106), non-rotational planar extensional faults with a horizontal detachment
at depth are characterized by planar or gently kinked rollover anticlines (Figure 1.9B). These works
show that hanging-wall rollover geometries are controlled by the amount of extension, by the dips of
the bounding faults and by the kink-band bend in the fault surface. Geometries depend on the dip of
the planar fault. For instance, experiments with low-dipping (20°) fault, develop small antithetic faults
near the detachment breakaway, whereas higher dipping faults (60°) develop narrow rollover with
closely spaced antithetic faults that bound a deep, flat half-graben basin (Ferrer e al, 20106). During
inversion non-rotational planar faults reactivate the main detachment, causing a gentle uplift of the
hanging wall, forming a small frontal inversion anticline, creating a broad zone of uplift in the syn-
extensional strata above their regional level and developing a short-cut structure in case of low-dipping
(20°) (Ferrer et al., 2016; Buchanan and McClay, 1991, 1992). In contrast, 60°-dipping planar faults,
shaped well-developed asymmetric hanging-wall inversion anticlines with moderately dipping frontal
limbs and gently dipping back limbs (Figure 1.10B). Footwall short-cuts thrusts in front of the inversion
anticline, buttressing against the footwall produced new hanging-wall back-thrusts, and mall crestal-
collapse graben developed on the outer arc of the asymmetrical inversion anticlines are present in these

models (Figure 1.10B).

Extensional domains governed by hard or soft domino-styles with planar or sigmoidal fault geometries
respectively (e.g., Axen, 1988; Buchanan and McClay, 1992; Figure 1.9C) involve both extension and
rotation with the faults operating together and the development of a series of half-graben basins formed

as fault blocks rotated synchronously (McClay, 1990). Rotational faults display a parallel pattern and
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show the same displacement along the fault plane during extension and rotation. This allows the
development of half-graben basins with layers thickening toward fault planes, forming wedge
geometries (Figure 1.9C). Minor antithetic faults might develop, increasing in size with distance from
the basin-bounding fault. During inversion, domino-style faults reactivate with reverse displacement.
This uplifts the syn-rift and post-rift units although no major deformation is observed within the half-
grabens (Jagger and McClay, 2018) (Figure 1.10C). Depending on the inversion degree, reactivation
may produce null points along the fault planes, marking zones where the net displacement across the
fault is zero, separating areas of net contraction above from areas of net extension below. Footwall
short-cut thrusts, creating fan-like or horsetail structures, appear in response to the shortening strain
(Jagger and McClay, 2018). Moreover, distinctive growth anticlines or forced folds, arrowhead

structures will develop in the reactivated syn-extensional sequence (Figures 1.7 and 1.10C).

[ Syn-inversion [l Syn-extension
[ Post-extension [ Pre-extension

Figure 1.10. Models of inversion for simple extensional systems, based on analogue sandbox models (modified
from McClay ¢/ al., 1992). A) Inversion of a concave upwards simple listric fault; B) Inversion of a planar fault

with a deep horizontal detachment; C) Inversion of a domino-style fault system.

Beyond the inversion of the simple extensional faults explained above, rift basin systems may present

complex patterns of the inherited extensional basin configuration, which will produce a wide range of
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geometries. Complex pre-existing faults geometries, such as ramp-flat listric or kinked planar faults,
will introduce notable geometry complexities after inversion due to variations in dip of the different
fault panels and shape along the fault plane at depth. For instance, in the case of a ramp-flat listric fault
(Figure 1.11A), inversion produces an asymmetric frontal anticline with steeper front-limb and footwall
short-cut thrusts (Buchanan and McClay, 1992; McClay, 1995; Ferrer ef al, 2016). This inversion
geometry reflects the interaction of pre-existing listric segments, leading to displacement along
footwall-vergent bypass thrusts developed or rooted at the end of the lower ramp (Buchanan and
McClay, 1992; McClay, 1995; Ferrer ez al., 2016). Similatly, the kinked planar fault with two panels of
varying dip (Figure 1.11B) generates an even more complex inversion structure. Here, inversion
introduces asymmetric folding in the hanging wall, along with additional back-thrusts that arise from
buttressing effects along the steeper upper fault segment (Ferrer ez al., 2016). Crestal-collapse graben
formations develop in the inversion anticline’s outer arc. These features highlight the role of the
complex fault geometry in producing distinctive and compartmentalized inversion structures that differ
substantially from the simpler arrowhead-like inversion geometries seen in planar or single-listric faults.
[A] Ramp-flat listric fault Asameric s st

footwall
short-cut ~

crestal collapse Assymetric —

Kinked planar fault graben | lolding

footwall

back-thrust

[ ] Pre-extension " Pre-existing extensional fault
B Syn-extension " Inverted or new faults

Figure 1.11. Analogue sandbox model cross-sections illustrating the structural styles of inversion of complex

fault geometries. A) Ramp-flat listric fault; B) Kinked planar fault (redrawn after Ferrer ¢ al., 2010).

Fault orientation or strike relative to the compression or stress direction has also an impact on the
inversion of pre-existing fault systems. In general terms, faults that are aligned perpendicular to the
direction of maximum compressive stress are the most likely to be reactivated (i.e., optimal fault
orientation). In these cases, compressive forces act directly along the fault plane, making it easier for
the fault to slip or for stress to be accommodated by fault reactivation. Experimental sandbox models

by Buchanan and McClay (1992) demonstrated that faults oriented perpendicular to the applied
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shortening direction exhibit the highest degree of reactivation. In contrast, experiments with fault
orientations that are oblique or parallel to the compression direction show that these faults require
greater stress to reactivate, leading to selective inversion within the fault systems. The alighment of
fault strike relative to the compression direction also influences the inversion geometry. Optimally
oriented faults typically produce more direct and continuous reactivation, often resulting in broad
uplifted structures or symmetric anticlines in the hanging wall. Conversely, faults oriented at an angle
to the compression direction can create complex deformation patterns, including asymmetric folds,
local uplifting, or wrenching movements along strike-slip components. This orientation-dependent
behaviour is therefore essential for understanding the development of inversion in regions where

multiple fault systems with varied strikes are present.
1.3.4.2. Syn- vs. post-rift sequence thicknesses

It has been documented that the thickness of syn- and post-rift sequences also plays a significant role
in influencing structural styles during tectonic inversion, shaping the type and behaviour of inversion
structures. Two primary inversion modes (I and II, Figure 1.12) differentiate the influenced by the

relative thicknesses of these two kinds of sequences (Tari ez /., 2020).

Mode II: post-rift > syn-rift

Mode I: post-rift < syn-rift

[ | Post-inversion [ Syn-inversion ] Post-rift [l Syn-rift [ Pre-rift

Figure 1.12. Subdivision of inversion into two modes of inversion. A) Mode I inversion when the post-rift
succession is thinner than the syn-rift succession in the pre-existing extensional basin; B) Mode II inversion when

the post-rift succession is thicker than the syn-rift one (modified from Tati ez al., 2020).

It occurs when the syn-rift succession is thicker than the post-rift cover. During tectonic inversion,
reverse-fault-bounded structures develop. These structures often experience significant displacement

along faults, creating steeper anticlines and more intense fault reactivation. On the other hand, in Mode
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II the post-rift cover is thicker than the syn-rift deposits. In these cases, inversion typically results in
gentler, open forced folds rather than steep, fault-bounded structures, characterized by less structural

deformation.

Experimental studies such as sandbox analogue models (e.g., Tamas ef a/., 2023) validate these structural
styles under different thickness scenarios of syn- and post-rift sequences. These models demonstrate
that in basins with a thin post-rift sequence, fault inversion is more pronounced, producing reverse
faults extending into the post-rift cover, while in thicker post-rift sequences, fault propagation is
restricted, favouring the development of open folds rather than fault-dominated structures. Therefore,

the post-rift sequence thickness directly affects the propagation of inherited faults.
1.3.4.3. Lithosphere's integrated strength

In a simplified lithosphere model where quartz controls the rheology of the upper crust, diorite the
lower crust and olivine the upper mantle (e.g., Kirbyand and Kronenberg, 1987; Roure ¢ al., 2006), a
strength profile can be made (Figure 1.13). This profile shows an upper crust that exhibits brittle
behaviour, and the strength increasing with depth due to rising confining pressure. However, as depth
increases, the combination of higher temperatures and pressures that reduces rock strength promotes
a limit into ductile deformation at the base of the upper crust. This brittle-ductile transition occurs at
depths around 15 km and temperatures of around 250°C. Low-strength regions likely exist at the base
of the crust, resulting from the rheological contrast between quartz and olivine, a limit known as Moho

discontinuity.

The strength of the lithosphere is strongly influenced by crustal thickness but also by the time elapsed
since stretching. Different stretching models (e.g., McKenzie, 1978; Wernicke, 1981) would therefore
display different strength profiles. A rapid and homogeneously stretching crust as the one defined by
McKenzie (1978) will show that the stretched lithosphere’s overall strength (Figure 1.13B) is lower than
that of the unstretched lithosphere (Figure 1.13A). However, after stretching (ie., rifting) the
lithosphere tends to cool until it re-establishes its original geothermal gradient, with the strength curve
adjusting accordingly. On the other hand, in Wernicke's asymmetric stretching model (Wernicke, 1981),
extension in the upper crust is laterally transmitted to the lower crust and mantle. Under the fault, the
crustal strength curve would not change significantly, whereas in areas where the lithospheric mantle

thins, the geothermal gradient increases, causing a decrease in strength.

The variation of the lithosphere strength through time is therefore strongly dependent on its
composition and thermal history. Hence, in tectonic inversion, these factors should be considered as a
function of the time span between the end of the rifting and the onset of the later contractional and

shortening phase (Ziegler ¢z al., 2001).



General Introduction M. Marin, 2025

Al

Depth D
(km) NORMAL LITHOSPHERE THINNED LITHOSPHERE ey
0 T T T | o
10 (Quartz) upper crust = L (Quartz) @ upper crust brittle-ducite__| 49
___________________ ________Q(E[!t&_ql!g.;ﬁ_ifg"_" ---------.--.----—--—--- ~ 2 = -“---"""--_.._E'%I.'.Igf_tli);?---..-

e (Diorite) YJ lower crust
ar (Dierite) lower crust T m_"\Y Presss———llee?
N Mobo— - 130
_ (Olivine) lithospheric mantle
af —HF 4
(Olivine) lithospheric mantle
50 |- 4 ] 50
60 | —H F — &0
] 4 F — 70
80 |- 4 — 80
90 |- —H F | — %0
100} o L ? 100
wer [ | wer [
20 | tension | compression | a0y tension | compression ] 1 120
-1000 0 1000 2000 -1000 0 1000 2000
Strength (MPa) Strength (MPa)
Depth (km) Depth (km)
120 100 80 60 40 20 0 120 100 80 60 40 20 0O

o R e o B e

3 wn 3 w

28 88

- =

32 32

= 38

Figure 1.13. Idealized depth-dependent strength profiles for dry and wet lithosphere to stresses (tension and
compression) and their corresponding thermal gradients. The graph assumes a quartz/diorite/olivine rheology
corresponding to the upper crust, lower crust, and lithospheric mantle. A) Normal lithosphere profile (i.c.,
unstretched or cratonic scenarios) with 30 km thick crust and 70 km thick lithospheric mantle. B) Stretched
lithosphere profile (i.e., rifted, stretched scenarios) and thermally unstable lithosphere thinned to 20 km thick
crust and 45 km lithospheric mantle (modified from Ziegler ez al., 2001).

1.3.4.4. Mechanical properties of the fault zone

If fault reactivation occurs under conditions where the rock behaves in a brittle domain, such as the
upper crust, the Navier-Coulomb criterion can be applied and can be represented with a Mohr diagram
(Figure 1.14). In this context, the capacity of a fault to reactivate depends on several key parameters
such as: cohesion, friction coefficient, orientation, and fluid pressure (Sibson, 1985). Under brittle
conditions, these parameters can influence whether a fault will slip again when subjected to a change
ot reactivation of the stress field. Therefore, through Moht's circle diagrams one can show how faults

might respond under different stress conditions (Jaeger and Cook, 1979).
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Figure 1.14. Mohr circle and Mohr envelope for brittle behaviour, showing how cohesion and friction influence

fault behaviour under compressive stress. A) The envelope for rock with cohesion Co and an internal friction
angle ¢, showing the typical strength of intact rock. B) The envelope for a pre-existing fault, with lower cohesion

Co'and a sliding friction angle ¢'.

Of all those parameters, cohesion and friction coefficient are critical to influence fault reactivation.
Cohesion reflects the fault’s inherent resistance, and lower cohesion typically makes reactivation easier,
especially for pre-existing faults. Friction, specifically the internal friction angle and the friction
coefficient, also plays a significant role in fault reactivation (Sibson, 1985). Faults with lower friction
coefficients are more prone to reactivation than those with higher values, particularly as stress changes.
On the other hand, the orientation of the fault plane relative to the direction of compressive forces is
also critical. Faults positioned at angles closer to the ideal rupture angle will reorient and reactivate
more easily under compression (Sibson, 1985). This orientation factor means that faults already aligned

with principal stress directions tend to reactivate before new fractures form.
1.3.4.5. Burial, pressure, fluids, and temperature conditions

The control of burial, pressure, and temperature on tectonic inversion is complex, governed by the
interplay of stress conditions, fluid presence, and depth-dependent deformation mechanisms (Hubbert
and Rubery 1959; Sibson, 1985). These factors can have an important influence on the mechanical
properties of faults; hence, this section is highly interconnected to the previous one. Increased butial,
fluid pressure, and geothermal gradients within fault zones may alter the stresses, enabling or inhibiting

fault reactivation, influencing both fault strength and the mode of deformation.

As burial depth increases, so do pressure and temperature, shifting the deformation mechanisms from
brittle to ductile. However, in shallow crustal levels, brittle deformation and frictional slip typically
dominates. Lafosse e al. (2016) show that increasing burial depth and temperature gradient decreases
the effectiveness of frictional strength along inherited faults, leading to more distributed deformation

and vertical extrusion of basins rather than fault reactivation. However, increased fluid pressure can
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substantially reduce the effective stress within fault zones, by lowering the normal stress on fault planes.
High fluid pressure makes therefore reactivation easier, particulatly in faults favourably oriented to the
compressive forces. In conditions where fluid pressures are high, faults with lower cohesion and
friction values may reactivate under compression. Faults misaligned with the primary stress field or
with steeper dips, however, would demand higher fluid pressures for reactivation (Donarth and
Crandwell, 1981). Sibson (1985) further emphasizes the role of fluids in facilitating inversion by

reducing the effective stress along faults.

Additionally, fluid circulation and temperature regime may facilitate the crystallization of minerals or
the development of cements within the fault zones (e.g., De Brit 1989; Muchez ez al., 1995; Travé et al.,
1998; Travé and Calvet 2001; Labaume e 4/., 2007; Micarelli e a/., 2005; Benedicto ez a/., 2008; Vilasi et
al., 2009; Andté ez al., 2010; Baqués ez al., 2012). This would have a direct impact since newly formed
minerals and rock types with different friction values along the faults will control
inversion/reactivation. Logan e al. (1981) demonstrated that montmorillonite fault gouge could
withstand higher shear stresses, indicating that pre-existing faults are not always the first to reactivate

under deformation.
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1.4 Geological introduction to NE Iberia and the Catalan Coastal
Ranges

This section presents an introduction to the geological setting of the Catalan Coastal Ranges, mainly
focussing on its central part where the study area is located. The section is structured in three main
blocks: (1) overview of the tectonic framework, (2) overview of the main stratigraphic assemblages and

(3) concluding remarks

1.4.1 Location and overview of the tectonic framework

The Catalan Coastal Ranges (hereinafter CCR) are located at the NE of the Iberian Peninsula and are
one of the three alpine structural units that limit the Ebro Basin (Figure 1.15). The Ebro Basin is the
late southern foreland basin of the Pyrenean orogen that developed during the convergence between
Iberian plate and Eurasian plates from Late Cretaceous to middle Miocene times (Stivastava ez al., 1990;
Mufioz, 1992; 2001; Rosenbaum ¢z al., 2002; Mouthetreau ¢# al., 2014). To the southwest and southeast,
the Ebro Basin is bounded by two intraplate fold-and-thrust belts: the Iberian Range, and the CCR
respectively (Figure 1.15). These three major alpine structural units display overall similarities in terms
of tectonic evolution, such as the presence of pre-existent Mesozoic rift basin systems, which were
tectonically inverted during the Late Cretaceous-Cenozoic compression that affected the western

Tethyan regions (Rosenbaum ef a/., 2002; Mouthereau ¢z al., 2014).
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Figure 1.15. Shaded relief map of NE of the Iberian Peninsula with the location of the three main alpine
mountain belts: the Pyrenees, the Iberian Range, and the Catalan Coastal Ranges, which bound the Ebro Foreland
Basin to the north, southwest and southeast respectively. Red square indicates the central domain of the Catalan
Coastal Ranges area in which this thesis is focussed. A-A'line indicates the location of the regional section shown
in Figure 1.16. Base map made with GeoMapApp (https://www.geomapapp.org) / CC BY / CC BY, Ryan ¢/ al.,
2009).
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The CCR constitute the current onshore expression of the northeastern part of the extensional
continental margin that separates the thinned crust of the Valencia Trough from the thicker crust of
the Iberian Plate (Dafiobeitia ¢7 a/., 1992; Roca and Guimera, 1992; Vidal ¢ al., 1998; Gaspar-Escribano
¢t al., 2003) (Figure 1.16). The CCR extend for over 250 km parallel to the Mediterranean coastline and
are characterized by a NE-SW-oriented basin-and-range configuration that consists in series of ENE-
to NE-striking blocks bounded by faults ranging from 50 to 150 km in length (Figure 1.17). Onshore,
these major faults display a right-stepping en-echelon pattern (Ashauer and Teichmiiller, 1935; Llopis-
Llado, 1947; Anadon et al., 1985; Guimera, 2004). Major faults generally dip towards the southeast and
show a combination of normal, reverse, and limited left-lateral strike-slip motions (Guimera, 1988,
2004; Roca, 19906). The central domain of the CCR is comprised between the El Camp Basin in the

south to the northeastern tip of the Valles-Penedes Basin to the north (Figure 1.17).

Thick crust
(Iberian Plate) Thinned crust
Ebro Coastline NW-SE
Basin CCR ¢ Valencia trough

Depth (km)

Ij Cenozoic sediments - Mesozoic - Upper crust - Lower crust ! Mantle

Figure 1.16. Depth section through the Catalan margin showing the SE-NW increase of the crustal thickness

between the Valencia Trough and the Iberian Plate (modified from Gaspar-Escribano ez a/., 2003).

The tectonic evolution of the CCR can be outlined in three major tectonic phases that are the
responsible of its present-day configuration: (1) a multiepisodic extensional phase from the late Permian
to the Aptian, (2) a compressional phase during the Paleogene, and (3) a latest Oligocene-middle
Miocene extension (Llopis-Lladé, 1947; Anadén ez al., 1979; Roca and Guimera, 1992; Bartrina e/ al.,
1992; Lépez-Blanco ef al., 2000a, b; Baqués ef al., 2012; Cantarero ef al., 2014a, b; Marin ¢f al., 2021).

Each of these three main tectonic phases are described in detail below.
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Figure 1.17. Schematic geological map of NE Ibetia showing the three major structural units bounding the Ebro
Basin: the Pyrenees to the north, the Iberian Range to the SW, and the Catalan Coastal Ranges (CCR) to the SE.
The limits of the southern, central, and northern domains of the CCR are indicated in orange dashed lines. The
trace of the Montmell-Valles Fault System the tectonic evolution of which is presented in this Thesis is highlighted

with a thick blue line in the central domain of the CCR (modified from Garcés ef al., 2020).
1.4.1.1. Late Permian - Mesozoic extensional phase

The first extensional period occurred from the Late Permian to the Triassic, related to the opening of
the Neotethys Ocean (Lépez-Gomez e¢f al., 2002). This period is characterized by the development of
a basin system that started its development during the Middle-Late Permian due to widespread
extension (Galan-Abellan ¢f al., 2013) and evolved as a NE-SW-oriented rift basin with conjugate NW-
SE fault systems that controlled the development of the Permo-Triassic depocenters. The second
rifting event, from the Late Jurassic to the Early Cretaceous (i.e., latest Oxfordian to Aptian), was coeval
with the opening of the North Central Atlantic and the Bay of Biscay, which led to the uncoupling of
the Iberian Plate from Eurasia in northern part of Iberia (Stivastava ez al., 1990; Salas and Casas, 1993;
Salas ez al., 2001; Sibuet ¢# al., 2004). During this phase, several basins heterochronously developed
south and east of the Ebro Block including the Cameros, Columbrets, Maestrat, Perell6), Montmell-
Garraf, and Barcelona basins as result of the divergent processes both in the Atlantic-Biscay domain in
the north and the continuing opening of the Tethys in the east (Salas, 1987; Salas and Casas, 1993; Salas
¢t al., 2001; Tavani ef al, 2018) (Figure 1.18). The major extensional faults that delimited the basin
development during these two periods, controlled the subsidence and basin-fill in these areas and were

involved in the later inversion of the extensional basins.
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Figure 1.18. Reconstruction of the Iberia-Eurasia margin and surrounding areas in the mid-Cretaceous times.
Major basins, transform faults, and crustal domains are indicated. PrtB: Parentis Basin; LP: Landes Plateau; BCB:
Basque-Cantabrian Basin; CB: Cameros Basin; FNB: Flysch Noir Basin; OB: Organya Basin; MsB: Maestrat
Basin; VeB: Vocontian Basin; DI: Durance Isthmus; SPB: South Provence Basin; FMB: Figueres-Montgti Basin;
PrB: Perell6 Basin; MGB: Montmell-Garraf Basin; BB: Barcelona Basin. The red square indicates the area of
study (modified from Tavani ez a/., 2018).

Despite its diachronic character and the eastward propagation of the basin system development in the
Atlantic-Biscay-Pyrenees domain (Tavani ¢7 a/., 2018 and references therein) and the Iberian domain
(Alvaro et al., 2979; Salas and Casas, 1993; Salas ¢f al., 2001) the extensional phase predominantly ends
during the Aptian. However, minor tectonic activity has been also identified up to the mid-Albian (Salas
et al., 2001). From this moment on, the entrance of siliciclastic sedimentation from late Albian to
Cenomanian characterizes the beginning of a post-rift phase controlled by the thermal relaxation and
a generalized eustatic rising of the sea-level (Haq ez a/, 1988; Alonso ez al., 1993; Salas ez al., 2001). The
post-Cenomanian evolution is, however, difficult to be established due to the lack of preserved
sedimentary record in the study area. Two main hypotheses may explain this time span: 1) the no
deposition of post-Cenomanian sedimentary successions in the central CCR north of the Perellé Basin
(.e., Serra de Llaveria in Gil ef al., 2004; Segura ef al., 2004) (Figure 1.18), underscoring a period of
tectonic quiescence in the area, and 2) sedimentation occurred but was followed by uplift and erosion.
The causes of this uplift and the associated exhumation and erosion can be related to a post-rift isostatic
uplift (e.g., Burov ez al, 1997) or, otherwise, an uplift related to the compression related to the Pyrenean

Orogeny affecting the western Tethys (Stivastava ez a/.,, 1990; Rosenbaum ez al., 2002).
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1.4.1.2. Paleogene (Paleocene-late Oligocene) contractional phase

From the Paleocene to the latest Oligocene, the CCR experienced a contractional phase due to the
northward drift of Africa and the collision of the uncoupled Iberian and Eurasian plates (Srivastava ez
al., 1990; Rosenbaum e7 al., 2002). This drastic change in the relative motion of Iberia generated the
Pyrenean fold-and-thrust belt from the inversion of the Mesozoic rift-system (Mufioz, 1992; Vergés ez
al., 2002; Roca et al., 2011; Munoz, 2017; Garcia-Senz et al., 2019). The contractional deformation
progressed southwards leading to the inversion of the Mesozoic rift basins developed in the Iberian
Plate and forming the Iberian Range and, in the current position of the CCR, the Catalan Intraplate
Chain (CIC). The preserved structure of the CIC consists of major NNW-directed thick- and thin-
skinned thrusts as well as strike-slip faults with an ENE- to NE trend (Anadén ez al., 1985; Guimera
and Alvaro, 1990). The main Paleogene compressional structures present in the CCR and related to the
build-up of the CIC are shown in the map of Figure 1.19A. According to studies performed in
preserved growth strata, the development of the CIC started during the early Eocene at its NE end and
progressed towards the southwest up to the latest Oligocene (Guimera and Santanach, 1978; Guimera,
1984; Anadon ef al, 1985; Anadon, 1986; Barbera e al., 2001; Lopez-Blanco, 2002; Jones ¢ al., 2004;
Garcés et al., 2020). The earliest synorogenic sediments recorded along the SE Ebro Basin margin are
the early Eocene Cairat Fm. (Ypresian-early Cuisian in age), which were deposited northeast of the

study area in the Montserrat-Sant Lloren¢ del Munt area (Anadon, 1978; Lopez-Blanco, 2002).
1.4.1.3. Latest Oligocene-Miocene extensional phase

An extensional tectonic stage took place from latest Oligocene and extended through the Neogene up
to late Miocene (Bartrina ef al, 1992; Roca, 1994; van Hinsbergen ez al., 2014). Subduction of the
Tethyan Maghrebian Ocean beneath the Iberian Plate induced back-arc processes and stretching in the
castern Iberian Plate from the rollback of the subducting plate (Horvath and Berckhemer, 1982;
Fontboté e al., 1990; Roca and Guimera, 1992; Roca, 1994; Carminati ef al., 1998; Roca ez al., 2004; Van
Hinsbergen ¢ al., 2014, 2020). During this period, Paleogene thrust faults were reactivated as normal
faults (Roca, 2001; Gaspar-Escribano ez al., 2004; Marin et al., 2021; Baqués ¢z al., 2012). The region was
divided into a series of tilted fault blocks, forming the system of horsts and half-grabens bounded by
crustal-scale SE- to SSE-dipping extensional faults with kilometric displacements (Roca and Guimera,
1992; Bartrina ef al., 1992) that characterizes the current configuration of the CCR (Figure 1.19B). In
the central CCR, the Vall¢s-Penedes and El Camp faults were active during this phase, controlling the
development of the El Camp and the Valles-Penedés basins respectively, which, at specific locations,
accumulated over 4 km of latest Oligocene to Recent sediments (Roca, 1994; Gaspar-Escribano ef al.,
2004). This period induced the isostatic uplift of the major footwall blocks of up to 1.2 km (Juez-Larré,
2003; Gaspar-Escribano ez al., 2004).
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Figure 1.19. Present-day structural maps of the CCR showing the main onshore structures active during the two
Cenozoic tectonic phases that affected the area. A) Main structures active during Paleogene compression. 1: Pla
de Barcelona Thrust; 2: Valles-Penedés Thrust; 3: Miramar-Gaia Thrust; 4: Gandesa-Ulldemolins Thrust; 5:
Portalrubio-Vandellos-Tarragona Thrust. B) Main structures active during latest Oligocene to Miocene extension.
A: Pla de Barcelona Fault; B: Valles-Penedes Fault; C: El Camp Fault; D: Baix Ebre Fault. VPB: Valles-Penedés
Basin; ECB: El Camp Basin; GMH: Gaia-Montmell High; PH: Prades High; GMtH: Garraf-Montnegre High
(modified from Roca ez al., 2004).

1.4.1.4. Location of the study area within the tectonic context

In this complex structural setting, the study area is located in the central part of the CCR in the Gaia-
Montmell High, which is the transfer zone developed between two major Neogene extensional faults:
the Valles-Penedés Fault and El Camp Fault (Figure 1.20). These two major faults have a right-stepped
en-echelon arrangement and are bounded towards the southeast by the Baix Penedes and El Camp
basins respectively. The Valles-Penedes Fault, which extends for more than 100 km towards the
northeast, experienced a Neogene extensional displacement of up to 4 km, though it previously acted
as a Paleogene NW-directed thrust with a transpressive component (Fontboté, 1954; Roca ¢f al., 1999)
(Figure 1.19A). The Montmell Fault (Figure 1.20) is considered as the southwestern continuation of
the Vallés-Penedes Fault, the assemblage of which comprises the Montmell- Valleés Fault System (Marin

et al., 2023, paper included in chapter 2 of this dissertation).
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Figure 1.20. Geological map of the Gaia-Montmell High, the transfer zone of the two major Neogene extensional
faults: the Valles-Penedes and El Camp Neogene faults. The two main domains characterizing the Gaia-Montmell
High are indicated: the Miramar-Gaia and the Montmell domains. Label "M" and the thick dashed line indicates
the approximate location of the Mesozoic type-succession (Salas, 1987). The red square indicates the area between
Vallespinosa and Cabra del Camp in the Ebro Basin margin, the tectonostratigraphy of which was studied in

detail in this thesis.

The Montmell Fault separates the Gaia-Montmell High into two domains: the Miramar-Gaia and the
Montmell domains, which are basically distinguished by their different Mesozoic stratigraphic record
since the Montmell Fault limits to the northwest a thicker Mesozoic succession that includes Jurassic
and Cretaceous rocks. This fact led to interpret this fault as the northwest boundary of the Late Jurassic-

Early Cretaceous Garraf-Montmell Basin (Salas, 1987).

The northwestmost part of the study area belongs to the central southeastern margin of the Ebro Basin,
between Cabra del Camp and Vallespinosa towns (Figure 1.20). Previous studies suggested the presence
of a progressive unconformity at this location, indicating that the growth and uplift of the Paleogene
frontal contractional structure of the CCR in this area (e, Carme-Cabra Anticline) was
contemporaneous with the deposition of conglomeratic units during the middle Eocene (Benzaquen e#
al., 1972a; Anadon et al., 1985 and 19806), fact that is refined and clarified in this dissertation. However,
the ages of the contractional structures located towards the hinterland of the CCR and responsible for
the contractional deformation of the Miramar-Gaia and Montmell domains remained uncertain due to

the lack of preserved syn-kinematic strata in the footwall of the Montmell Fault.
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1.4.2 Overview on the stratigraphy

The Catalan Coastal Ranges (CCR) and the southeastern margin of the Ebro Basin present a diverse
stratigraphic record developed from the Paleozoic to the Quaternary times. Four main
tectonostratigraphic assemblages, which reflect the tectonic evolution of the region, have been
differentiated: 1) the basement that resulted from the Variscan/Hercynian orogenic, metamorphic and
magmatic processes affecting the region; 2) a late Paleozoic (Permian) - Mesozoic sedimentary record
overlying this basement that was deposited during an extensional period resulting in the generation of
rift basins across the Iberian Peninsula; 3) a Paleogene sedimentary succession filling the Ebro Foreland
Basin as it evolved in response to the Alpine-Pyrenean Orogeny that gave rise to the CIC; and 4)
Miocene to Quaternary sedimentary successions infilling series of extensional basins developed during
the Neogene structuration of the CCR (e.g., El Camp, Valles-Penedes and Baix Penedes basins). All

the listed stratigraphic assemblages are illustrated in the chronostratigraphic chart of Figure 1.21.
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Figure 1.21. Chronostratigraphic chart of the study and the adjoining areas. Main tectonic events are indicated.
Major unconformities are labelled as follows: MU: Messinian Unconformity; MAU: Middle Albian
Unconformity; VU: Variscan Unconformity. Lithostratigraphy has been compiled from Orti (1974), Anadén er
al. (1978), Colombo (1986), Lanaja (1987), Salas (1987), Casas and Permanyer (1991), Calvet and Marzo (1994),
Cabrera and Calvet (1990), Salas e a/. (2001), Mercedes-Martin e al. (2014), Orti ez al. (2017) and Escudero-Mozo
et al. (2017).
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This differentiation in stratigraphic groups or assemblages reflects the dynamic geological history of
the region, characterized by multiple phases of extension and compression. Considering these
complexities and the fact that the better-preserved diverse stratigraphic records occur at different areas,
the stratigraphic descriptions below are assigned to specific structural units, basins, sectors and/or

domains for the clarity of the reader (Figure 1.22).

1.4.2.1. Variscan/Hercynian Basement

Most of the pre-Alpine basement in the CCR encompasses Cambro-Ordovician to early and middle
Carboniferous sequences that were intruded by late Carboniferous to Permian plutonic rocks (Julivert,
1955; Saez and Anadoén, 1989; Serra and Enrique, 1989; Julivert and Duran, 1990; Enrique and Solé,
2004). Permian sediments are reported overlaying an erosional surface developed on these basement
rocks (i.e., Variscan/Hercynian Unconformity, Figure 1.21; Lépez-Gémez et al., 2002; Galan-Abellan
¢t al., 2013). This unconformity affected both the plutonic intrusions as well as the sedimentary and

metamorphic rocks of the basement.
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Figure 1.22. Detail of the central Catalan Coastal Ranges highlighting the structural units, basins, sectors, and
domains present in the study area. From west to east, MR: Miramar Range; ECB: El Camp Basin; GMH: Gaia-
Montmell High; BPB: Baix Penedes Basin; PB: Penedes Basin; VP: Valles Basin; GH: Garraf High; BP:
Barcelona Plain; CMH: Collserola-Montnegre High; MH: Montseny High; BF: Barcelona Fault; BMB:

Barcelona-Maresme Basin; MAZ: Marmellar Accommodation Zone.

In the study area, Paleozoic rocks of the Variscan Basement have been described at the bottom of the
Senant-1 well in the Ebro Basin (Lanaja, 1987), in the adjoining Miramar Range (Julivert, 1955;
Melgarejo, 1987) and Prades High as well as in the Montseny and Collserola-Montnegre Highs in the
northern sectors of the CCR (Julivert and Duran, 1990; Enrique and Solé, 2004) (Figure 1.22). The
Paleozoic succession in the Miramar Range is made up by Cambrian to Carboniferous slates with thin
interbeds of Devonian carbonates (Julivert, 1955; Sdez and Anaddn, 1989; Julivert and Duran, 1990).

Upper Carboniferous to Permian granitoids have been reported in the Prades High (Serra and Enrique,
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1989; Enrique and Solé, 2004). In this work it is assumed that Paleozoic rocks like the ones in the
adjoining Miramar Range (Figure 1.23) also characterize the basement underneath the Gaia-Montmell
High. These Paleozoic rocks are considered as the structural basement unconformably overlaid by the
middle-late Permian and Mesozoic successions. Further details about the potential nature and lithology
of the Variscan Basement in the Gaia-Montmell High are included in the discussion of the

magnetotelluric model interpretation presented in the first research paper included in Chapter 2.
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Figure 1.23. Paleozoic outcrops in the Miramar Range (see Figure 1.22 for its location). A) Highly deformed
Silurian black-grey slates with quatzitic levels showing folds and cleavage/foliations. B) Carboniferous slates and

red sandstones with cleavage/foliations.

1.4.2.2. Late Permian - Mesozoic stratigraphic record

In the CCR, the Permian - Mesozoic stratigraphic record is characterized by significant thickness
variations between the different domains in the area. The Miramar-Gaia Domain and the adjoining
Ebro Basin and Miramar Range are characterized by a thin Mesozoic succession that only includes
Triassic rocks ranging between 200 to 350 m in thickness (Lanaja, 1987; Virgili et al., 2006; Galan-
Abellan ez al., 2013; Mercedes-Martin ez al., 2014). In contrast, to the southeast, the Mesozoic succession
of the Montmell-Garraf Basin exceeds 2 km in thickness (Salas, 1987). This second realm shows a more
complete stratigraphic record that includes some localized Permian successions as well as more
widespread Triassic, Jurassic, and Cretaceous sequences that show noticeable northwest-southeast

lateral thickness variations, which are summarized in the Figure 1.24.
Permian and T'riassic successions

The Alpine cycle regionally starts with a Middle-Late Permian-Early Triassic extensional period that
controlled the deposition of siliciclastic and carbonate units along NE-SW-trending basins (Galan-
Abellan e al., 2013; Mercedes-Martin ef al., 2014; Lopez Goémez ¢t al., 2019; Mercedes-Martin and
Buatois, 2020). The Triassic stratigraphic record is constituted by limestones, dolomites, siliciclastic and

evaporitic rocks, ascribed to the threefold stratigraphical Germanic subdivision that includes the
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Buntsandstein, Muschelkalk and Keuper magnafacies (Virgili, 1958; Calvet and Marzo, 1994; Arnal ez
al., 2002; Galan-Abellan e7 al., 2013; Escudero-Mozo ¢t al., 2017; Orti ef al., 2017; Mercedes-Martin and
Buatois, 2020) (Figure 1.25). This succession is related to the extensional tectonics that gave rise to
several large intraplate Mesozoic rifts systems formed in the eastern Iberian Plate during the opening
of the western Neotethys (Salas ¢# a/., 2001; Garcia-Senz and Salas, 2011). Subsidence in these grabens
was not coetaneous and caused thickness differences in the sedimentary record (Marzo 1980; Calvet
and Marzo, 1994). Within this regional extensional context, however, in the study area, the Permian
succession is only observed in the Garraf High realm. Additionally, Triassic strata does not show major
lateral thickness variations between the Senant-1 well northwest in the Ebro High and the successions

preserved in the Gaia, Montmell and Garraf domains in the southeast (Figure 1.24A).

@ NW . . Late Jurassic- S E
Senant 1 well Miramar-Gaia  eay creiaceos — Montmell Garraf
(Ebro Basin) Domain Hesinmanln Domain High
Base Tertiary Ebro High i Montmell-Garraf Basin B
Unconformity 0

- 1000

Montmell-Vallés
Fault System )

Permian?

Baix-Penedés (2) -
Active extensional fault Fault - (m)

E Limestones

| Dolostones

S| Breccias - Cretaceous
Claystones & evaporites - Jurassic

Sandstones - Triassic

Conglomerates - Permian

Figure 1.24. A) Permian-Mesozoic thicknesses across the Ebro Basin and the central Catalan Coastal Ranges.
Upper reference datum corresponds to the base of the Tertiary. Mesozoic thicknesses are based on Salas (1987),
Lanaja (1987) and ICGC (2005); Permian is based on Marzo (1980), Marzo and Calvet (1985), Lopez-Gomez
(2002) and Lopez-Gomez e al. 2019). Horizontally not-to-scale. B) Tectonostratigraphic map of the central
Catalan Coastal Ranges at the end of the late Jurassic - eatly Cretaceous extensional phase. St-1: Senant-1 well;

StS-1: Sant Sadurni-1 well.

The Escitian-lowermost Anisian (Buntsandstein magnafacies) succession is basically constituted by
continental clastics grading from base to top from conglomerates to red sandstones and lutites. The
Anisian-Ladinian (Muschelkalk magnafacies) succession is subdivided in the region in three main
assemblages: a lower succession of marine carbonates (Mul), a middle succession mainly constituted

by red beds and evaporites (Mu2) and a third and upper one also constituted by marine carbonate
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deposits (Mu3). This succession is overlaid by the Carnian-Norian (Keuper magnafacies) succession
consisting of tidal-flat and sabkha fine detrital and evaporite deposits (Marzo, 1981; Virgili ez al., 1983;
Mercedes-Martin ef al, 2013) (Figure 1.21). In the area of study, these stratigraphic units are well

exposed in the Miramar-Gaia Domain (Figures 1.20 and 1.25). The Ttiassic succession ends with a 70

m thick uppermost unit of Triassic dolomites.

Figure 1.25. Triassic outcrops in the Gaia-Montmell High. Sy indicates bedding orientation A) Quartz clast-rich
conglomerates and red lutites Lower Buntsandstein facies; B) Quartz clast-rich Lower Buntsandstein
conglomerate facies; C) Fine laminated Lower Muschelkalk (Mul) marine carbonate facies; D) Deformed (see
folds in the upper left corner of the image) Middle Muschelkalk (Mu2) red-beds and evaporitic facies; E) Foliated

and faulted Upper Muschelkalk (Mu3) marine carbonate facies; F) Keuper fine detrital and evaporite facies.
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Jurassic-Cretaceous successions

The Jurassic-Cretaceous successions only occur in the Montmell-Garraf Basin area, which includes the
Montmell Domain, the southwestern end of the Valles-Penedes Basin, the Garraf High and some
adjacent offshore areas (Figure 1.22). From bottom to top, the sequence consists of a 300 m thick unit
of Lower-Middle Jurassic dolomitic breccias followed by a 1200 m thick succession of shallow marine
limestones, dolomites, and shales of Late Jurassic (Oxfordian) - Eatly Cretaceous age (Salas, 1987; Salas
and Casas, 1993; Salas ez al., 2001; Albrich ez al., 2006). In terms of subsidence and sedimentation rates,
the first hints of extensional activity did not start until the Late Jurassic. Subsequently, Upper Oxfordian

to Lower Valanginian thick carbonate-dominated successions were deposited in the Montmell-Garraf

Basin (Figure 1.20).
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Figure 1.26. Chrono-lithostratigraphic diagram showing the Upper Jurassic-Lower Cetaceous succession

recognized in the Montmell-Garraf Basin (compiled from Salas e a/. 2001, Moreno-Bedmar ez al., 2017 and

Martin-Closas e# al., 2021).
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In the study area, the Valanginian shows a constant thickness, which may indicate that this unit was
deposited over a planar extensional ramp (McClay, 1995; Withjack and Schlische, 2006; Ferrer ef al.,
2016). This fault corresponds to the breakaway fault of the extensional system, limit that has been
related to the Montmell-Vallés Fault System (Martin ¢ 4/, 2021). Middle/Late Valanginian to
Hauterivian strata are absent in the Montmell-Garraf Basin therefore, Barremian sediments
paraconformably overlay the preserved Lower Valanginian record (Figure 1.26). This transgressive
Neocomian hiatus is regionally recognized and has been interpreted either as a phase of low subsidence
and relative tectonic quiescence (Anadon e al., 1979; Salas ez al., 2001), or as related to a post-Late
Jurassic-early Valanginian lower thermal subsidence stage. From Barremian on, subsidence rates
increased in the Montmell-Garraf Basin up to the Early Albian. During this period, shallow marine
carbonates were deposited with significant thickness variations in the Montmell Domain. The absence
of Jurassic to Cretaceous sediments in the Miramar-Gaia Domain indicates a hiatus scenario controlled
by the presence of a paleo-structural high to the NW of the Montmell Fault (Ebro High, Figure 1.24)
(Salas ez al., 2020).

Jurassic and Cretaceous rocks are thoroughly connected to the rifting processes that characterized the
evolution of the Iberian Rift System during this time span, leading to the development of numerous
extensional sub-basins (Anadon ef al., 1979; Salas, 1987). Accordingly, the Upper Albian to Cenomanian
succession of fluvial and shallow marine carbonates and clastics, which corresponds to the youngest
Mesozoic record preserved in the Montmell Domain and the Garraf High (Esteban, 1973; Salas, 1987,
Salas ez al, 2001), would represent the transition to post-rift conditions setting the stage for later

Paleogene compressional tectonics and foreland basin development.
1.4.2.3. Paleogene stratigraphic record

The Paleogene stratigraphy reflects the change of the tectonic situation from the Mesozoic rift basin
sedimentation into the development of the basin fill of the Ebro Foreland Basin. In the study area, the
preserved Paleogene successions are restricted to the Miramar-Gaia Domain and the southeast margin
of the Ebro Basin. In the Miramar-Gaia Domain, the thin Mesozoic cover is unconformably overlain
by Paleocene (Thanetian) to Lower Eocene (Ypresian) continental and marine sediments (Ferrer, 1971;
Anadoén, 1978; Colombo, 1986), whereas a more complete succession including up to Lower Oligocene
deposits occurs at the southeast margin of the Ebro Basin. As previously indicated, Paleogene rocks

were either not deposited or not preserved in the Montmell Domain (Figures 1.20 and 1.21).

In the study area, Paleogene sediments represent the pre and the syn-tectonic fill of the Ebro Foreland
Basin, and they vary from marine to continental facies. In the northwestern part of the Ebro Basin, this
succession reaches a thickness of up to 1.5 km, although it tends to thin toward the CCR margin
(Barbera ez al., 2001). From the Paleocene to the upper Eocene, the Ebro Basin was connected to the

Atlantic, allowing for marine sedimentation, particularly in the basin’s central and northern regions
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(Serra Kiel ez al., 2003; Garcés ef al., 2020). However, by the late Eocene (late Priabonian), marine
connections were severely restricted, and the basin became endorheic leading finally to the exclusive
deposition of alluvial-fan and fluvial-fan deposits as well as lacustrine carbonates and evaporites
(Reguant, 1967; Pueyo, 1975; Colombo, 1980; Benzaquen e7 al., 1972a; Cabrera and Colombo, 1986;
Anadon et al., 1987; Anadén ef al., 1989; Colldeforns ¢z al., 1994Db).

Colldeforns ez al. (1994a and b) split the Paleogene record in the study area into four lithostratigraphic
assemblages: 1) a basal assemblage encompassing the Mediona and the Orpi formations; 2) the Pontils-
Cornudella Group; 3) the Santa Maria Group; and 4) the Barbera-Anoia Group, the basal part of which
is a lateral equivalent of the Santa Maria Group towards the northeast. A schematic summary of these
four assemblages is illustrated by the chrono-lithostratigraphic chart of Figure 1.27. Images of the
Paleogene lithologies present in the central southeastern margin of the Ebro Basin in the Vallespinosa

Cabra del Camp sectors are shown in Figure 1.28.

Cabra del Camp Vallespinosa
SW Sector Sector NE

Priabonian

Bartonian

Eocene

) Bosc d'en Borras Fm.
Lutetian

Cuisian Santa Candia Fm.

llerdian
1
Paleocene

Ypresian

Figure 1.27. Not-to-scale schematic chrono-lithostratigraphic panel for the Paleocene-Eocene units outcropping
between Vallespinosa and Cabra del Camp towns (see Figure 1.20 for location). Numbers in the panel indicate
the four major lithostratigraphic assemblages defined in the area by Colldeforns ez a/. (1994a and b): 1) basal
continental unit (Mediona Fm.) and a lower marine unit (Orpi Fm.); 2) Pontils-Cornudella Group; 3) Santa Maria

Group, and 4) Barbera-Anoia Group.

The lowermost assemblage (label 1 in Figure 1.27) is present in the Miramar-Gaia Domain and the
northwestern limb of the Carme-Cabra Anticline (Figure 1.20). It starts with the Thanethian Mediona
Fm. (Anadén, 1978 a and b), a discontinuous continental unit constituted by alluvial mudstones
affected by intense pedogenic processes. This unit paraconformably overlays the Triassic cover and is
in turn overlaid by the marine lower Ypresian (llerdian) Orpi Fm. (Figure 1.28A), which is mainly made
up by often-dolomitized Alveolina limestones deposited in shallow carbonate platform environments

(Ferrer, 1971; Anadén, 1978 a and b; Anadon ez al., 1979).
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Figure 1.28. Paleogene outcrops of the central southeastern margin of the Ebro Basin in the Cabra-Vallespinosa

area. A) Mediona and Orpi formations (non-marine and marine carbonatic basal succession) on top of Upper
Triassic Keuper; B) Mediona Fm., continental unit constituted by alluvial mudstones affected by intense
pedogenic processes; C) Lacustrine limestones alternating with versicoloured mudstones of the Santa Candia
Fm.; D) Red mudstones with minor sandstone and carbonate bed intercalations of the Carme Fm.; E) Sulphate
evaporites and lacustrine carbonates of the Valldeperes Fm.; F) Lacustrine and palustrine limestones with
interbedded marls and cherts bearing beds of the Bosc d'en Borras Fm.; G) Shallow marine fine-grained
sandstones of the Vallespinosa Fm.; H) Red beds of the Montblanc Fm.; I) Cabra del Camp Mb. verticalized bed
(Montblanc Fm.); J) Inverted beds of the Cabra del Camp Mb. (Montblanc Fm.); K) Sant Miquel del Montclar

massive conglomerates with centimetric to decimetric carbonate clasts.

The Pontils-Cornudella Group (label 2 in Figure 1.27) (Anadén, 1978 a and b; Anadén e al., 1979,
1983, 1992; Colombo, 1980, 1986, Colldeforns ef al., 1994b) encompasses upper Ypresian to Lutetian
in age non-marine alluvial and lacustrine sediments. The lowermost part of this assemblage is also

present in the Miramar-Gaia Domain. From bottom to top, four stratigraphic formations have been
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distinguished in this group (Anadén, 1978): Santa Candia F'm. (lacustrine limestones alternating with
versicoloured mudstones) (Figure 1.28C); Carme Fm. (mud flat plain red mudstones with minor
sandstone and carbonate bed intercalations) (Figure 1.28D); Valldeperes Fm. (sulphate evaporites and
lacustrine catbonates) (Figure 1.28E); and finally the Bosc d'en Borras Fm. (lacustrine and palustrine
limestones with interbedded marls and cherts bearing beds, which grade towards the southwest to distal

alluvial mudstones) (Figure 1.28F).

The overlying Bartonian and Priabonian sequences of the Santa Maria and Barbera-Anoia groups
(labels 3 and 4 respectively in Figure 1.27) are preserved in the northwest limb of the Carme-Cabra
Anticline (Figure 1.20). In the study area, the Santa Maria Group embraces a variety of shallow marine
and transitional facies (i.e., deltaic, fan-deltaic conglomerates, sandstones, coral-bearing limestones, and
matlstones with bioclastic sandstone intercalations integrated in the Vallespinosa Fm. (Figure 1.28G)

(Ferrer, 1971; Anadén and Marzo, 1986; Colldeforns ef al., 1994a; Serra Kiel 7 al., 2003).

On the other hand, the Barbera-Anoia Group (Colombo, 1980, 1986, Colldeforns, 1994a) comprises
the Bartonian to Early Oligocene alluvial and lacustrine deposits that crop out in the area. It includes
up to six different formations: Montblanc, Sant Miquel, Sarral, Rocafort, Rauric and Santa Coloma
(Colombo, 1980, 1986; Colldeforns ef al, 1994a and b) (Figure 1.27). The Montblanc Fm. (Figure
1.28H) is made up of distal alluvial red beds that interfinger with the marine sandstones of the
Vallespinosa Fm. in its lower part. To the southwest instead, discontinuous alluvial conglomerate
intercalations of the Cabra del Camp Mb. (Colldeforns 1994a) (Figure 1.281 and ) occur showing a
maximum thickness of around 200 m in the Cabra del Camp area (Figure 1.20). The Sant Miquel Fm.
(Colombo, 1980, 1986) corresponds to a thick succession of proximal alluvial fan conglomerates
(Figure 1.28K) that unconformably overlay the marine sediments of the Santa Maria Group (Priabonian
Riu de Boix Fm.) (Anadén e al., 1986; Colldeforns ef al., 1994a). Towards the north and northeast,
these conglomerates laterally change to late Priabonian to eatly Oligocene successions. These ones
include the lacustrine gypsums, carbonates, and marls of the Sarral and Rocafort formations, the fluvial
and lacustrine shales, matls, and lenticular conglomerates of the Rauric Fm. and the lacustrine marl and
gypsum beds of the Santa Coloma Fm. (Benzaquen ¢# a/., 1972a; Colombo, 1980, 1986, Colldeforns ef
al., 1994a and b).

The ages of these marine and non-marine lithostratigraphic successions were initially established and
subsequently refined by vatious authors through the analysis of biostratigraphic assemblages and
biozones (Ferrer, 1971; Anadon, 1978 a and b; Anadén and Feist, 1981; Anadén ez al., 1983, 1987, 1992;
Agusti et al., 1987, Feist e al., 1994; Serra-Kiel ez al., 2003; Sanjuan ez al., 2014; Tosal ¢t al., 2019; Minwer-
Barakat ez al., 2023). Moreover, magnetostratigraphic studies conducted in nearby areas have provided

additional constraints, significantly enhancing the precision of these biostratigraphic age determinations
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(Barbera 1999; Barbera, 1999, Batbera e al., 2001; Beamud e# al., 2012; Costa ¢t al., 2010 and 2013;
Gomez-Paccard ¢t al., 2011; Garcés et al., 2020; Marin ef al., 2025).

1.4.2.4. Neogene succession

The Neogene stratigraphic record in the CCR is closely linked to the extensional tectonics that followed
the compressive phase of the Alpine orogeny and affected the region from latest Oligocene to Miocene.
During this tectonic phase half-graben basins, tilted blocks and structural culminations developed due
to the extensional reactivation of the inherited compressive Paleogene faults. Significant sediment
accumulation took place in the onshore half-grabens and in the neighbouring offshore continental
margin zones particularly during the Miocene and Pliocene (Bartrina ez a/., 1992; Roca and Guimera,

1992; Cabrera and Calvet, 1990).

The lower deposits of the Neogene succession, Miocene in age (Aquitanian (?) to late Burdigalian), are
dominated by thick alluvial-fan red bed deposits and thin lacustrine successions associated with
extensional faulting. These deposits are extensive across the Vallés-Penedés and Baix Penedes basins
and reach considerable thicknesses (Cabrera, 1979 and 1981; Agust{ ¢z al., 1987; Cabrera and Calvet,
1996). By the late Burdigalian-early Langhian the region experienced several marine transgressive-
regressive pulses that lead to the development of a variety of transitional marine to open marine
depositional environments, with the deposition of coastal sabkha, carbonate coralgal platform, and
siliciclastic fan-delta and bay sequences. This fact reflects the interplay between marine and continental
conditions and are well-recorded in the Langhian sequences (Cabrera and Calvet, 1996). From the
Serravallian to the Tortonian, the region was still affected by some transgressive-regressive pulses that
finally resulted in the retreat of the marine and transitional environments and the larger spreading of

the alluvial-fan and fluvial sedimentation during Tortonian times (Cabrera ez al., 2004).

In the study area, growth strata geometries in Middle-Upper Miocene sediments were reported in the
Marmellar area, located in the hangingwall of the Valles-Penedes Fault (Baqués ¢z af, 2012), indicating
the extensional reactivation of this fault during the Neogene. Lastly, a very significant Messinian
erosional surface marks the upper boundary of the Miocene sediments. This erosional surface, formed
during the Messinian Salinity Crisis, deeply incised in the Miocene successions as well as in the older
rocks of the Paleozoic basement and the Mesozoic and Paleogene cover (Almera, 1894; Gallart, 1981;

Cortregidor ef al. 1997).

Pliocene alluvial-fan, fluvial, transitional marine, and open marine sediments were deposited overlying
the above-mentioned unconformity in the onshore incised valleys that formed because of the Messinian
marine level drop (Almera, 1894; Gallart, 1981; Martinell, 1988; Roca ez al, 1999). These deposits would
record the final phase of Neogene extension when it was not regionally widespread and it was more

localized next to some faults. Alluvial-fan and fluvial Quaternary deposits were deposited mainly as
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down-stepped, terraced units whose deposition was largely influenced by the glaciocustatic processes

(Gallart, 1981).

1.4.3. Final remarks

The geology of the Catalan Coastal Ranges (CCR) reflects the complex tectonics—sedimentation
interactions developed during its Paleozoic to Recent evolution, a fact well recorded in the stratigraphic

record.

The tectonic history has been characterized by three major phases since the late Paleozoic:

e Middle-Late Permian to Mesozoic extensional phase.
e Paleogene contractional phase.

e latest Oligocene to Miocene extensional phase.

This tectonic evolution has significantly influenced the present-day configuration and the deformation

of the stratigraphic record in the region.

The Mesozoic rift-related sedimentation, consisting mainly of Triassic to Cretaceous deposits, led to
the development of multiple basins and sub-basins, with notable lateral variations in areal extent and
thickness of the stratigraphic record. This period was followed by a Paleogene compressional phase,
which inverted pre-existing rift structures, contributing to the development of the Catalan Intraplate
Chain fold-and-thrust belt. Some structures of this period are still preserved in outcrops of the present
extensional structural highs in the central CCR. The final tectonic phase during the Neogene reactivated
the Paleogene faults as extensional features, resulting in the formation of the modern-day half-grabens
(e.g., Valles-Penedes and El Camp basins) and the extensional culminations in the area (Garraf,
Montmell). This final widespread extensional stage concealed the previous tectonic events and makes

difficult their reconstruction.
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1.5. Problem approach and methodologies

1.5.1. Problem approach

This methodology section explains the different techniques that have been employed to investigate the
stratigraphic and structural characteristics of the study area. As stated in the Motivation Section (Section
1.1), the performed research aims to answer a set of key questions related to the tectonic evolution,
deformation history, and stratigraphic record in the central Catalan Coastal Ranges. The methodology
applied in this thesis has been planned as a fit-for-purpose approach to achieve this objective.
Accordingly, the research tasks have been split in three different phases, each one answering the partial

objectives and covered in each of the publications included in this dissertation (Figure 1.29).

Constraints on the timing of Paleogene deformation, uplift,
denudation and sedimentation in the Ebro Basin.
Paleogene compression refinement.

Along-strike variations of the fault zones during
fault reactivation since the Mesozoic

<

<

S
>

Structural characterization of the
Paleogene deformation of the
central Catalan Coastal Ranges

Along-strike variations of the
fault zones during the Paleogene
compressiona stage

Figure 1.29. Flow diagram showing the three phases that covers the performed research.

The methodology involves a combination of multidisciplinar techniques such as field-based geological
mapping, the acquisition, processing, and interpretation of magnetotelluric data, the construction of
balanced structural sections and their restoration, magnetostratigraphy along key stratigraphic
successions as well as tectono-stratigraphic analysis, and provenance analysis in syn-tectonic strata. The
integration of the results of each of these techniques provides insights on the deformation history of
the study area, the possibility to constrain the ages of individual tectonic and sedimentary processes
and their interactions, and the identification of the source areas controlling the alluvial depositional
systems preserved in the studied segment of the southeastern margin of the Ebro Basin. The following
section provides a brief description of each of the methodologies and techniques applied in the

research.
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1.5.2. Methodology and applied techniques

1.5.2.1. Fieldwork

The fieldwork activities conducted in this research encompass several activities such as geological
mapping, the collection of structural and stratigraphic data, gathering samples for magnetostratigraphic
analysis, and the acquisition of magnetotelluric data. Due to their specific nature, the

magnetostratigraphic and magnetotelluric techniques are discussed in detail in separate sections below.

The fieldwork campaigns that have fed the research presented in this dissertation were mainly
performed from 2006 to 2010, with some minor complementary activities between 2017 and 2019.
These activities principally focussed on the recognition and characterization of the stratigraphic units
for the construction of structural cross-sections across the Gaia-Montmell High and the neighbouring
areas paying special attention to the central southeastern margin of the Ebro Basin at the Cabra del

Camp (Figure 1.30).
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Figure 1.30. Simplified geological map of the central Catalan Coastal Ranges indicating the areas where the

stratigraphic recognition and characterization of specific stratigraphic successions and the gathering of structural
data have been performed: 1) Triassic successions in Querol in the centre of the Miramar-Gaia Domain (1') and
the Miramar Range (1"); 2) Lower Cretaceous successions in Coll de Santa Cristina - La Rubiola at the Montmell
Domain; 3) Upper Jurassic-Lower Cretaceous (Early Valanginian) successions; 4) Upper Jurassic-Lower
Cretaceous successions nearby la Juncosa del Montmell town; 5) Paleogene units preserved both in the

southeastern margin of the Ebro Basin between Vallespinosa and Cabra del Camp.

The recognition of the Paleozoic to Cenozoic stratigraphic sequences present in the study area involved
the identification of the best outcrops in which the successions are well preserved. The characterization
of the Triassic units (i.e., Buntsandstein, Muschelkalk and Keuper magnatacies) was performed in two
areas, the surroundings of Querol in the centre of the Miramar-Gaia Domain and in Miramar Range

(label 1, Figure 1.30). The stratigraphic succession cropping out in the Coll de Santa Cristina - La
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Rubiola at the Montmell Domain (label 2, Figure 1.30) was used to characterize the Lower Cretaceous
units, which were previously defined by Salas (1987). However, the poor preservation of these outcrops
did not allow a complete identification, fact overcome by the more complete Upper Jurassic-Lower
Cretaceous (Early Valanginian) succession located in the La Pleta succession - Penya Ginesta in the
Garraf High (label 3, Figure 1.30). These stratigraphic successions were later compared and completed
with the one of same age cropping out nearby la Juncosa del Montmell town in the Montmell Domain
(label 4, Figure 1.30). Moreover, the Paleogene units were studied in two different areas: the incomplete
preserved (i.e., highly eroded) sequences in the Miramar-Gaia Domain, and the roughly complete series
outcropping in the southeastern margin of the Ebro Basin between Vallespinosa and Cabra del Camp

(label 5, Figure 1.30).

Geological mapping was systemically conducted during the stratigraphic recognition and its
characterization thru positioning the cartographic limits of stratigraphic units, faults and, when present,
unconformities. Moreover, gathering of approximately 1500 structural measurements (e.g., dip and dip
direction of beds, faults, and kinematic indicators) mainly allocated along the Gaia-Montmell High, the
Baix Penedes Basin and the southeastern margin of the Ebro Basin (Figure 1.30), paleocurrent
directions, landscape observations and correlations, and gathering rock samples for their later
recognition using thin sections were also performed. All field observations and their spatial
relationships were later processed, analysed, and interpreted at outcrop and regional scale for their

integration.

In terms of specific material and gear, fieldwork included the use of geological tools such as hammer,
compass, and hand magnifier, a GPS device, mapping boards to support topographic maps and
orthophotograph, as well as digital elevation models (DEM). Cartographic base maps included 1:5.000
and 1:10.000 topographic maps and orthophotographs covering both the Gaia-Montmell High and the
central southeaster margin of the Ebro Basin. These were provided by the Institut Cartografic i
Geologic de Catalunya and were used for an accurate location of the mapping features. Moreover, in
the last fieldwork period, which involved mapping refinements and enhancements performed between
years 2017 and 2019, digital geological applications such as Field Move® and Clino® (Emerson, 2024)
were used to complete the databases. Detailed field notes, sketches, and photographs were

systematically done to create an accurate archive.
1.5.2.2. Magnetotelluric data

The magnetotelluric method (MT) has been used to determine the electrical properties of the upper
crust across the Gaia-Montmell High (Figure 1.31) and to attempt to constrain the deep structure when
possible. MT is an electromagnetic geophysical method based on the simultaneous measurement of
naturally occurring electric and magnetic field variations on Earth's surface (Chave and Jones, 2012).

The relationship between electric and magnetic fields at different periods is therefore used to define
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the impedance tensor, whose components provide information about the electrical resistivity

distribution at depth (Simpson and Bahrt, 2005).

This technique is highly sensitive to conductive bodies that, in turn, may be associated with the presence
of specific minerals, partial melts, or fluids at depth. Considering the marked lithological differences
between the stratigraphic sequences across the Gaia-Montmell Section, the main goals of the MT
survey, modelling and interpretation in this study have been: 1) to identity the geometry of boundaries
between the primary stratigraphic and structural units, and 2) to detect basement conductivity
anomalies that could indicate the presence of damage zones and fluid circulation, because of the

region’s complex tectonic evolution.

In the present research, the MT has been used to both constrain and validate the structure of the Gaia-
Montmell High. Nineteen MT soundings with recording times ranging from 8 to 12 hours were
acquired along the Gaia-Montmell High (Figure 1.31). Data acquisition and time series processing were
performed in collaboration with the Electromagnetic and Seismic Exploration Group of the University
of Barcelona. Time series processing used the Egbert and Booker (1986) method and applied remote
reference when possible. Apparent resistivity and phase resulting curves cover periods from 0.001 to 1
seconds. A dimensionality analysis was later performed using the WALDIM code (Marti ¢z al., 20092)
that is based on the invariant rotation parameters of the impedance tensor. Once the analysis of the
MT model was performed, the observed resistivity values of the basement were compared to two
additional parametric MT soundings acquired 30 km southwest of the study area in the Prades High
on top of Paleozoic rocks. These two MT soundings enhanced the understanding and helped on the
analysis of the geoelectric behaviour of the basement in the study area. Their results were later
compared to other studies performed in other locations in the northeastern Iberian Peninsula (e.g.,

Mufioz ¢t al., 2008; Ledo e# al., 1998; Campanya ¢f al., 2018; Marti et al., 2009b).

The results of the analysis and interpretations of the MT data and models carried out by the
Electromagnetic and Seismic Exploration Group of the University of Barcelona are presented as part

of the results of the first publication included the Chapter 2 of this dissertation.
1.5.2.3. Geological cross-section construction and structural restoration

The present research includes the construction of three structural cross-sections at key locations of the
study area in order to cover specific objectives of the research: the Gaia-Montmell Section, the
Marmellar Section, and the Cabra Section (Figure 1.31). These sections have been constructed based
on the data collected in the field during the geological mapping (e.g., cartographic traces, bedding and
fault attitudes), as well as the analysis of available geological maps and observed thicknesses of the

sedimentary units. When the stratigraphic units do not crop out in the studied area, thicknesses have
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been estimated from the regional reviews from literature as well as the information of the Senant-1,

Sant Sadurni-1, and Martorell-1 wells (Lanaja, 1987) (Figure 1.32).
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Figure 1.31. Geological map of the Gaia-Montmell High and surrounding areas (modified from ICC, 2017). The
map includes the location of the constructed sections: A) Gaia-Montmell Section; B) Marmellar Section and C)

Cabra Section. The map also shows the acquired parametric MT soundings along the Gaia-Montmell Section.

The Gaia-Montmell Section is approximately 40 km long and, from NW to SE, runs from the
undeformed Ebro Basin to the Baix Penedes Basin across the Gaia-Montmell High (section A in Figure
1.3.2). It has been constructed using well and field data being later constrained by a 2D MT model. The
Marmellar sections is approximately 7 km long and covers the relay area between the southern end of
the Valles-Penedes Fault at the NE edge of the Montmell Domain. The Cabra Section instead crosses
the SE margin of the Ebro Basin and the NW frontal structure of the Cabra-Carme Anticline
(hereinafter CCR) at the locality of Cabra del Camp. The orientation of the three sections is
approximately orthogonal to the predominant NE-SW trend of the Alpine structures of the CCR. In
the specific case of the Gaia-Montmell Section, the geometry of the Baix Penedes Basin has been also
constrained by the gravimetric studies performed by Hernandez and Casas (1985) and Casas and
Permanyer (1991). The construction of the structural sections assumes in cases projection of dip data.
This exercise has been performed defining cylindrical domains and using the kink-band method in the

2DMove software (Emerson, 2024).
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Figure 1.32. Senant-1, Sant Sadurni-1 and Martorell-1 boreholes (St-1, SS-1 and Ma-1 respectively in the map)

used during the construction of the structural sections and tectonostratigraphic maps (modified from Lanaja,
1987). From west to east, PH: Prades High; MR: Miramar Range; ECB: El Camp Basin; ECF: El Camp Fault;
GMH: Gaia-Montmell High; VPB: Valles-Penedés Basin; VPF: Valles-Penedes Fault;, GMtH: Garraf-
Montnegre High; BF: Barcelona Fault; BB: Barcelona Basin. In the stratigraphic columns, PZ: Paleozoic

Palinspastic sequential restorations of the Gaia-Montmell Section have been carried out to validate the
structural interpretation from both geometric and kinematic perspectives. These restorations consider
the contribution of inherited faults and syn-tectonic sedimentation and include the integration of the
results from the magnetostratigraphic study as well as regional tectonic constraints. The reconstructions

illustrate the tectonic evolution of the area and estimate the amount and direction of the deformation.

The structural restoration was performed using a geomechanical approach performed using Dynel2D®

from SLB. During the restorations, the line-length unfold method (Dahlstrom, 1969), which straightens
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the beds while maintaining constant the line length, was considered. Because the sections were
constructed using the kink method, layer thicknesses remained constant during the unfolding process.
This process allows calculating shortening and stretching value for each of the restored paleo-steps as

well as fault slip and accumulated stresses.

During the different steps and phases indicated in the research approach, an initial structural restoration
of the Gaia-Montmell Section including three tectonic stages from the Mesozoic to the present-day is
presented in the results of Chapter 2.1. Additionally, the work presented in Chapter 2.3 allowed the
refinement of the structural restoration with two additional time-steps during the compressional stage

affecting the area during the Paleogene in the central Catalan Coastal Ranges.
1.5.2.4. Magnetostratigraphy

Magnetostratigraphic studies are divided into two different phases: the rock sampling and analytical
laboratory procedure. The analysis aims for an accurate refinement of the age of the Paleogene
succession in the central southeastern margin of the Ebro Basin to constrain the timing of the
synorogenic sedimentation. The sampling was carried out north and northwest of Vallespinosa where
a relatively continuous northwest-dipping Paleogene succession (Pontils, Santa Maria and Barbera-
Anoia groups) exists. The sampled section consists of 238 measurement sites along ~1,430m of
sedimentary record, which yields an average sampling resolution of 6m/sample. Rock sampling focused
on mudstones, limestones, and fine-grained sandstones, considering coarser lithologies are less
proficient for recording the geomagnetic field. Electrical and petrol power drills equipped with
diamond core bits cooled with water were used to obtain 2 samples per station. Samples were in situ
oriented with a magnetic compass coupled with an orienting device with clinometer to have a
coordinate system to refer the paleomagnetic vector obtained in the later laboratory labour, which was
carried out by the specialists from the Paleomagnetic Laboratory of Barcelona (CCiTUB and
GEO3BCN CSIC).

Laboratory treatment consisted in stepwise thermal demagnetization and subsequent measurement of
the Natural Remanent Magnetization (NRM). Samples were heated in an MMTD-80 thermal
demagnetizer (Magnetic Measurements Ltd.) with a residual field less than 10nT. The NRM was
measured in a superconducting rock magnetometer (2G Enterprises). The magnetic noise in the
superconducting rock magnetometer is around 1-10-6A/m, well below the intensity of the samples.
Stepwise thermal demagnetization was performed in 14 to 18 temperature steps, from 100°C up to
520°C in limestones and grey mudstones and up to 680-690°C in red mudstones and fine-grained
sandstones. Magnetic susceptibility was measured after each demagnetization step with a kappabridge
KLY2 (Geofyzika Brno) to monitor the undesired formation of magnetic minerals upon heating, since
it can be detected by a sharp increase in magnetic susceptibility. Stable Characteristic Remanent

Magnetization (ChRM) directions were calculated by means of Principal Component Analysis
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(Kirschvink, 1980) after visual inspection of demagnetization diagrams using the Paldir software

(University of Utrecht).

The analysis of the results was carried out together with the magnetostratigraphy specialists from the
Paleomagnetic Laboratory of Barcelona (CCiTUB and GEO3BCN CSIC), which were compared with
established paleomagnetic reference data to determine the age of the sampled succession and therefore
establish their paleomagnetic polarity and put in context with the structural evolution implications of
the area. The results were later compared and integrated with key fossil sites reported, which provided

a detailed constraint on the age of the sampled rocks.
1.5.2.5. Provenance analysis

Provenance analysis was conducted on key sedimentary units along the margin of the Ebro Basin. This
analysis aims to determine the source materials of the sediments (i.e., source area), provides insights
into past sediment transport processes and directions, and supports the reconstruction of the areal
distribution of lithofacies. Additionally, from a tectonostratigraphic perspective, this analysis links
sediment sources to the geodynamic evolution of the region. The structural and genetic characteristics
of synorogenic strata are closely associated to tectonic and orogenic processes, which include thrusting,
uplift, exhumation, and erosion. Consequently, studying these synorogenic (or syn-tectonic) strata
enables paleo-reconstructions and offers insights into the timing of specific phases of tectonic activity,

sediment transport pathways, paleoenvironments and erosion rates in the orogenic-related regions.

Two different tasks were carried out for the provenance analysis in this research. First, the sampling of
clasts from synorogenic conglomerates and sandstones collected during the different fieldwork
campaigns (Figure 1.33). This sampling was followed by the analysis of the clast fossil content in thin
sections, which was carried out but specialists from the Sedimentary Geology Research Group of the
University of Barcelona. Second, the measurements of paleocurrent indicators (e.g., paleochannels axis,

sedimentary base marks) also carried out during the fieldwork.

Up to fourteen samples were gathered through the Paleogene synorogenic succession along the Ebro
Basin margin between Cabra del Camp and Vallespinosa towns, then followed by their analysis using

thin sections made in the Thin-Section Service of the University of Barcelona.

Thin sections were examined under an optical microscope in the Petrology Laboratory of the
Mineralogy, Petrology, and Applied Geology Department, University of Barcelona, to identify
paleontological content within individual conglomerate clasts and in some cases their associated matrix
and sandstones. High-resolution imaging and the use of both transmitted and polarized light aid in
discerning structural details, enabling taxonomic classification and identification of fossil species.
Considering that certain fossil types are diagnostic of specitfic geologic periods, their identification

provide key information about the ages and environments of the source areas (i.¢., specific lithofacies),
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allowing determining which areas were exhumed and eroded in the past. The comparison of the clast
analysis results with known sedimentary successions of the same age in the Catalan Coastal Ranges
allows tracing clasts back to their source units in the orogenic belt (i.e., parent lithologies). The results
from a provenance analysis must also account for potential sediment reworking processes, including
the cannibalization of older conglomerates. This reworking may occur when previously deposited
sediments are later uplifted and exhumed, subsequently being redeposited as younger strata by
secondary erosion-transport processes. Provenance analysis also integrates paleocurrent indicators (i.e.,
base marks, channels axis) in order to determine the relative location of source areas. Figure 1.33 shows
some examples of sampled clasts from the Cabra de Camp Mb. (Montblanc Fm.) in the Cabra del

Camp town surroundings as well as outcrops where paleocurrent directions were measured.

Figure 1.33. A) Cabra de Camp Mb. (Montblanc Fm.) verticalized conglomerate bar; B) Example of yellowish

centimetric Mesozoic bioclastic clast sampled from the Cabra del Camp Mb.; C) Example of Mesozoic reddish
centimetric bioclastic clast sampled from the Cabra del Camp Mb; D) Paleochannel bottom outcrop in
conglomerates of the Cabra del Camp Mb. used for paleocurrent measurements; E) Ripples at the bed top of

marine-continental transitional facies. Dashed white arrow indicates the paleocurrent direction.
1.5.3. Concluding remarks on the applied techniques

This research has applied a detailed approach and workflow designed to investigate the stratigraphic
and tectonic evolution of the central Catalan Coastal Ranges combining the methodologies previously
described. The multi-disciplinary approach, including field-based geological mapping, structural section
construction and restoration supported by magnetotelluric data clast provenance analysis and

magnetostratigraphic dating, allows together for a comprehensive analysis of the deformation history,
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focussing on the timing of key sedimentary and tectonic processes. This in turn allows the
characterization of the source areas responsible for deposits in the southeastern margin of the Ebro
Basin during the compressional phase that affected the area during the Paleogene. Additionally, the
integrated methodology also offers a multi-scale perspective that connects surface and subsurface

observations, thus illustrating the tectonostratigraphic development of the region.

Provenance analysis is considered a central part of the workflow. It incorporates fossil identification
and paleocurrent measurements to determine source-to-sink mechanisms. This approach links clasts in
synorogenic conglomerates to specific parent lithologies, highlighting how the compressional tectonic
evolution influenced on the sedimentary deposition patterns. By employing this approach, the research

addresses the stated objectives and key research questions outlined in the motivation of this thesis.
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The main objective of the first paper included in this dissertation (Marin ez a/,, 2021) was to explore the
tectonic evolution of the source area(s) of the synorogenic successions preserved in the central
southeastern margin of the Ebro Basin. This source area corresponds to the Gaia-Montmell High
(GMH) and the neighbouring areas in the central CCR. The study focusses on the role of pre-existing
Mesozoic structures during the later Cenozoic evolution of the area. In the present-day configuration
of the CCR, the GMH represents a Neogene structural high that preserves Mesozoic and Paleogene
successions, the stratigraphic and structural records of which are key for the study. The results of the
work illustrate the structural configuration and the evolution of the upper crust across the GMH and
highlights the structural inheritance played by the Mesozoic Montmell Fault throughout the Cenozoic,

including two tectonic inversion phases.
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The control exerted by the Mesozoic basin configuration on the Cenozoic tectonic evolution of the Catalan
Coastal Ranges has been frequently recognized as a key factor to explain its present-day structure. However,
details of this structural inheritance and its evolution through geological time is still under discussion. In this
work we present two structural cross-sections based on fieldwork, well and magnetotelluric data in order to
illustrate the structural styles and tectonic evolution of the Gaia-Montmell High. Here, the Montmell Fault not
only constitutes the SW segment of one of the major Neogene faults in the Catalan Coastal Ranges (the Montmell-
Valles Fault System), but also the NW limit of a Late Jurassic-Early Cretaceous extensional basin(the Montmell-
Garraf Basin), facts that denote a major role of this fault in the tectonic evolution of the area. The present-day
structure of the Gaia-Montmell High resulted, therefore, from two successive episodes of inversion during the
Cenozoic. The first one reactivated the Montmell Fault as compressional during the Paleogene. As a result, and
among other inversion-related structures, the Gaia-El Camp Thrust developed sa major NW-directed basement
footwall shortcut. Later on, the previously formed compressional structure during the Paleogene became reac-
tivated as extensional during the Neogene. During this phase, the reactivation of the Montmell Fault looks
limited and, hence, the extension is transmitted to the Baix Penedes Fault. The reactivation of the Gaia-El Camp
Thrust is also manifest in the development of an array of extensional faults in the backlimb of the Carme-Cabra
Anticline that corresponds to the NE-end of El Camp Fault. This episode of negative inversion developed ac-
commodation zones between the four major faults present in the area ( Valles-Penedes, Montmell, E1 Camp and
Baix Penedes faults) that are characterized by the presence of relay ramps with breaching faults.

structural control are found in the Pyrenees (Munoz, 1992; Bond and
McClay, 1995; Garcia-Senz, 2002; Mencos et al., 2015; Munoz, 2017),

1. Introduction

Pre-existing faults and stratigraphic variations commonly play a
major role in determining regional evolution during later deformation
(Jackson, 1980; Cooper et al., 1989; Williams et al., 1989; Coward,
1994; Buchanan and Buchanan, 1995; Butler et al., 2006). It has been
widely described how pre-existing faults control not only the location
and kinematics of later structures (i.e., folds and faults) but also the
shape and location of orogenic belts and rifts. The structural configu-
ration during the opening of the Bay of Biscay and western Tethys during
the Mesozoic has been widely recognized as a key factor that controlled
the location and kinematics of the orogenic belts developed in the NE
Iberian Peninsula during Late Cretaceous-Cenozoic. Examples of this

the Iberian Chain (Salas and Casas, 1993; Guimera et al., 1995; Salas
et al., 2001; Nebot and Guimera, 2016; Guimera, 2018; Aldega et al.,
2019), the Columbrets Basin in the Valencia Trough (Etheve et al., 2018;
Roma et al., 2018) and the Betic Chain (Calvert et al., 2000; Vergés et al.,
2002). Nevertheless, the role played by the Mesozoic structures in the
Catalan Intraplate Chain (CIC), an orogenic belt also developed NE of
the Iberian Peninsula during the Cenozoic (Guimera, 1984; Gaspar-
Escribano et al., 2004; Juez-Larré and Andriessen, 2006), is not
completely understood.

The development of the present-day basin-and-range configuration
of the Catalan Coastal Ranges (CCR) (Fig. 1) resulted from the
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extensional reactivation of the main Paleogene contractional structures
(Fontboté, 1954; Gaspar-Escribano et al., 2004; Lépez-Blanco et al.,
2000; Marcén et al., 2018). Thus, the presence of pre-existing faults has
been considered as a key factor controlling the tectonic evolution of the
CCR during the Neogene (Guimera et al., 1995; Roca et al., 1999; Marin
et al., 2008; Baqués et al., 2012).

The control played by pre-Cenozoic structures is still poorly con-
strained and mostly supported by changes in stratigraphic thicknesses
and regional observations (e.g., Esteban and Robles, 1976; Salas and
Casas, 1993; Salas et al., 2001). Other studies state the potential Ceno-
zoic reactivation of Mesozoic extensional faults in the region (Roca and
Guimera, 1992; Gomez and Guimera, 1999) and the control the strati-
graphic changes of the Mesozoic succession had in the development of
Paleogene contractional structures (Anadon et al., 1985; Guimera and
Alvaro, 1990). Moreover, some works based on geochemical analysis in
crustal-scale fault damage zones and gouges (i.e., neoformation of
minerals, fluid circulation) reveal multiple reactivations in response to
the tectonic phases affecting the Iberian Peninsula since the Mesozoic (e.
g., Baqués et al., 2013; Cantarero et al., 2014) and even before the
Mesozoic (Marcén et al., 2018; Aldega et al., 2019).

In this paper, we define the structure of a portion of the NW margin
of the Montmell-Garraf Basin (Salas, 1987), one of the stratigraphically
differentiated rift basins developed in NE Iberian Peninsula Late
Jurassic-Early Cretaceous. This area is characterized by the presence of a

Tectonophysics 814 (2021) 228970

strip of Paleogene folds and thrusts, located at the southern prolongation
of the major Neogene Valles-Penedes extensional Fault (Fig. 1). The
study is essentially focused on the recognition of the main structural
features and the description of the role played by the Mesozoic basin
architecture during the Cenozoic tectonic evolution.

The work is supported by the construction of two structural cross-
sections based on field and well data (Gaia-Montmell and the Marmel-
lar sections, Fig. 2) that allow the delineation of the structures of the
uppermost crust. The geometry of the basement and major faults is also
sustained at depth by a magnetotelluric (MT) survey carried out along
the Gaia-Montmell section, which yields information on the electrical
response of the crust up to about 4 km depth.

2. Geological setting
2.1. Tectonic setting

Located in northeastern Iberian Peninsula, the CCR is a structural
unit with a NE-SW-oriented basin and range physiography that extends
parallel to the coastline for more than 250 km (Fig. 1). It is approxi-
mately 30 km wide and, in the present-day, constitutes the onshore
expression of the extensional continental margin that separates the
thinned crust of the Valencia Trough from the relatively thick crust of
the Iberian Plate (Danobeitia et al., 1992; Roca and Guimera, 1992;
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Vidal et al., 1995). The CCR is formed by several ENE- to NE-striking
basement blocks bounded by 50 to 150 km-long faults that display a
right-stepping en-echelon arrangement (Fig. 1). These major faults
mostly dip towards the SE and show reverse, normal and limited left-
lateral strike-slip motion (Ashauer and Teichmiiller, 1935; Llopis-
Llado, 1947; Anadon et al., 1985; Guimera, 2004). The general structure
of the CCR is essentially the result of a multiepisodic and complex Alpine
evolution that included: 1) two extensional episodes from Late Paleozoic
to Mesozoic, 2) a compressional period during the Paleogene, and 3) an
extensional period from latest Oligocene to middle Miocene (Roca and
Guimera, 1992; Salas et al., 2001; Roca et al., 2004; Marin et al., 2008;
Baqués et al., 2012).

The first extensional episode, Late Permian to Triassic in age, is
related to the opening of the Neotethys. The second, latest Oxfordian to
Aptian, is related to the opening of the North Central Atlantic and the
Bay of Biscay (Salas and Casas, 1993; Salas et al., 2001) that later, led to
the uncoupling of the Iberian Plate from the Eurasian Plate during
Albian-early Santonian times (Srivastava et al., 1990; Sibuet et al.,
2004).

From late Santonian, a faster opening of South Atlantic Ocean pro-
duced the northward drift of Africa and, consequently, the convergence
and later collision of the recently uncoupled Iberian and Eurasian plates

(Srivastava et al., 1990; Rosenbaum et al., 2002). This drastic change in
the relative motion of Iberia generated the Pyrenean fold-and-thrust belt
from the inversion of the Mesozoic rift-system (Munoz, 1992; Vergés
et al., 2002; Munoz, 2017; Garcia-Senz et al., 2019). In this scenario the
contractional deformation progressed southwards leading to the inver-
sion of the Mesozoic rift basins developed in the Iberian Plate and
forming the Iberian Range and the Catalan Intraplate Chain (CIC). The
preserved structure of the CIC consists of NNW-directed, ENE- to NE-
trending thick-skinned and thin-skinned thrusts as well as strike-slip
faults (Guimera and Alvaro, 1990). According to preserved growth
strata, the development of the CIC started during Paleocene times and
progressed from northeast to southwest up to the middle Oligocene
(Guimera and Santanach, 1978; Guimera, 1984; Anadon et al., 1985).
From that moment and up to the middle Miocene, the rollback of the
subduction of the Maghrebian Tethys beneath the Iberian Plate pro-
duced the extension of the eastern Iberian Plate from the development of
widespread back-arc processes (Horvath and Berckhemer, 1982; Car-
minati et al., 1998; van Hinsbergen et al., 2014). This episode led to the
formation of the northwestern Mediterranean Basin, which, in the CIC
area, developed as result of the extensional reactivation of Paleogene
thrusts (Roca, 2001; Gaspar-Escribano et al., 2004; Marin et al., 2008;
Baqués et al, 2012). The extensionally reactivated faults were
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responsible of the splitting of the CIC into a set of ENE-WSW blocks
bounded by crustal-scale SE- to SSE-dipping extensional faults with
kilometric displacements (Bartrina et al., 1992; Roca and Guimera,
1992) (Fig. 1). The extension induced the development of a series of
basins in the extensional fault hangingwalls filled by more than 4 km of
sediments ranging in age from Oligocene to Recent (Bartrina et al.,
1992) and an isostatic rebound in the footwalls up to 1.2 km (Gaspar-
Escribano et al., 2004).

In this complex structural setting, the study area is located in the
central part of the CCR in the transfer zone of the two major Neogene
extensional faults: the Valles-Penedes Fault and El Camp Fault (Fig. 2).
This transfer zone is known as the Gaia-Montmell High, has a right-
stepped en-echelon arrangement and is bounded southeastwards by the
Baix Penedes Fault.

2.2. Stratigraphy and thickness variations

Four stratigraphic assemblages can be distinguished in the study
area: the Variscan basement, the Mesozoic cover, the Paleogene fill of
the Ebro Basin and Neogene basin infill of the Baix Penedes Basin

Tectonophysics 814 (2021) 228970

(Fig. 3). From a Mesozoic stratigraphy point of view two main domains
can be differentiated: the Miramar-Gaia Domain in the NW and the
Montmell Domain in the SE (Figs. 2 and 3).

Paleozoic rocks of the Variscan basement have been reported and
described at the bottom of the Senant-1 well in the Ebro Basin (Lanaja,
1987; Fig. 1) as well as in the adjoining Miramar Range (Julivert, 1955;
Melgarejo, 1987) and Prades High (Figs. 1 and 2). The Paleozoic suc-
cession would be made up by Cambrian to Carboniferous slates with thin
interbeds of Devonian carbonates (Julivert, 1955; Saez and Anadon,
1989; Julivert and Duran, 1990) and Upper Carboniferous to Permian
granitoids (Serra and Enrique, 1989; Enrique and Solé, 2004). The
present work assumes similar Paleozoic rocks under the Gaia-Montmell
High, which are considered as the structural basement.

Unconformably overlying the Variscan basement, the Mesozoic
succession shows significant variations across the study area (Figs. 2 and
3). In the Miramar-Gaia Domain, the Mesozoic succession is thin and
only includes 200 to 350 m of Triassic rocks (Fig. 3) (Virgili et al., 2006;
Galan-Abellan et al., 2013; Mercedes-Martin et al., 2014). Towards the
SE, however, the Mesozoic of the Montmell Domain exceeds 2 km of
thickness (Salas, 1987) and is stratigraphically more complete including
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Fig. 3. Chronostratigraphic chart of the study and the adjoining areas. Main tectonic events are indicated. Major unconformities are labelled as follows. MU
Messinian Unconformity; MAU: Middle Albian Unconformity; VU: Variscan Unconformity. Lithostratigraphy has been compiled from Orti (1974), Anadon et al.
(1978), Colombo (1986), Lanaja (1987), Salas (1987), Casas and Permanyer (1991), Calvet and Marzo (1994), Cabrera and Calvet (1996), Salas et al. (2001),

Mercedes-Martin et al. (2014), Orti et al. (2017) and Escudero-Mozo et al. (2017).
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Triassic, Jurassic and Cretaceous rocks. On top of the Germanic Triassic,
there is a 70 m-thick unit of uppermost Triassic dolomites, followed by a
300 m unit of Lower-Middle Jurassic dolomitic breccias and a 1200 m-
thick succession of shallow marine limestones, dolomites and shales of
Late Jurassic-Early Cretaceous age (Salas, 1987; Salas et al., 2001;
Albrich et al., 2006). The Upper Jurassic-Lower Albian succession is part
of a major extensional basin (the Montmell-Garraf Basin) that includes
the southern end of the Valles-Penedes Basin, the Garraf High and some
adjacent offshore areas (Anadon et al., 1979; Salas, 1987; Salas and
Casas, 1993) (Fig. 1). An Upper Albian to Cenomanian sequence of
fluvial and shallow marine carbonates complete the Mesozoic record in
the Montmell Domain (Salas, 1987; Salas et al., 2001).

Whereas Paleogene strata are absent in the Montmell Domain, the
thin Mesozoic of the Miramar-Gaia Domain appears unconformably
overlaid by the Paleogene sediments of the Ebro Basin infill. These are
350 to 500 m-thick marine and continental sediments, and range in age
between Paleocene and early Eocene (Ferrer, 1971; Anadon, 1978;
Colombo, 1986). Towards the northwest, in the undeformed Ebro Basin,
the Paleogene succession thickens up to 1.5 km and includes sediments
up to late Oligocene in age (Barbera et al., 2001).

Towards the E and SE of the Gaia-Montmell High, the Mesozoic
succession is unconformably overlaid by the basin infill of the Valles-
Penedes and Baix Penedes basins. These sediments are made up by al-
luvial fan, lagoonal evaporites, carbonate coralgal and fan-delta silici-
clastic deposits mainly early to late Miocene in age (Cabrera and Calvet,
1996) unconformably overlaid by Pliocene alluvial sediments (Gallart,
1981) (Figs. 2 and 3).

3. Methods

The present work is based on the construction of structural sections
across the area of study using well, field data and later constrained by
one 2D magnetotelluric model. Two NW-SE-oriented cross-sections have
been constructed in the study area: the Gaia-Montmell section (Fig. 4)
and the Marmellar section (Fig. 5). The Gaia-Montmell section is
approximately 40 km long and, from NW to SE, runs from the unde-
formed Ebro Basin to the Baix Penedes Basin (Fig. 2). The Marmellar
section is 7 km long and runs approximately 10 km east of the Gaia-
Montmell section. This second section crosses the southern end of the
Valles-Penedes Fault at the NE edge of the Montmell Domain (Figs. 2 and
4). The orientations of the sections are respectively N146° and N161°,
both orthogonal to the NE-SW predominant trend of the Alpine struc-
tures. The cross-sections are based on field data (mostly bedding and
fault attitudes), geological map analyses and observed thicknesses of the
sedimentary units. When the stratigraphic units do not crop out in the
area (e.g., Lower and Middle Triassic), thicknesses have been estimated
from the regional reviews of Marzo (1980) and Calvet and Marzo
(1994), as well as from information from the Senant-1 and Sant Sadurni-
1 wells (Lanaja, 1987, Figs. 1 and 3). The Senant-1 well has also been
used to define the depth of the basement in the undeformed areas of the
Ebro Basin (Fig. 3). The geometry and location of the bottom of the Baix
Penedes Basin (Fig. 2) has been constrained by the gravimetric studies
performed by Hernandez and Casas (1985) and Casas and Permanyer
(1991).

During the construction of the cross-sections, projection and
extrapolation of dip data were performed defining cylindrical domains
and using the kink-band method. The sections have been constructed
and balanced using 2Dmove software. To show the tectonic evolution of
the area, the Gaia-Montmell section has been partially restored at the
end of (a) the Mesozoic rifting phase, and (b) the contractional Paleo-
gene deformation. During such restorations, the line-length unfold
method (Dahlstrom, 1969), which straightens the beds while main-
taining constant the line length, was used. Because the sections were
constructed using the kink method, layer thicknesses remained constant
during the unfolding process. This process allows calculating shortening
and stretching value for each of the restored paleo-steps.

Tectonophysics 814 (2021) 228970

The magnetotelluric method (MT) has been used to determine the
electrical properties of the upper crust across the Gaia-Montmell section
and constrain the structure when possible. The MT is an electromagnetic
geophysical method based on the simultaneous measurements on Earth's
surface of naturally occurring electric and magnetic fields variations.
The relations between electric and magnetic fields at different periods
are used to define the impedance tensor whose components provide
information about the electrical resistivity distribution at depth (Simp-
son and Bahr, 2005). This technique is very sensitive to conductive
bodies that, in depth, can be associated with the presence of conductive
rocks, minerals and partial melts, and also to the presence of fluids.
Taking into consideration the marked lithological differences between
the stratigraphic sequences present along the Gaia-Montmell section the
main goals of the MT study were: 1) to recognize the geometry of the
boundaries between the main stratigraphic and structural units in depth,
and 2) to identify basement conductivity anomalies that could denote
the presence of damage zones and fluid circulation.

4. Structure of the Gaia-Montmell High
4.1. Gaia-Montmell section

The structure of the Gaia-Montmell High is illustrated in the Gaia-
Montmell section (Fig. 4). The Gaia-Montmell High relates to the posi-
tive relief located between the Baix Penedes Basin and the SE margin of
the Ebro Basin, which is represented by the Carme-Cabra Anticline
(Fig. 2). This anticline is an ENE-WSW-trending structure that involves
the Variscan basement as well as Triassic and Paleogene sediments. It
has a 13 km long and nearly horizontal backlimb and a shorter 1 km long
vertical to overturned forelimb (Fig. 4 and Fig. A of the Supplementary
material). This uplifted area has been interpreted as the result of the
emplacement of a NW-vergent basement thrust (Gaia-El Camp Thrust),
the ramp of which constantly dips less than 30° underneath the
ensemble of the Gaia-Montmell High and branches at the lower part of
the Montmell Fault. Such geometry is constrained by the width of the
uniformly uplifted area (~13 km) and supported by the ESCI-
Catalanides deep seismic profile that shows that basement-involved
thrusts in the CCR do not affect the top of the lower reflective crust
located at 12 to 15 km depth (Fernandez et al., 1990; Sabat et al., 1997;
Roca et al., 2004). In this scenario, the geometry of the frontal limb of
the Carme-Cabra Anticline is interpreted as controlled by a triangular
zone of distributed shear at the tip of this propagating thrust (Allmen-
dinger, 1998; Mitra and Mount, 1998; Allmendinger et al., 2004).

From a structural point of view, the Gaia-Montmell High can also be
divided in two domains. In the Miramar-Gaia Domain, the hangingwall
of the Gaia-El Camp Thrust is practically horizontal and shows little
deformation, except for the presence of sets of minor post-Paleogene SE-
directed normal faults located in the Carme-Cabra Anticline backlimb,
affecting the basement and generating extensional rollovers on their
hangingwalls. On the other hand, the Montmell Domain shows gentle
NW-vergent fault-bend folds compatible to the presence of basement
reverse faults. These and their related folds involving the basement
appear affected by high-angle SE-dipping extensional faults. The syn-
cline present east of La Juncosa, for instance, appears controlled by the
emplacement of one these basement-involved faults west of Masies de
Sansuies (Fig. 4). This reverse fault develops a frontal structure with a
discrete, relatively steep front limb and a flat crest behind it that is
similar to the overall geometry observed in the Miramar-Gaia Domain
but at minor scale.

Both structural domains are separated by a highly deformed and
narrow strip located SE of L'Arbogar (labeled “L'Arbocar deformation
strip” in Fig. 4). In this area, Middle Triassic and Lower Ypresian (Iler-
dian) rocks belonging to the Miramar-Gaia Domain are strongly
deformed by NW-verging recumbent folds, thrust faults and backthrusts
mostly interpreted as detached at the top of the Lower Triassic (Bunt-
sandstein). A pre-Paleogene nearly vertical extensional basement fault
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this article.)

seems to control the location and development of the backthrusts in the
NW limit of the deformation strip. Northwest and southeast of this strip,
the Triassic is located at the same structural high. However, the base of
the Cenozoic occupies a significantly lower position in the Miramar-Gaia
Domain than in the Montmell Domain, where the top of the outcropping
thick Mesozoic succession indicates that this would be located at least
500 m higher. This structural and stratigraphic configuration, in
conjunction with the NW vergence of the structures developed along the
L'Arbogar deformation strip, suggest interpreting the NW limit of the
Montmell Domain as a nearly complete inverted SE-dipping Mesozoic
extensional fault. In this scenario, the L'Arbocar deformation strip would
correspond to the transmission of the compressional deformation to the
Montmell Fault footwall, which induced the formation of detachment
folds and thin-skinned thrusting facilitated by the presence of evaporitic
decollement levels within the Triassic (Fig. 4).

The age of this suggested inversion of the Montmell Fault is poorly
constrained due to the lack of preserved growth and post-growth strata
around this fault. Only the presence of Paleocene to lower Ypresian
strata contractionally deformed in the L'Arbocar deformation strip

indicates that it had to take place after early Ypresian (post-Ilerdian). On
the other hand, the development of the Gaia-El Camp thrust sheet is well
constrained by the presence of syntectonic sediments preserved in the
Sant Miquel del Montclar area (Figs. 2 and 4). At this location, the
Carme-Cabra Anticline forelimb presents series of NW-dipping upper
Eocene conglomerates unconformably overlying overturned lower
Eocene conglomerates, sandstones and mudstones (Anadon et al., 1985).
These growth geometries allow establishing the age of the emplacement
of the Gaia-El Camp thrust sheet as middle Eocene.

The Gaia-Montmell section also shows several extensional faults
affecting the previously outlined compressional structure. A set of SE-
dipping, basement-involved extensional faults bound the Baix Penedes
Basin towards the NW and show an accumulative displacement of about
2.5 km. The existence of the Mesozoic succession underneath the Baix
Penedes Basin remains uncertain due to the absence of subsurface data
in this area. However, we assume its presence taking into consideration
data from the Sant Sadurni-1 well, which cuts fossil-rich limestones
rocks of Early Cretaceous age (Neocomian) (Lanaja, 1987; see Fig. 1 for
its location).
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In addition, a set of minor SE-dipping faults that affect Mesozoic and
Paleogene strata of the Carme-Cabra Anticline backlimb is present be-
tween the villages of Vallespinosa and Querol as well as NW of L'Arbo-
car. Cartographically, these faults are NE-SW-oriented, laterally
disappearing towards the NE (Fig. 2), they display relatively high angles
(>75°) and show metric to decametric fault throws. Taking into
consideration roll-over geometries and the fact that they are only pre-
sent in the Gaia-El Camp thrust sheet hangingwall, these are interpreted
as rooted in the Gaia-El Camp Thrust. If this fault linkage exists, this
would imply the Gaia-El Camp Thrust plane also underwent extensional
reactivation during the Neogene.

4.2. Marmellar section

The Marmellar section is located at the southeast of the Gaia-Mont-
mell High and includes the southeasternmost part of the Miramar-Gaia
Domain, the SW end of the Vallés-Penedes Fault and the Montmell
Domain (Figs. 2 and 5). At this location, the Miramar-Gaia and the
Montmell domains are separated by a NE-SW-oriented fault that later-
ally corresponds to what has been described in the Gaia-Montmell sec-
tion as the Montmell Fault. Additionally, the section is adjacent to the
Mesozoic succession-type described by Salas (1987) and labeled “M” in
Fig. 2, which allows a detailed recognition of the Mesozoic rocks
outcropping in the area.

The structure of the Montmell Domain belongs to an array of NE-SW-
oriented, SE-dipping basement extensional faults that split the area into
a system of NW-tilted fault blocks filled by up to 1100 m thick Jurassic to
Barremian rocks (Fig. 5). These faults have throws of hectometric
displacement up to 300-400 m and kilometric lengths up to 5 km, which
allows considering these extensional faults as vertically restricted (Nicol
et al., 1996). At depth, these basement-involved extensional faults show
domino style dipping 55-60° towards the SE and display reverse and
normal drag folding in their hangingwalls. Moreover, minor compres-
sional features deforming the Mesozoic sedimentary cover are present
the Montmell Domain. Basically, these are represented by SE-directed
reverse faults and low angle NE-vergent thrusts respectively located at
the hangingwalls and footwalls of some of the major extensional faults.

Structural data was collected at the Riera del Marmellar outcrop in
Lower Cretaceous marine limestones belonging to the Montmell Fault
hangingwall. At this location, beds are 1 to 4 m-thick, trend NE-SW, dip
around 31° to the NW and contains metric-scale faults, tension veins and
numerous stylolite surfaces. Gathered structural data mainly consists of
normal faults with orientations ranging N30-70, dipping 65 to 80° to-
wards the NW with 80°WNW of slip, as well as reverse faults with ori-
entations N50-65, dipping 70 to 80° towards the SE with 70°E of slip.
Data was displayed on stereoplots and later restored to their original
geometry by rotating bedding to horizontal (Fig. 5). Once restored, all
collected faults originally look as normal faults with orientations mainly
ranging N15-75, dipping 30 to 85° towards the NW and with slip di-
rection towards the NW. Fluid geochemistry analysis performed by
Baqués et al. (2012) in the same area relates these mesostructures to the
Mesozoic syn-rift stage that led to the development of the Montmell-
Garraf Basin.

The Montmell Fault, a basement-involved SE-dipping extensional
fault, represents the NW boundary of the Montmell Domain. This fault is
nearly vertical (>85°) at surface that progressively decreases its dip at
depth up to 45°. This major structure also coincides with the NW
boundary relatively thick Lower Cretaceous successions outcropping in
the Montmell Domain, the map view configuration of which corresponds
to series of NE-SW-oriented normal faults separated by narrow transfer
zones that can be correlated with the presence of a basement fault that
becomes segmented at surface (Fig. 2). Its interpreted location matches
the NE prolongation of the Montmell Fault as interpreted in the Gaia-
Montmell section (Fig. 4). Contractional structures such as low-angle
NW-directed thrusts and their related fault-bend and fault-propagation
folds are present in the Montmell Fault footwall. These structures
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involve Jurassic and Middle to Upper Triassic rocks and, because of they
show short wavelengths in the geological map, they have been inter-
preted as rooted at the evaporitic levels of the uppermost Lower Triassic
(Buntsandstein) that is considered a good regional detachment.

At surface, the Miramar-Gaia Domain is characterized by a Jurassic
to Miocene cover deformed in a 2 km-wide gentle syncline (Pinedes
Altes Syncline, Fig. 5) bounded towards the NW by a SE-dipping
monocline. Miocene is only present in this syncline and unconform-
ably overlies Lower Cretaceous and Jurassic rocks that show a more
thigh syncline geometry. The syncline appears affected by some minor
extensional faults mainly developed at its lower part and includes in-
ternal onlaps in its NW limb. At smaller scale, the outcropping Jurassic-
Lower Cretaceous cover appears affected by minor NW and SE-verging
folds. These, locally cut by small thrusts, are interpreted as drape/
fault-bend folds developed over Muschelkalk thrust horses limited by
the Keuper and the uppermost Buntsandstein evaporite decollements.

The NE-SW orientation of the monocline limiting the Pinedes Altes
Syncline to the NW and its lateral continuity with the cartographic trace
of the Valles-Penedes Fault towards the NE allow interpreting this
structure in the Marmellar section. In map view, the Valles-Penedes
Fault shows splays and relay faults developed at the termination of a
fault segment. Approximately 1 km NE of the Marmellar section,
Jurassic rocks outcrop in both the hangingwall and the footwall of the
Valles-Penedes Fault denoting the loss of displacement of this towards
the SW (Fig. 2). Therefore, in the Marmellar section, the Valles-Penedes
Fault has been interpreted as a SE-dipping (~65°) basement-involved
normal fault that dies out in the Upper Triassic interval and drape
folds the overlying Jurassic and Miocene rocks.

Based on these geometrical relationships, it is possible to establish
the relative kinematic ages of some of the structures illustrated in the
Marmellar section. The relatively thick Mesozoic succession and the
structural data collected in the Riera del Marmellar outcrop (Fig. 5),
indicate this fault experienced extensional motion during, at least, the
Lower Cretaceous coevally to the formation of the Montmell-Garraf
Basin (Salas, 1987). Compressional features along the Montmell Fault
cartographic trace are essentially located in its hangingwall and affect
Mesozoic rocks. This may suggest a post-Lower Cretaceous compres-
sional phase that, at this location, did not reactivate the Montmell Fault
but developed buttressing against the previously formed extensional
fault (Gillcrist et al., 1987; Cooper et al., 1989). Minor reverse faults also
developed in the Miramar-Gaia Domain, basically consisting of NW- and
SE-directed thrusts at the NW and SE limbs of the Pinedes Altes Syncline
and affecting Jurassic rocks (Fig. 5). Although the age of the compres-
sion is poorly constrained by preserved strata (mostly Mesozoic rocks
coeval or previous to the extensional phase), it is possible to sustain that
compression occurred after their deposition (post- Lower Cretaceous),
and previously to the deposition of the Miocene sediments that uncon-
formably overlie the observed contractional structures. This fact makes
possible relating the compressional features observed in the Marmellar
area to the regional compressional phase that affected the central part of
the CCR during Paleocene to Eocene. On the other hand, onlap geome-
tries in Miocene sediments preserved above the monocline that char-
acterizes the NW limb of the Pinedes Altes Syncline indicate these
sedimented deposited during the extensional motion of the Valles-
Penedes Fault during Miocene times.

5. Magnetotelluric data and 2D inversion model

Nineteen magnetotelluric (MT) soundings with recording times
ranging from 8 to 12 h were acquired along the Gaia-Montmell section
(Fig. 2). Time series were processed using the Egbert and Booker (1986)
method and applying remote reference when possible. Apparent re-
sistivity and phase resulting curves cover periods from 0.001 s to 1 s.

To determine if the geoelectrical structure is 1D, 2D, 3D/2D (2D
structures with galvanic distortion) or 3D, a dimensionality analysis was
performed using the WALDIM code (Marti et al., 2009b) that is based on
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the invariant rotation parameters of the impedance tensor. The dimen-
sionality results (Fig. B of the supplementary material) show that for
periods shorter than 1 s, this behavior can be considered highly variable
with a rather frequent 2D component, whereas at periods longer than 1
s, the geoelectrical behavior is strongly 3D. In all 2D and 2D/3D cases,
the strike is rather parallel with a trend that ranges between N015° and
NO065°; orientation that is consistent with the N40-60° trend of the
geological structures (Figs. 1 and 3). So, the dimensionality analysis
results reveal that a 2D MT model could be rather reliable to determine
the geoelectrical structure in periods shorter than 1 s, but not at longer
ones where the dominant 3D data structure can induce wrong in-
terpretations (Ledo, 2005). Considering this dimensional breakdown, a
directionality analysis was performed using the STRIKE code developed
by McNeice and Jones (2001). It states a geoelectrical direction of N55°
although it also indicates a 3D effect of the regional structure. The ele-
ments of the impedance tensor were rotated applying this direction to
obtain the two main directions for the 2D modeling: the transverse
electric (TE) mode when the electric field is parallel to the strike and the
transverse magnetic (TM) mode if the parallel one is the magnetic field.
The obtained apparent resistivity and phase curves for each sounding
are shown in the Fig. C of the Supplementary material. Data and model
responses are presented as pseudo-sections built by plotting the data in
an x-T map, where x-axis corresponds to the data position on the profile
and T-axis to the period, which is considered as a proxy of the depth: TE
and TM apparent resistivity and phase responses (Fig. D of the Supple-
mentary material).

The 2D modeling is based on the simultaneous fit of the TE and TM
data and has been done using the 2D RLM2DI inversion code (Rodi and
Mackie, 2001) considering a 5% error floor that reaches an RMS of 2.7.
The final 2D model is presented in Fig. 6A, which shows the calculated
apparent resistivities.

5.1. Correspondence between the 2D magnetotelluric model and the Gaia-
Montmell section

The MT model illustrates the geoelectrical structure along the Gaia-
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Ebro Basin
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Montmell section with the presence of different conductivity/resistivity
bodies (Fig. 6A). In general terms, the MT model shows a geoelectrical
structure shaped by two stacked up layers. The lower layer has a very
resistive (>1000 Q-m) and homogeneous character below 0.5-2.5 km,
although some less-resistant bands (~100-600 Q-m) are also present (e.
g. below the Montmell Domain and the NW limit of the Miramar- Gaia
Domain). The geoelectrical behavior of the upper layer is, on the other
hand, highly heterogeneous where the presence of conductive bodies
with low lateral continuity (mostly isolated conductive bodies) prevails.

The comparison between the resistivity model and the Gaia-Mont-
mell section (Fig. 6B) allows the correlation of the geoelectrical struc-
ture to different types of rheologies. The highly resistive and laterally
continuous response of the lower geoelectrical layer (R1 and R3, Fig. 6A)
can be correlated to the Variscan basement, which is made up by epi-
metamorphic and plutonic rocks. The high resistivity of the basement is
corroborated by two additional parametric MT soundings acquired 30
km southwest of the study area in the Prades High on top of Paleozoic
rocks (soundings Pz1 and Pz2, see Fig. 1 for location). MT soundings at
this location reveal that Carboniferous slates and Permian granitoids
show resistivities >1000 Q-m (Fig. E in the supplementary material),
fact which is also documented in other locations of the Iberian Peninsula
such as the Iberian Massif (Munoz et al., 2008), the Pyrenees (Ledo et al.,
1998; Campanya et al., 2018) and the Betic Cordillera (Marti et al.,
2009a; Rubinat et al., 2010).

The upper geoelectrical layer is, instead, very variable in depth and
in resistivity character. From NW to SE, it includes conductive/resistive
bodies C1, C2, C3, C4, R2, C5 and C6. Comparing the geoelectrical
character to geological data and interpretations along the Gaia-Mont-
mell section (Fig. 6B), these bodies can be divided in two different
groups, those that correlate with the Mesozoic and/or Cenozoic sedi-
mentary cover (C1, C2, R2, C5 and C6) and those that suit with positions
of the Variscan basement (C3 and C4). Located in the northernmost part
of the section, C1 agrees with the Mesozoic and Cenozoic sedimentary
infill of the Ebro Basin, the thickness of which accounts to 1649 m of
sedimentary cover above the Variscan basement as described in the
Senan-1 well (Lanaja, 1987; see Figs. 1 and 3 for well location).

Miramar-Gaia Domain

Baix
Montmell N
) Penedés
Domain .
Basin

Gaia - El Camp
Thrust /

Short-cuts
Short-cuts

Montmell Baix Penedés
Fault = Fault

Fig. 6. A) Final magnetotelluric 2D model of the Gaia-Montmell section showing the differentiated conductive (C labels) and resistive (R labels) bodies. B) The model
with the interpreted stratigraphic boundaries (black lines), faults (red lines) and the top of the Variscan basement (dashed white line). White stars indicate the
location of the MT soundings (see Fig. 3 for their location). (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)
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Likewise, conductive body C2 coincides in thickness and location with
the Triassic succession, which, in the Miramar-Gaia Domain, mainly
consists of clastic sediments with evaporitic episodes and carbonates
(Fig. 3). On the other hand, resistive body R2 agrees with the position of
Jurassic and Lower Cretaceous rocks, which mainly consist of massive
limestones and dolostones present in the Montmell Domain. Geo-
electrical body C5 also coincides with the clastic sediments with evap-
oritic and carbonate episodes of the Triassic of the southeastern
Montmell Domain. At the southeastern end of the section, the conduc-
tive body C6 agrees with the Neogene infill of the Baix Penedes Basin,
the thickness of which is pointed out by Casas and Permanyer (1991) as
approximately 2000 m of mainly terrigenous sediments (Cabrera and
Calvet, 1996).

Taking into consideration the intrinsic resistive character of the
Variscan basement, the explanation about the nature of the conductive
body C3 is conjectural. Low resistive values at this location (<10 Q-m)
can be related to highly fractured rocks (e.g., Pous et al., 2001; Marti
et al., 2020) and/or metallic mineralizations (Marti et al., 2009a) similar
to those recognized in the central CCR southwest of the study area in the
Prades High (Fig. 1). Examples of documented metal mineralizations in
this area consist of Pb-Zn-Ba-Ag-Ni-Cu sediment-hosted veins, late
Hercynian to Triassic in age, formed along intra-Paleozoic and Lower
Triassic fractures (Cardellach et al., 1990; Canet et al., 2005; Alfonso
et al.,, 2012). Hence, metal mineralizations, which include highly
conductive elements, would enhance the conductive character of the
Variscan basement rocks at C3 (Fig. 6).

The geoelectrical body C4 belongs to a 1-2 km wide, SE-dipping
band of relatively low resistivity (>15 Q-m) 2 km depth underneath
the NW limit of the Montmell Domain (Fig. 6). This band is clearly
differentiated from the surrounding high resistive and homogeneous
signature that characterizes Variscan basement and appears in agree-
ment with the location of the NW limit of the Montmell Domain. The
origin of this low resistivity is uncertain, although it seems to be related
to a different type or degree of deformation between the Miramar-Gaia
and the Montmell domains. While the Miramar-Gaia Domain formed
during the Paleogene compression concentrating its deformation at the
tip of the Gaia-El Camp Thrust and the frontal limb of the Cabra-Carme
Anticline, the structural analysis in the Montmell Domain indicates a
higher degree of deformation that includes thick-skinned extensional
and contractional structures. The Variscan basement is highly deformed
in the central CCR and only planar-type Paleozoic structures such as low-
angle thrusts have been described (Julivert and Duran, 1990). However,
this type of geometries does not suit with the description of C4.
Considering C4 is related to the presence of a SE-dipping basement fault,
its 1 to 2 km width would correspond to the damage zone located at the
Montmell Fault footwall where conductivity has been enhanced by the
presence of fluids within a fractured and permeable zone (e.g., Pous
et al., 2001) and, perhaps, metal conductive mineralizations.

Considering these interpretations, the MT model has allowed con-
straining three key structural aspects along the Gaia-Montmell section
(Fig. 6): 1) the depth of the base of the Mesozoic to Cenozoic sedimen-
tary infill of the Ebro Basin over the Variscan basement in the north-
ernmost sector (conductive body C1 between MT soundings 001 and
002); 2) the geometry of the Montmell Fault underneath the northern
limit of the Montmell Domain and the location at depth of its related
shortcut (conductive body C4 between MT soundings 020 and 010); and
3) the base of the Mesozoic to Miocene sedimentary infill of the Baix
Penedes Basin in the southernmost sector (conductive body C6 south of
the MT sounding 015).

6. Discussion: tectonic evolution and structural inheritance of
the central CCR

Structural and stratigraphic observations along the Gaia-Montmell

and Marmellar sections, together with regional geophysical data and
geological maps allow the characterization of the deformation history of

68

10

Tectonophysics 814 (2021) 228970

the linking zone between the Valles-Penedes and El Camp basins (Figs. 1
and 2). The tectonic evolution of this area includes three major Alpine
events: A Late Jurassic-Early Cretaceous extension, a latest Cretaceous-
early Oligocene compression and uplift, and a late Oligocene-Neogene
extension.

6.1. Late Jurassic (Oxfordian) — early cretaceous extension: Montmell-
Garraf Basin formation

The Alpine cycle regionally starts with a Late Permian-Early Triassic
extensional period that controlled the deposition of siliciclastic and
carbonate units along NE-SW-trending basins (Galan-Abellan et al.,
2013; Mercedes-Martin et al., 2014; Mercedes-Martin and Buatois,
2020). However, in the study area Triassic strata show no lateral
thickness variations indicating a relative tectonic quiescence during this
period. The first hints of Mesozoic tectonic activity do not appear until
the Late Jurassic. Upper Oxfordian to Valanginian carbonate-dominated
sediments deposited in an incipient depocenter (the Montmell-Garraf
Basin), bounded towards the NW by a high-angle SE-dipping exten-
sional fault. The constant thickness of the Valanginian sediments in-
dicates they were deposited over a planar extensional ramp (McClay,
1995; Withjack and Schlische, 2006; Ferrer et al., 2016). This fault
would correspond to the breakaway fault of the extensional system, the
present-day location of which corresponds to the SE limit of L'Arbogar
deformation strip (Fig. 4). Laterally towards the NE, this fault corre-
sponds to the SW prolongation of the Valles-Penedes Fault (Figs. 2 and
5).

Late Valanginian to Hauterivian strata are absent in the Montmell-
Garraf Basin and Barremian sediments paraconformably overlie pre-
served Valanginian (Fig. 5). This hiatus throughout the Neocomian is
widespread recognized in the region and, with a diachronic character,
has been interpreted in two ways: as a period of decelerated subsidence,
emersion and relative tectonic quiescence in the external zones of the rift
basin system (Anadon et al., 1979; Salas et al., 2001), or related to a
thermal post-Late Jurassic-early Valanginian rifting phase (Salas et al.,
2020). From Barremian on, an acceleration of the subsidence takes place
in the Montmell-Garraf Basin following two different phases: 1) Barre-
mian to early Albian, 2) late Albian to Cenomanian. During this period,
the breakaway fault shifts towards the SE to the present-day location of
the Montmell Fault (Figs. 4 and 5). Considering this scenario, the
Montmell Fault, can therefore be considered as the SW segment of a
major structure that we call the Montmell-Valles Fault System.

Barremian to Lower Albian sediments were deposited in the
Montmell-Marmellar area with significant thickness variations. Up to
550 m of Barremian to Lower Aptian shallow marine carbonates
deposited on the Montmell Fault hangingwall in the Marmellar area. In
comparison, towards the NW in the Miramar-Gaia Domain, Paleocene
sediments conformably lie over Triassic strata (Fig. 4) and Jurassic to
Cretaceous sediments are absent. This fact can be explained by erosion
or non-deposition. The nonexistence of clastic deposits during this
period, which would represent the erosion of Jurassic and Cretaceous
strata before the Paleocene, most likely indicates a hiatus scenario due to
the presence of a paleo-structural high NW of the Montmell Fault (Ebro
High, Fig. 7C) during, at least, the extensional motion of the Montmell
Fault from Barremian to early Albian.

The end of the extensional motion of the Montmell Fault cannot be
established with precision with the analyzed data. However, regional
criteria associate the end of the extension to the development of the
Middle Albian Unconformity (Fig. 3) (Salas, 1987; Salas et al., 2001;
Salas et al., 2020). From this time and up to the Cenomanian, a relatively
constant thickness unit characterized by the entrance of clastic sedi-
ments is deposited (Salas and Casas, 1993). This period has been
traditionally interpreted as post-rift thermal relaxation with associated
homogeneous subsidence (Robles, 1982; Alonso et al., 1993; Salas et al.,
2001). However, new interpretations relate this period to late crustal
extension over a low angle fault that passively transports the area
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Fig. 7. Sequential structural restoration of the Gaia-Montmell section applying flexural slip and bed lenght preservation. A) Present-day after the latest Oligocene-
Neogene extension. B) Early Oligocene (end of the Paleogene compression). C) Late Cenomanian (end of the Late Jurassic-Early Cretaceous extension). No vertical

exaggeration.

previously formed by high-angle extensional faults (Tugend et al., 2015)
and, hence, with the resulting extensional displacement of the Montmell
Fault.

6.2. Late cretaceous - early Oligocene compression: positive inversion of
the Montmell Fault and emplacement of the Gaia-El Camp thrust sheet

From late Santonian (Late Cretaceous), the convergent motion be-
tween the Iberian and Eurasian plates is activated (Roest and Srivastava,

11

1991; Rosenbaum et al., 2002), yet the transmission of compressional
stresses into the study area arises in the lattermost Cretaceous (Maas-
trichtian?). During this period of the convergence, up to three phases can
be distinguished. The first phase takes place at the end of the Cretaceous
and is recorded in the Miramar-Gaia Domain by the presence of a par-
aconformity that brings the basal Paleocene and the Keuper into contact
(Figs. 3 and 4). The presence of this unconformity indicates a regional
pre-Paleocene uplift that can be linked to an uppermost Cretaceous
contractional deformation over the entire area or, conversely, to an
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isostatic adjustment of the Montmell Fault footwall after the Late
Jurassic to Lower Cretaceous rifting phase. From a tectonic point of
view, this period can be both contractional and quiescent. The second
phase occurs from Paleocene to early Eocene times, and is characterized
by the sedimentation of concordant fine-grained terrigenous beds and
carbonates with little lateral thickness variations deposited in the distal
areas of the Pyrenean foreland (Anadon et al., 1979; Anadon et al.,
1985). These deposits indicate the absence of significant deformation or
creation of relief in the adjacent areas of the central CCR and, therefore,
a period of tectonic quiescence. The third and most relevant compres-
sional phase in the study area takes place from Middle Eocene to early
Oligocene. During this period compressional structures emerged in both
Miramar-Gaia and Montmell domains. The footwall of the Montmell
Fault was strongly deformed by a set of basement shortcuts that laterally
become thin-skinned-controlled fold-and-thrust systems detached at top
Buntsandstein and Keuper evaporitic levels. On the other hand, minor
deformation appeared in the Montmell Domain where SE-vergent
backthrusts and pop-up structures developed (Figs. 4 and 5), possibly
as a result of slight buttressing effect. This structural style around the
Montmell Fault is also observed in several parallel minor extensional
faults in the Montmell Domain (Figs. 4 and 5), which denote the
contractional reactivation of pre-existent Mesozoic extensional faults in
the area. The tectonic inversion is basically characterized by minor
hangingwall buttressing later passively transported by shortcuts devel-
oped in the upper part of the reactivated faults, and thin-skinned thrust
systems detached in the Triassic evaporite levels of the Miramar-Gaia
Domain.

The whole ensemble of the Miramar-Gaia Domain became uniformly
uplifted by the Gaia-El Camp Thrust. Considering the dip of this thrust
and the fact that it merges at depth to the Montmell Fault, the Gaia-El
Camp Thrust can be interpreted as a major footwall shortcut developed
to provide a smoother fault trajectory during the inversion of the
Montmell Fault (Fig. 7B).

Paleogene growth geometries at the SE margin of the Ebro Basin
consisting of Upper Eocene to lower Oligocene sediments unconform-
ably deposited over Lower to Middle Eocene strata (St. Miquel del
Montclar area, Figs. 4 and 7B) allow establishing the precise age of the
Gaia-El Camp Thrust emplacement as late Bartonian to Lower Oligo-
cene. Conversely, the age of the inversion of the Montmell-Garraf Basin
cannot be fully constrained due to the lack of preservation of growth
sequences. Nevertheless, taking into consideration that up to Lower
Ypresian (Ilerdian) sediments are involved in the Montmell Fault foot-
wall deformation with no growth geometries, it can be stated that the
contractional motion in this area is, at least, late Ypresian (Cuisian).
Additionally, the fact that the Gaia-El Camp Thrust has been interpreted
as a major shortcut supports the idea that the primary reactivation of the
Montmell Fault was to some extent older (late Ypresian to Lutetian).

6.3. Latest Oligocene(?)/early Miocene - late Miocene extension: Baix
Penedes Basin formation and partial reactivation of the Gaia-El Camp
Thrust

The Paleogene structure described in the previous section is affected
by extensional deformation that cuts or, at times, reactivates previously
formed faults. Most of the interpreted extensional faults have a pre-
dominant ENE-WSW orientation, dip towards the SE and generally
display decametric to hectometric displacements (Figs. 2 and 7A). Four
major faults (Valles-Penedes, Montmell, EIl Camp and Baix Penedes
faults) show kilometric fault traces and display an overlapped arrange-
ment linked by large NW-SE-oriented accommodation zones (Fig. 8).

The Valles-Penedes Fault progressively loses its displacement to-
wards the SW overstepping with the Montmell and the Baix Penedes
faults in the respectively Marmellar and Sant Marti Sarroca transfer
zones (Fig. 8). In this area, the Valles-Penedes Fault throw becomes less
than 300-400 m, displaying a drape-fold detached in the Upper Triassic
evaporites on its hangingwall (Fig. 5). Extensional displacement is,
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Fig. 8. Schematic geological map of the Gaia-Montmell High showing the
major Neogene extensional faults and their related relay ramps.

hence, relayed to the Montmell and the Baix Penedes faults, which ex-
tends towards the SW with a similar orientation. The Montmell Fault
shows decametric fault throws and a low accumulated extensional
displacement. The Baix Penedes Fault, in turn, shows a segmented fault
pattern with several SE-dipping splays at surface and a considerably
higher accumulated throw reaching several hundreds of meters. NW-SE-
trending breaching faults are present in the Sant Marti Sarroca Transfer
Zone (Fig. 8). The Baix Penedes Fault is interpreted as rooted at the deep
NW-vergent basement ramp underneath the area (Fig. 7).

On the other hand, the displacement of the El Camp Fault drastically
decreases towards the NE and becomes a narrow array of SE-dipping
faults with hectometric accumulated displacements at the Carme-
Cabra Anticline backlimb (Figs. 2 and 8). Considering the geometry of
the Miramar-Gaia Domain as the result of the displacement and uplift
over a low angle basement ramp shallowing towards the NW (Fig. 7B),
this array of extensional faults at the NE end of El Camp Fault has been
interpreted as rooted in the Gaia-El Camp Thrust (Figs. 4 and 7A).

In this context of overlapped major extensional faults, the NW-SE-
trending faults present in the Sant Marti Sarroca Transfer Zone as well
as the Pont d'Armentera Fault (Fig. 8) are considered as relay ramp-
breaching faults of a soft linked extensional system (Fossen and Rote-
vatn, 2016). These zones would transfer displacement between the
Valles-Penedes and the Baix Penedes faults and between El Camp Fault
and the Montmell-Valles Fault System respectively.

The extensional reactivation (or negative inversion) of preexisting
faults is suggested by several evidences such as: 1) the development of
an array of extensional faults rooted at the discrete fault plane of the
Paleogene Gaia-El Camp Thrust at the NE end of El Camp Fault; 2) the
extensional geometry of the Montmell Fault (although this fault has a
reverse movement during Paleogene times); or 3) the Baix Penedes Fault
and its splays which are also rooted at a Paleogene reverse fault footwall
ramp. However, the reactivation of the Montmell Fault is relatively
limited, and the extension seems basically relayed to the Baix Penedes
Fault, which induced the development of a 1.5 km deep basin on its
hangingwall (Fig. 7A).

All these structural observations indicate a post-early Oligocene
extensional period that resulted in the extensional reactivation of the
previously formed Paleogene and Late Jurassic-Early Cretaceous faults,
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the age of which can be constrained based on the tectonostratigraphic
relationships. Undeformed Pleistocene alluvial deposits fossilize most of
the major faults in the central CCR, hence, indicating their extensional
motion is pre-Pleistocene. Additionally, major faults, which often show
drape-folds on their hangingwalls, cut or fold Serravallian sediments.
Therefore, their extensional motion must be considered as post-
Serravallian. Yet, extensional growth strata geometries are indeed
observed in upper Serravallian-lower Tortonian sediments deposited
over the hangingwall of the Valles-Penedes Fault in the Marmellar area
(Fig. 5), which would indicate, at least for this fault, extensional motion
during this period. This fact agrees to previous regional studies that
indicate extension in the CCR occurred between Burdigalian and Mes-
sinian times (Gallart, 1981; Cabrera et al., 1991; Cabrera and Calvet,
1996; Porta and Civis, 1996; Cabrera et al., 2004). The lack of upper
Oligocene and Neogene sediments preserved over in the Miramar-Gaia
and Montmell domains prevent establishing a relative chronology of the
observed extensional faults.

7. Conclusions

A new field-based dataset integrated with MT data acquired across
the Gaia-Montmell High has allowed the recognition of the main fea-
tures characterizing the upper crustal Alpine structure. MT data along
the Gaia-Montmell section has allowed a better definition of the struc-
ture at depth and the identification of zones with potential fractures and
conductive fluids.

The structure of the Gaia-Montmell High consists of two domains
with a differentiated tectono-stratigraphic evolution: the Miramar-Gaia
and the Montmell domains. The Miramar-Gaia Domain belongs to an
area with a very thin Mesozoic succession (only Triassic) uplifted over
the Ebro Basin by a NW-vergent low-angle basement thrust (the Gaia-El
Camp Thrust). The Montmell Domain belongs to an area with a well-
developed Mesozoic succession that includes Triassic, Jurassic and
Cretaceous rocks. This domain is limited towards the NW by the
Montmell Fault and its structure consists of NW-vergent compressional
faults affected by high-angle SE-dipping extensional basement faults. A
highly deformed area with prominent NW-vergent thrust imbrications
characterizes the limit between the two domains.

The Montmell Fault corresponds to the SW prolongation of the
Valles-Penedes Fault. Both faults are partially overlapped and linked by
the Marmellar Accommodation Zone. We call this major structure the
Montmell-Valles Fault System. This constituted the NW limit of the
Montmell-Garraf extensional basin, which developed during the Late
Jurassic-Early Cretaceous (Oxfordian to middle Aptian).

A period of tectonic inversion and contractional reactivation related
to the Paleogene compressional phase is attested by the presence of
highly deformed areas (thin-skinned thrusting and footwall shortcut
development) along the Montmell-Valles Fault System footwall. These
contractional structures belong to the positive inversion of the Mesozoic
Montmell-Garraf Basin and the emplacement of a NW-directed basement
thrust (Gaia-El Camp Thrust) that uplifted the Montmell-Garraf Basin
and the adjoining marginal areas of the Ebro High. Reactivation of the
Montmell Fault appears to be by some means restricted and, hence,
deformation propagated to the fault footwall resulting in shortcut for-
mation. The areas where footwall shortcut structures formed are char-
acterized by conductive bodies at depth.

The age of the positive inversion can be relatively well established by
syn-kinematic sediments preserved in the SE margin of the Ebro Basin.
These indicate that the Gaia-El Camp Thrust emplacement is late Bar-
tonian to lower Oligocene. The absolute age of the Montmell-Valles
Fault reactivation is uncertain. However, taking into consideration
preserved pre-kinematic strata in its footwall, it can be established as, at
least, late Ypresian (Cuisian).

Negative tectonic inversion of the previously formed Paleogene and
Late-Jurassic faults is also within reach in the Gaia-Montmell High.
During Latest Oligocene(?)/early Miocene - late Miocene extensional

13

Tectonophysics 814 (2021) 228970

displacement at the SW-end of the Valles-Penedes Fault is relayed to the
Baix Penedes Fault and, at minor scale, to the Montmell Fault. Accord-
ingly, accommodation zones characterized by the presence of relay
ramp-breaching faults developed. The negative inversion of the Gaia-El
amp Thrust is also identified at the NE-end of El Camp Fault, where an
array of extensional faults developed in the Miramar-Gaia Domain.
Tectonostratigraphic relationships indicate that extension occurred be-
tween Burdigalian and Messinian times.
The following are the supplementary data related to this article.
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|ABSTRACT |

The precise determination of the tectonic deformation timing such as thrust emplacement has always been a
challenge for understanding the evolution of fold-and-thrust belts. In the Catalan Coastal Ranges, this issue has
traditionally been addressed through the mapping and the analysis of the syn-tectonic successions preserved in the SE
margin of the Ebro Basin. However, the age of the Paleogene contractional structures located towards the hinterland
and responsible of the inversion and uplift of the inherited Mesozoic structure remained uncertain due to the lack
of preserved syn-kinematic strata in these areas. With the aim of better understand the contractional evolution of
the area during the Paleogene, this work presents a tectono-stratigraphic analysis approach that combines structural
reconstructions, provenance analysis and magnetostratigraphic dating in well-exposed synorogenic sediments in
the central SE margin of the Ebro Basin. The results of the study allow to establish the precise age of the main
contractional structures present in the central Catalan Coastal Ranges. The combined analysis has revealed that: 1)
the inversion of the Montmell-Valles Faults System started in the Bartonian and continued up to the late Priabonian,
and 2) the emplacement of the Gaia-El Camp Thrust and the formation of the Cabra-Carme Anticline took place
from early to late Priabonian and was the responsible of the sudden increased of the sedimentation rates. A later
decrease of the sedimentation rates during late Priabonian (chron C15n) has been interpreted as the prelude of the
end of the Paleogene compressional phase in the area.
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INTRODUCTION

Thrust systems in orogenic belts have traditionally been
interpreted as usually propagating toward the foreland in
a forward-breaking thrusting sequence (Boyer and Elliott,
1982; Butler, 1982, 1987) In this sequence, foreland basin
sediments are progressively incorporated in the deformation
wedge ( ). Thrusting can also develop towards the
hinterland, a process known as break-back sequence
(Boyer and Elliott, 1982; Butler, 1982, 1987). Moreover,
out-of-sequence thrusts might develop in the hinterland
of the fold-and-thrust belt, thus conditioning the advance
of deformation as well as the configuration of the orogen
(McClay, 1992). On the other hand, the configuration
of fold-and-thrust belts can also be influenced by the
presence of pre-existing extensional faults. The reactivation
of these faults can lead to the development of inversion-
related structures such as footwall shortcuts, hanging-wall
folding and backthrusting as the effect of the buttressing
(e.g. Butler, 1989; Hayward and Graham, 1989; Coward ef
al., 1991; Coward, 1994; Scisciani ef al., 2001; Amilibia

Foreland

Short-title

et al, 2008, Ferrer et al, 2023) or by changes in the
mechanical stratigraphy (Couzens et al, 1996; Gross et
al., 1997; Ferril et al, 2008). Understanding the sequence
of emplacement of thrusts is important in order to better
interpret the changes in the sedimentation pattern over
time due to the fact that tectonics and sedimentation are
closely interconnected in orogenic belts. Thus, changes
in depositional systems are often interpreted as responses
to regional or local tectonic activity, such as the uplift and
growth of nearby thrusts or folds. Moreover, the geometrical
and genetic analysis of syn-tectonic strata can be used to
understand the kinematics of individual structures (e.g.
Vergés and Munoz, 1990; Suppe et al, 1992; Burbank et
al.,, 1992; Hardy et al., 1996; Ford et al, 1997; Vergés et
al., 2002; Salvini and Storti, 2002; Fernandez et al., 2004).

A thorough understanding of key geological elements
and their critical moments is essential for accurately
assessing natural resources like hydrocarbons, CO,
storage, minerals, and geothermal energy. Determining the
absolute and relative ages of structures is vital to assess

Hinterland

Fold-and-thrust belt (FTB)
- External

Forelad basin

_ Undeformed _
foreland

- — >

FTB frontal thust

Inverted extensional basin

T, < T, <T5< T, <Ts (Forward-breaking sequence)

T,>T,>T5>T,>T; (Break-back sequence)

Foreland syn-orogenic sediments

1 Basement

Pre-orogenic sedimentary cover (including syn-extension) ™

X, Thrust
Inverted extensional fault

FIGURE 1. Schematic diagram of a thick-skinned fold-and-thrust belt, which includes an inverted extensional basin and its related foreland basin.
Ti to Tv stand for relative timing of deformation. End-member thrusting sequences (forward-breaking and break-back) are also specified. Other

combinations of relative timing imply out-of-sequence thrusting.
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uncertainties and exploration risks, like the timing between Ebro Basin infill is made up by both marine and continental
hydrocarbon generation and trap formation (Magoon, sediments that thickens northwards and northwestwards up
1987; Al-Hajeri et al., 2009; Makeen et al., 2016) or cross- to over 5,000m (Rioja-3 borehole; Lanaja, 1987). At the
cutting relationships in non-accessible areas. Analyzing basin margins, these sediments record the growth of the
syn-kinematic sedimentation and growth geometries is three mountain ranges. World-class examples of growth
crucial to determine the age and movement of structures strata have been documented along the three margins (e.g.
in orogenic belts. Riba, 1973, 1976; Anadon, 1978; Anadon et al, 1985,
1986; Vergés and Munoz, 1990; Suppe et al., 1992, 1997,

The Ebro Basin is the southern foreland of the Pyrenean Colombo, 1994; Ford et al, 1997; Lawton et al, 1999;
orogen (northeastern Iberia) that developed from Late Lépez-Blanco, 2002, Gomez-Paccard et al, 2011). Such
Cretaceous to middle Miocene times (Munoz, 1992; growth strata geometries in the southeastern margin,
Vergés and Garcia-Senz, 2001; Mouthereau et al., 2014). together with clast composition and paleocurrents analysis
To the southwest and southeast, the Ebro Basin is limited performed in the alluvial and fan-delta sediments deposited
by two intraplate chains that resulted from the inversion of at the toe of the CCR have been used to decipher the age
pre-existent Mesozoic basins: the Iberian Range, and the and kinematics of some frontal fold-and-thrust structures
Catalan Coastal Ranges (CCR) respectively ( ). The both, regionally (Anadon, 1978a, b; Anadon ef al, 1985;
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[ ] Mesozoic sedimentary cover Blind or buried fault I SretaceousT N
- Variscan basement Unconformity - ppermost Triassic to Jurassic
Major thrust 1: Montmell-Vallés Fault System :I Triassic keuper (middle Carnian to Norian) n o o
Extensional fault 2: Gaia - E| Camp Thrust [ Triassic Muschelkalk (upper Anisian to lower Carnian) Baix Penedés
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FIGURE 2. A) Geologic map of NE Iberia showing the major Cenozoic structural units including its three bounding orogenic belts: the Pyrenees
and the intraplate Iberian and Catalan ranges. Cenozoic foreland basin-fill is highlighted in orange. Coordinates in geographical system. Labels 1
and 2 respectively correspond to the Prades Block and the Montserrat-Sant Lloreng del Munt areas referred in the text. B) Geological map of the
Gaia-Montmell High in the central Catalan Coastal Ranges and adjoining areas. The area corresponds to the linkage zone between the Neogene
Montmell-Valles Fault System and EI Camp Fault. Coordinates in UTM kms. C) Cross-section across the Gaia-Montmell High and its neighbouring
areas. The hatched area labelled with “T” indicates the zone of distributed shear at the tip of the Gaia-El Camp Thrust (modified from Marin et al.,
2021). Legend for B and C is the same.
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1989; Colombo, 1994; Loépez-Blanco et al, 2000a, b;
Lépez-Blanco, 2002; Gémez-Paccard et al, 2011) and of
the study area (Anadon, 1978 a and b; Anadon et al., 1986).

The study area is located along the central southeastern
margin of the Ebro Basin, between Cabra del Camp and
Vallespinosa towns ( ). Previous studies have
suggested the presence of a progressive unconformity
at this location, indicating that the growth and uplift of
the frontal structure of the central CCR (Carme-Cabra
Anticline) were contemporaneous with the deposition of
conglomeratic units during the middle Eocene (Benzaquen
et al, 1973; Anadén et al, 1985 and 1986) ( ).
Nevertheless, the age of the contractional structures located
towards the hinterland and responsible for the inversion and
contractional uplift of the pre-existent Mesozoic basins
(Montmell Domain in ) remain uncertain due to
the lack of preserved syn-kinematic strata in the footwall of
the Montmell Fault.

To address this problem, the current study presents a
detailed tectonostratigraphic analysis of the whole Paleogene
succession preserved in the central southeastern margin of
the Ebro Basin along the northwestern limb of the Carme-
Cabra Anticline which in the study are resembles more of
a monocline ( ). It integrates results from a detailed
geological map, clast composition and paleotransport
direction analysis, and a magnetostratigraphic section
performed across the 1,450m of the well-exposed Ebro
Basin infill succession in the area. This approach enables
the precise determination of the age and kinematics not
only of the Carme-Cabra Anticline but also of the structures
responsible for uplift and denudation of the inner parts of
the central CCR during the Paleogene compressional phase.

GEOLOGICAL SETTING

Tectonostratigraphic framework

The Catalan Coastal Ranges is a NE-SW-oriented
structural unit that extends for up to 250km parallel to
the NE coastline of Iberia ( ). It is around 30 km
wide, and its basin-and-range configuration constitutes the
onshore expression of the mainly extensional, divergent
continental margin that separates the thicker crust of the
Iberian Plate from the thinned crust of the Valencia Trough
(Danobeitia et al., 1992; Roca and Guimera, 1992; Vidal et
al., 1995). The current structure of the CCR is the result of
three main tectonic phases: i) a multiepisodic extensional
phase from late Paleozoic to Mesozoic, ii) a compressional
phase during the Paleogene and iii) an extensional phase
from latest Oligocene to middle Miocene (Llopis, 1947;
Anadon et al, 1979; Roca and Guimera, 1992; Bartrina
et al. 1992; Lopez-Blanco et al, 2000a, b; Baqués et al.,
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2012; Cantarero et al., 2014 a, b; Marin et al., 2021).

The Late Jurassic to Early Cretaceous extensional
episode, well recorded in the neighbour Iberian Range
(Salas and Casas, 1993; Guimera 2018), is represented by
two right-stepped extensional basins, the Montmell-Garraf
and Barcelona-Maresme basins bounded towards the
northwest by two main extensional faults: the Montmell-
Valleés Fault System and the Barcelona Fault ( ). These
faults limit towards the NW the upper crust extensively
deformed during the opening of the Tethys, in such a way
that in their footwall blocks there are no Upper Jurassic or
Lower Cretaceous sediments (Roca and Guimera, 1992;
Salas, 2001; Gaspar-Escribano et al, 2004; Marin et al,
2021).

Convergence and later collision between the Iberian and
Eurasian plates took place from Late Cretaceous (Santonian)
to middle-late Oligocene (Srivastava ef al, 1990;
Rosenbaum et al, 2002; Andeweg, 2002; Angrand et al.,
2020; Angrand and Mouthereau, 2021). In the NE of Iberia,
this period led to the formation of the Pyrenees (Munoz,
1992; Vergés et al., 2002; Munoz, 2017; Garcia-Senz et al.,
2019), the Iberian Chain (Guimera, 1984; Guimera et al.,
1995; Nebot and Guimera, 2016; Guimera, 2018), and the
Catalan Intraplate Chain (CIC) in the current location of
the CCR (Anadén et al, 1985; Guimera and Alvaro, 1990;
Salas et al.,, 2001; Lopez-Blanco, 2002) ( ). In the
study area, this entailed to the formation of the CIC from
early Eocene to early Oligocene (Guimera and Santanach,
1978; Guimera, 1984; Anadon et al., 1985; Lopez-Blanco,
2002) by the tectonic inversion of the inherited Mesozoic
extensional basins, and, towards the northwest, of the Ebro
Foreland Basin (Anadon et al, 1985; Roca and Guimera,
1992; Juez-Larré and Andriessen, 2006; Salas et al., 2001;
Baqués et al, 2012; Marin et al, 2021). The CIC fold-
and-thrust belt growth was controlled by the emplacement
of major NW-directed NE-trending basement involving
thrust sheets that incorporated the marginal parts of the
developing Ebro Basin (Anadon ef al, 1986; Colombo,
1994; Lopez-Blanco et al., 2000a, b; Lopez-Blanco, 2002;
Gomez-Paccard et al, 2011; Marin et al., 2021).

The Paleogene contractive structure in the study area
includes two domains with a differentiated stratigraphy in
the Gaia-Montmell High (Marin ef al, 2021) ( ).
The Miramar-Gaia Domain in the NW comprises a very thin
Mesozoic succession made up of only a Triassic succession
uplifted over the Ebro Basin by a NW-directed low-angle
basement thrust (the Gaia-El Camp Thrust). On the other
hand, the Montmell Domain includes a well-developed
Jurassic-Cretaceous succession ( ). The boundary
between both domains corresponds to the Montmell-Valles
Fault System, a high-angle SE-dipping Mesozoic fault that
was inverted during the Paleogene compressional phase
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FIGURE 3. A) Mesozoic thicknesses across the central Catalan Coastal Ranges and the present-day offshore Barcelona-Maresme Basin. Upper
reference datum corresponds to the base of the Tertiary. Mesozoic thicknesses based on Salas (1987), Lanaja (1987) and ICGC (2005). B)
Tectonostratigraphic map of the central Catalan Coastal Ranges and offshore areas at the end of the Late Jurassic - Early Cretaceous extensional

phase. Bcn E-1: Barcelona Marina E-1 well; StS-1: Sant Sadurni-1 well.

as it is attested by the presence of NW-directed thrust
imbrications developed along its footwall (Fig. 2C) (Baqués
et al., 2012; Marin et al, 2021).

Throughout the Neogene, an extensional period
associated to the rollback of the Tethyan Ocean plate during
its subduction beneath the Iberian Plate took place (Roca,
1994; Sabat et al, 1995; Carminati et al, 1998; Roca et
al., 2004; van Hinsbergen et al, 2014, 2020; Romagny et
al., 2020). This period resulted in the present-day horst-and-
graben configuration of the CCR and the display of series of
NNW-tilted blocks limited by major SE-dipping extensional
faults (Fig. 2C). These faults resulted from the negative
tectonic inversion (Ze., extensional reactivation) of the
Paleogene faults (Bartrina et al, 1992; Roca, 2001; Gaspar-
Escribano et al, 2004; Baqués et al, 2012; Marin et al.,
2021). In this scenario, the study area comprises the footwall
block of the northeastern end of one of these major Neogene
extensional faults (El Camp Fault) and the northeastern edge
of the extensional relay zone developed between this fault
and the Montmell-Valles Fault System (Fig. 2B).

Alpine stratigraphic record of the central CCR and
the SE Ebro Basin margin

The Alpine stratigraphy of the study area includes an
upper Permian-Cretaceous cover unconformably overlain

Geologica Acta, 23.2, 1-25 (2025)
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by the Paleogene sedimentary infill of the Ebro Basin.
In the footwall of the Montmell-Valleés Fault System, this
sedimentary cover is formed by an up to 200 to 350 m
succession of upper Permian-Triassic rocks (Virgili ef al,
2006; Galan-Abellan et al., 2013; Mercedes-Martin et al.,
2014) (Miramar-Gaia Domain, Figs. 2; 3) encompassing
siliciclastic, limestone, dolostone, and evaporitic rocks
ascribed to Buntsandstein, Muschelkalk and Keuper facies
(Virgili, 1958; Calvet and Marzo, 1994; Arnal et al., 2002;
Galan-Abellan et al, 2013; Escudero-Mozo et al., 2017;
Orti et al, 2017; Mercedes-Martin and Buatois, 2020).
In contrast, Jurassic and Cretaceous rocks are present in
the hangingwall of the Montmell-Valles Fault System
(Montmell Domain, Figs. 2; 3). This succession exceeds 2
km in thickness (Salas, 1987) and includes Lower-Middle
Jurassic dolomitic breccias, a relatively thick succession
of Late Jurassic-Early Cretaceous (Barremian-Aptian)
shallow marine limestones, dolomites, and shales (Salas,
1987; Salas et al.,, 2001; Albrich et al., 2006), and an upper
Albian to Cenomanian sequence of fluvial and shallow
marine carbonates that represents the youngest Mesozoic
rocks preserved in the Montmell Domain (Salas, 1987;
Salas et al., 2001; ICGC, 2005, 2018). The Upper Jurassic
to lower Albian succession is part of the extensional
Montmell-Garraf Basin (Fig. 3) that developed during this
period (Anadon et al., 1979; Salas, 1987; Salas and Casas,
1993).
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FIGURE 4. A) Geological map of the SE margin of the Ebro Basin between Cabra del Camp and Vallespinosa locations based on Carrera et al. (2020)
and extended towards the northeast using the map from Colldeforns (unpublished). Labels i, i’, i” stand for the Pontils magnetostratigraphic logs
from Beamud et al., (2012). The basal portion of the magnetostratigraphic log correspondmg to the Carme Fm. present in Figure &, is located in
the map shown in Figure 1 of the supplementary material. Label j indicates the location of the Rocafort de Queralt magnetostratigraphic log from
Barbera et al. (1999, 2001). The location of the cross-section in Figure 5 is shown. The map uses UTM projection for zone 31N (ETR96 datum) and
the coordinates are in meters. B) Not-to-scale schematic lithostratigraphic panel for the Eocene units. Numbers in the panel indicate the four major
lithostratigraphic units defined in the area by Colldeforns ef al. (1994a, b): 1) basal continental unit (Mediona Fm.) and a lower marine unit (Orpi

Fm.); 2) Pontils-Cornudella Group; 3) Santa Maria Group, and 4) Barbera-Anoia Group.

reported by the well Senant-1 (Lanaja, 1987) and from the
geological maps (Figs. 2; 4) the Cenozoic succession, in
some areas, rests directly on top of the Triassic succession.

The Cenozoic stratigraphic record in the Ebro Basin
infill consists of marine and continental sediments ranging
from the Paleocene to the upper Eocene (Figs. 4; 5). As
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frontal structure of the Catalan Coastal Ranges (Cabra-Carme Monocline). B) Field image of the limit between the Triassic and the succession

of the foreland. See map in

From the Paleocene to middle Eocene (middle Bartonian),
the basin was connected to open Atlantic waters to the
northwest (Serra Kiel ef al, 2003; Garcés et al, 2020
and references therein). Yet, by the late Bartonian, the
marine connections became restricted, leading to a change
in sedimentation patterns over time (Costa et al, 2010;
Garcés et al., 2020). This was recorded by the shift from
marine marls to alternations of shales and anhydrite, halite,
carnallite and sylvinite, recorded in the central parts of
the basin and corresponding to the final stages of marine
Priabonian sedimentation (Reguant, 1967; Pueyo, 1975;
Busquets et al., 1985; Travé et al., 1996; Costa ef al., 2010).
From the late Eocene (Priabonian) (Arche et al, 2010;
Arasa and Cabrera, 2018) the Ebro Foreland Basin became
an endorheic sedimentary trough filled exclusively with
continental deposits including siliciclastic sediments in
the margins grading to lacustrine evaporites and carbonates
towards the inner basin parts (Anadon et al., 1989; Valero-
Montesa et al., 2014).

The Paleocene to Oligocene deposits present in the
study area belong to the first marine basin-fill hemicycle
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for location at regional scale and map in

for a detail section location in the study area.

and a part of the second endorheic hemicycle (Serra Kiel
et al.,2003). Colldeforns et al. (1994a, b) subdivided these
Paleogene series into four lithostratigraphic assemblages:
i) a basal assemblage formed by the Mediona and the
Orpi formations; ii) the Pontils-Cornudella Group; iii) the
Santa Maria Group from which only the Riu de Boix and
the Vallespinosa formations are present in the studied area
and iv) the Barbera-Anoia Group, the basal part of which
is a lateral equivalent of the Santa Maria Group towards the
northeast.

The basal assemblage is present in the Miramar-Gaia
Domain and the northwestern limb of the Carme-Cabra
Monocline. It begins with the Thanethian Mediona Fm.
(Anadon, 1978a, b), a discontinuous continental unit
formed by alluvial shales affected by intense pedogenic
processes that unconformably overlies the Triassic cover.
This basal unit is overlaid by the well dated marine Ypresian
(Tlerdian) Orpi Fm. (Ferrer, 1971; Anaddn, 1978 a and b;
Anadon et al, 1979), a frequently dolomitized Alveolina
limestone unit deposited in a shallow carbonate platform
environment.
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The Pontils-Cornudella Group (Anadoén, 1978 a, b;
Anadon et al, 1979, 1983, 1992; Colombo, 1980, 1986,
Colldeforns et al, 1994b) mainly encompasses non-
marine detrital and lacustrine units Ypresian to Lutecian
in age. The lower part of this unit is also present in the
Miramar-Gaia Domain ( ). From bottom to top, in
the study area, five formations have been distinguished in
this group (Anadon, 1978): a 80 to 110m thick succession
of lacustrine limestones alternating with varicoloured
mudstones of the Santa Candia Fm.; a 170m thick mud
flat plain facies (red mudstones with minor sandstone and
calcareous intercalations) of the Carme Fm.; a variable
thickness (up to a maximum of 100m) of evaporites and
lacustrine carbonates of the Valldeperes Fm.; the lacustrine
and palustrine limestones with interbedded marl and chert
of the Bosc d’en Borras Fm., which reaches its maximum
thickness (about 100 m) at the NE end of the study area and
grades towards the southwest to distal alluvial mudstones.

Above, the Bartonian and Priabonian deposits of the
Santa Maria and Barbera-Anoia groups are preserved in
the northwest limb of the Carme-Cabra Monocline (

). In the study area, the Santa Maria Group embraces up
of nearly 300m-thick succession of shallow marine and
transitional facies (Ze. deltaic, fan-deltaic conglomerates,
sandstones, coral-bearing limestones, and marlstones with
bioclastic sandstones intercalations) (Ferrer, 1971; Anadon
and Marzo, 1986; Serra Kiel ef al, 2003) integrated in the
Vallespinosa Fm. (Colldeforns ef al., 1994a).

On the other hand, the Barbera-Anoia Group (Colombo,
1980, 1986; Colldeforns, 1994a) comprises the Bartonian
to Oligocene continental and lacustrine deposits. It includes
up to six different formations: Montblanc, Sant Miquel,
Sarral, Rocafort, Rauric and Santa Coloma (Colombo, 1980,
1986; Colldeforns et al, 1994a, b). The Montblanc Fm.
is made up of distal alluvial red beds that are interbedded
with the marine sandstone of the Vallespinosa Fm. in
its lower part, which becomes thicker and predominant
towards the northeast. To the southwest, discontinuous
alluvial conglomerate intercalations of the Cabra del Camp
Mb. (Colldeforns, 1994a) are present showing a maximum
thickness of around 200 m in the Cabra del Camp area
instead ( ). The Sant Miquel Fm. (Colombo, 1980,
1986) corresponds to a 600m-thick succession of proximal
alluvial fan conglomerates that unconformably overlay the
marine sediments of the Santa Maria Group (Priabonian
Riu de Boix Fm.) (Anadon ef al, 1986; Colldeforns
et al, 1994a). Towards the north and northeast, these
conglomerates laterally change to late Priabonian to early
Oligocene successions. These ones include the lacustrine
carbonates and marls of the Sarral and Rocafort formations,
the fluvial and lacustrine shales, marls, and lenticular
conglomerates of the Rauric Fm. and the lacustrine marls
and gypsums of the Santa Coloma Fm. (Benzaquen et al.,
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1973; Colombo, 1980, 1986; Colldeforns et al, 1994a, b).

The dating of these marine and non-marine
lithostratigraphic units was formerly established and
lately refined through the definition of biostratigraphic
assemblages and biozones (Ferrer, 1971; Anaddn, 1978a,
b; Anadon and Feist, 1981; Anadon et al, 1983, 1987,
1992; Agusti et al., 1987; Feist et al., 1994; Serra-Kiel et
al,, 2003; Sanjuan et al., 2014; Tosal et al., 2019; Minwer-
Barakat er al, 2023). Further on, magnetostratigraphic
studies done in neighbouring areas allowed the refinement
of the biostratigraphic ages (Barbera 1999; Barbera et al.,
1999, 2001; Beamud et al., 2012; Costa et al., 2010, 2013;
Gomez-Paccard et al, 2011; Garcés et al., 2020).

METHODOLOGY

The present study uses an integrated approach
that combines geological mapping, the construction
of a geological section, provenance analysis and
magnetostratigraphic dating. A NW-SE-oriented structural
section was constructed combining up to 140 bedding
dips in Triassic to Eocene rocks. This section uses a
new geological map of the SE margin of the Ebro Basin
between Cabra del Camp and Vallespinosa towns (Carrera
et al., 2020), which partially covers the area of study and
was extended towards the northeast using a geological map
done by Colldeforns (unpublished). All the data provided
with the map ( ) are obtained from the field and the
location was acquired with a device equipped with a GPS.
The use of both maps allows constraining the contacts
between stratigraphic units, stratigraphic thicknesses as
well as structural relationships and attitudes ( ).
Additionally, the use of 3D digital outcrop models was used
to better refine the contact of some of the stratigraphic units

( )-

The provenance analysis includes two main parts: the
analysis of the palacontological content in clasts from
foreland conglomerates in order to define the tectonically
uplifted areas exposed to erosion in the hinterland of
the orogenic system, and the integration of paleocurrent
indicators (iZe. base marks, channels) to determine the
relative location of the alluvial deposits source. Up to 14
samples gathered through the Paleogene succession along
the Ebro Basin margin between Cabra del Camp and
Vallespinosa towns were analysed using thin sections (see
map in for their location).

The magnetostratigraphic analysis aims for an accurate
reconstruction of the Paleogene compressional deformation
in the central CCR by refining the age of the Paleogene
succession to constrain the timing of the synorogenic
sedimentation. The Pontils magnetostratigraphic section
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was carried out north and northwest of Vallespinosa where
a relatively continuous northwest-dipping Paleogene
succession occurs ( ). The sampled section consists
of 238 measurement sites along ~1,430m of sedimentary
record, which yields an average sampling resolution of 6
m/sample ( ). The succession
shows a relatively steep dip of 64° at the base of the section
which progressively decreases to a gentle dip of 15° at
the top. The first 410 m of the Pontils section include the
Carme, Valldeperes, Bosc d’en Borras and Montblanc
formations of the Pontils-Cornudella Group, followed by
300 m of the Vallespinosa Fm. of the Santa Maria Group,
extending up to the meter 716. The Montblanc-Riu de
Boix formations along the Pontils section were not suitable
for magnetostratigraphic purposes and no samples were
obtained until the meter 800, where the first Sant Miquel
conglomerates of the Barbera-Anoia Group crop out (

). Details about the sampling and laboratory procedures
of the magnetostratigraphic analysis are provided in the

of the

RESULTS
Structure of the central SE margin of the Ebro Basin

The structure of the SE margin of the Ebro Basin across
Cabra del Camp is illustrated in the section of the
Overall, the margin in the study area depicts an anticline-
syncline geometry developed at the tip of a low-angle thrust
that uplifts the basement and the sedimentary cover over a
gently northwest-dipping regional level of the Ebro Basin
( ). The most prominent structure in the section is
the Cabra-Carme Monocline, which is cored by a trishear
triangular zone (understood as the model proposed by Ersley,
1991) developed at the tip of the Gaia-El Camp Thrust.
This monocline represents the northwest deformation front
of the CCR and involves the Variscan Basement and the
unconformably overlying sedimentary cover made up by a
Germanic Triassic succession (Buntsandstein, Muschelkalk
and Keuper) and the Paleogene strata of the Ebro Basin
fill. A splay of the Gaia-El Camp Thrust propagates up
to the surface showing a relatively low displacement. The
trace of this thrust can be followed at surface for around
6 km towards the northeast up to a zone characterized by
the presence of NW-SE-oriented faults and the relatively
thick conglomerates of the Sant Miquel Fm. ( ). From
this point on, towards the northeast, the thrust appears
progressively buried by the lower to middle Eocene Santa
Candia and Carme formations.

As shown by dip data and the cartographic traces, the
geometry of the thrust footwall displays a pair of anticline-
syncline structures that extend westward, parallel to the
deformation front ( ; 5). Towards the northeast, the
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folds plunge and merge into a monocline structure ( ).
The southern limb of the footwall syncline is characterized
by the presence of nearly vertical beds of the Cabra del
Camp Mb., which rapidly reduce their dip towards the
northwest. This trend continues further northwest where
dips between 5° and 8° are present around the location
of Sarral town ( ). At depth, the aforementioned
anticline-syncline pair has been interpreted as the result
of the propagation of a southeast-directed out-of-syncline
thrust, probably detached within the ductile levels of the
middle Muschelkalk in the Triassic succession ( ).
This structure transfers slip along the anticline forelimb to
accommodate the tectonic shortening (Mitra, 2002).

In terms of lithostratigraphy, the conglomerates of the
Cabra del Camp Mb. laterally and vertically grade towards
the northwest into the finer-grained sediments of the
Montblanc Fm. and, towards the northwest, into the marine
succession of the Vallespinosa Fm. ( ; 5). These
three formations are overlaid by the massive conglomerates
of the Sant Miquel Fm.

Additionally, the Cabra-Carme Monocline is affected
near its hinge by the El Camp Fault, a high-angle, SE-
dipping Neogene extensional fault that is interpreted as
rooted in the Gaia-El Camp Thrust. This Neogene structure
bounds towards the northwest the El Camp Basin and
controls the development of a semi-graben depocenter on
its hangingwall ( 3 9).

Paleocurrents and Provenance analysis

Paleocurrentindicators such as base marks, imbrications,
channel base axis ( ) were collected in the field in
conglomeratic beds around Cabra del Camp ( ; 60).
Dips at these locations range from the nearly verticalized
beds in the Cabra del Camp town area in the southern limb
of the syncline at this location to the 25° of the Sant Miquel
Fm. north of Cabra del Camp ( ; 5). Once restored
to the horizontal, paleocurrent lineaments reveal a main
flow direction towards the west and northwest ( ),
therefore implying a source area located east to southeast
of the study area.

On the other hand, the analysis of the fossil content
of carbonate clasts, which were sampled from coarse
grained beds at 14 different sites distributed through the
Paleogene succession along the margin (see locations in

), has been performed aiming to provide information
about their provenance and, therefore, the determination of
the tectonically active areas. Samples 01 to 08 and 12 to
14 were collected at different levels of the Montblanc and
Vallespinosa formations and Cabra del Camp Mb. Samples
09 to 11 were collected in undetermined alluvial deposits.
To help in the tectonostratigraphic analysis, which is the
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FIGURE 6. A) Paleochannel bottom outcrop in conglomerates of the
Cabra del Camp Mb. used for paleocurrent measurements. B) Ripples
at the bed top of marine-continental transitional facies. Dashed white
arrow indicates the paleocurrent direction. C) Stereographic plot of
paleocurrent measurements in the Cabra Fm. around the Cabra
del Camp (n= number of measurements). See map in for
location. D) Restored paleocurrent directions showing the predominant
direction of the sediment supply.

objective of this study, only the sites close to the Cabra
section (sites 01 to 04 sampled in the Cabra del Camp Mb.)
are detailed while descriptions for each investigated sample
can be found in the

Site 1 clasts are mainly grainstones dominated by
Alveolina, Opertorbitolites, miliolids, other foraminifera
and recrystallized green algae ( ), as well as
packstones containing peloids, orbitolinids, and fragments
of rudist bivalves, other molluscs, and echinoids. Clasts
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exhibiting wackestone to packstone textures with ostracods
occur ( ) and sometimes the ostracod-bearing clasts
include gastropods and can show bioturbation traces.
Mudstones, dolostones, and wackestone to packstone
textures with small miliolids and other foraminifera (

), bivalves and serpulids, are also common. Other clast
facies identified include sandy limestone, a mudstone-
wackestone with characean remains, a grainstone with
recrystallized ooids and calcareous algae, a grainstone with
ooids exhibiting radial and concentric coatings ( ),
and grainstone textures with ooids, peloids, intraclasts,
orbitolinids, and fragments of oysters and other molluscs.
Alveolina and fragments of orbitolinids were also
recognized within the conglomerate matrix.

Site 2 clasts are made up of dolomitic limestone with a
grainstone texture containing peloids ( ), miliolids,
other foraminifera, fragments of molluscs, echinoids, and
calcareous algae, as well as a highly recrystallized limestone
clast with abundant calcareous green algae ( ).
Fragments of oysters, gastropods, echinoids, and bryozoans
occur. Non-skeletal components found in this latter highly
recrystallized grainstone include peloids, silt-sized quartz
grains and intraclasts. Non-skeletal components found in the
highly recrystallized grainstone also include peloids, silt-
sized quartz grains and intraclasts. Intraclasts are made up
of packstone to grainstone textures with scarce ooids, other
coated grains, peloids and silt-sized quartz. Furthermore,
conglomerate clasts with packstone to grainstone textures
including miliolids, Alveolina, Opertorbitolites, small
rotaliids, other foraminifera, and fragments of echinoids
and molluscs, were also recognized.

Site 3 sample contains clasts with orbitolinids (

), encrusting and agglutinating foraminifera, other
foraminifera, fragments of oysters, other molluscs,
calcareous algae and serpulids, as well as non-skeletal
components such as peloids, intraclasts and silt-sized
quartz. An additional investigated clast was made up
of a recrystallized packstone texture with peloids, silt-
sized quartz, miliolids, other foraminifers, and fragments
of oysters, other molluscs, bryozoans, echinoids, and
calcareous algae. Further analysed conglomerate clasts
exhibit wackestone textures with small foraminifera,
mudstone to wackestone textures, occasionally bioturbated,
with ostracods and gastropods, packstone to grainstone
textures with orbitolinids, peloids, and fragments of oysters,
other molluscs, echinoids, corals, and calcareous algae, and
grainstone textures with miliolids, Alveolina and other
foraminifera. Finally, a clast made up of a “bacinellid”
fabric was also identified ( ).

Site 4 clasts exhibit grainstone textures with abundant

orbitolinids. Miliolids, other foraminifera, and fragments
of Marinella lugeoni, Permocalculus, other calcareous
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FIGURE 7. Clast microfacies. A) Photomicrograph of a grainstone texture from the Ypresian Orpi Fm. showing two Alveolina tests (left) and one
of Opertorbitolites (upper right). Sampling site 1. B) Detail of a pebble-sized clast with ostracods giving rise to a wackestone texture. Santa
Candia Fm. (late Ypresian-Bartonian?). Sampling site 1. C) Close-up view of a packstone clast (centre to right) with small foraminifera and
a section of a bivalve. Basal part of the Orpi Fm. (Ypresian). Sampling site 1. D) Sand-sized clast exhibiting a grainstone texture with ooids
perhaps eroded from the Cenomanian Can Xuech Fm. Note the presence of an orbitolinid within the conglomerate matrix (right). Sampling
site 1. E) Close-up view of a dolomitized miliolid and peloidal grainstone of Barremian-Aptian age. Sampling site 2. F) Photomicrograph of
a recrystallized limestone exhibiting abundant sections of calcareous green algae. Cretaceous? Sampling site 2. G) Detail of an orbitolinid
grainstone of Barremian-Aptian age. Sampling site 3. H) Pebble-sized clast of Aptian age showing a “bacinellid” fabric. Sampling site 3. 1)
Barremian-Aptian grainstone texture exhibiting a section of a belemnite rostrum (centre) under cross polarized light. Note the presence of an

orbitolinid in the lower left part of the image. Sampling site 4.

algae, bryozoans, echinoids, oysters, other bivalves, corals,
and sections of belemnite rostra also occur ( ). Non-
skeletal components include well-rounded intraclasts,
peloids and silt-sized quartz grains. A calclithite sample with
silt to sand-sized quartz grains, peloids, ooids, miliolids,
other undetermined benthic foraminifera and fragments of
orbitolinids was also collected. The calclithite also includes
small dolostone, mudstone and grainstone clasts. The latter
is mainly made up of peloids and fragments of molluscs.

The Pontils magnetostratigraphic section
Thermal demagnetization of the studied samples

reveals, in general, two stable paleomagnetic components
after removal of a low temperature component that

Geologica Acta, 23.2, 1-25 (2025)
DOI: 10.1344/GeologicaActa2025.23.2

parallels either the present-day magnetic field or the
drilling direction. This low temperature component
is usually removed below 200-230°C and will not be
further considered. Above this, characteristic components
pointing north with positive inclinations or south
with negative inclinations are found along section.
The temperature intervals selected to calculate each
characteristic component are compiled in the

. In general, characteristic
components of grey mudstones and limestones are defined
between 300-500°C pointing to (titano)magnetite as the
main remanence carrier. Characteristic components in red
mudstones and fine-grained sandstones are defined athigher
temperatures, up to 650-690°C, pointing to hematites as the
main remanence carrier. Despite this, some components

[11]
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FIGURE 8. Magnetostratigraphy of the Pontils section. A) Magnetostratigraphic section and correlation to the GPTS (Gradstein et al., 2020). PO
and RO correspond to Pontils and Rocafort de Queralt fossil sites, respectively, with their attribution to Mammal Paleogene Reference Levels
in brackets. White squares in the VGP graph represent type 3 directions, discarded to build the local magnetostratigraphy. B.A. Gp., B.B. and
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rates values and evolution for the Pontils section. Blue arrow: Bartonian transgressive event at the base of Santa Maria Group. Orange arrow:
time of disconnection from the ocean of the Ebro Basin.
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are defined at temperatures around 400°C thus suggesting
a mixture of (titano)magnetite and hematite in the red
beds. No substantial changes in magnetic susceptibility
are observed upon progressive thermal demagnetization
( ), indicating that
not significant mineral neoformation occurred inside
the thermal demagnetizer. The calculated characteristic
components have been assigned to three qualities. Type
1 quality is assigned when the paleomagnetic direction
can be calculated with more than 3 demagnetization steps
and demagnetization diagrams yield linear trends to the
origin of coordinates with maximum angular deviations
(MAD) around 5°. Directions are defined as type 2, when
MAD >5°, yet they can still be calculated by at least three
demagnetization steps. Samples with erratic trends in
which directions can be hardly calculated, often with only
two demagnetization steps, yield type 3 directions, which
are not considered for building the sequence of polarity
zones in the magnetostratigraphic section. Nevertheless,
this is not a significant issue since 205 directions out of
238 sites have been assigned to either type 1 or 2, which
represents that 86% of the demagnetized samples yield
reliable paleomagnetic directions. Magnetic polarities
are deduced after computing the virtual geomagnetic
pole latitude (VGP) from the characteristic component of
each site. Positive values of VGP are interpreted as normal
polarities and are represented in black when building the
local magnetostratigraphic column ( ). Accordingly,
negative VGP values are interpreted as reversed polarities
and represented in white in the local magnetostratigraphic
column. To define the magnetozones that constitute the
local magnetostratigraphy at least two consecutive sites of
the same polarity are needed. By doing so, 9 reversed and
9 normal magnetozones have been identified in the Pontils
magnetostratigraphic section which can be correlated to
the Geomagnetic Polarity Timescale (GPTS).

The magnetostratigraphic section is located a few
km southwest of the Pontils village ( ), where the
fossil locality of Pontils was reported (Anadon, 1978,
Anadon and Feist, 1981; Minwer-Barakat ef al, 2023).
The Pontils fossil site was assigned to the MP15 Mammal
Paleogene Reference Level by Schmidt-Kittler (1987).
Lithostratigraphic correlation of the fossil site to the
Pontils magnetostratigraphic section places the first levels
containing significant fossil mammal remains (sample
PO22 from Minwer-Barakat et al., 2023) around the meter
330 and the last levels containing significant mammal
fossil remains (PO39 from Minwer-Barakat et al, 2023)
around the meter 400. Therefore, both levels are contained
respectively between the base and the top of the Montblanc
Fm. ( ). Additionally, the fossil site Rocafort de Queralt
(RO), assigned to MP19-20 (Anadon ef al., 1987), can be
lithostratigraphically correlated from the neighbouring
Rocafort magnetostratigraphic section (Barbera et al,
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2001) to the meter 1,350 of the Pontils section, within the
Sant Miquel conglomerates of the Barbera-Anoia Group

( )-

DISCUSSION

This discussion is divided into three parts: first, the
attribution of age of the clasts sampled in the Cabra del
Camp conglomerates; second, the age of the sampled
Eocene units from the paleomagnetic study; and third, the
tectono-stratigraphic interpretations and their implications
in the tectonic evolution of the central CCR.

Source area age attribution of the upper Eocene
clasts in the central SE margin of the Ebro Basin

The northwest-directed paleocurrents measured within
the sampled upper Eocene strata ( ; 0) suggest the
presence of higher reliefs toward the southeast of the study
area, indicating a possible source of sediment input from
elevated terrains. This pattern implies that the southeast
region may have acted as a topographic high or a tectonically
active area during the deposition of these strata, influencing
sediment transport and depositional processes across the
basin.

The detailed fossil content description carried out on
clasts from the upper Eocene alluvial units (Cabra Mb.,
Montblanc Fm. and Sant Miquel Fm.) and the shallow
marine units (Vallespinosa Fm.) provides key information
about the formations that were exhumed and eroded in
the source area at the time of sedimentation. A detailed
summary with the attributed ages for each studied sample
can be found in

A series of clast-types have been used to determine the
original stratigraphic units where these clasts are derived
from. These types are described below from younger to
older and are summarized in

Source area age attribution
Cretaceous Paleogene
Lower Cretaceous | Upper Cretaceous Eocene
Sampled unit Barremian-Aptian Cenomanian Ypresian
®
Vallespinosa Fm. @
Cabra del Camp Mb. @ @@@@ @ @@ @@@

FIGURE 9. Source area age attribution of the upper Eocene clasts in
the central SE margin of the Ebro Basin. Clast type classification:
A: Ypresian wackestones-packstones. B: Alveolina limestone. C:
Cenomanian ooidal grainstones. D: Lacustrine limestones (Barremian-
Aptian, Upper Cretaceous, Ypresian. E: Barremian-Aptian: orbitolinid
limestone. F: Barremian Aptian grainstones. G: Undifferentiated
Cretaceous limestone. H: Undifferentiated Cretaceous or Early Eocene
dolostones.

[13 ]
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Type A clasts: Ypresian

The wackestone and packstone textures with
undetermined small foraminifera ( ) recognized in
sites 01 and 03 are characteristic of the basal part of the
Orpi Fm. (see figure 28 in Anadon, 1978a, b) and, therefore,
are Ypresian (Ilerdian) in age.

Type B clasts: Ypresian

Grainstone clasts rich in Alveolina, Opertorbitolites
( ), miliolids, gypsinids, and algae are prevalent
throughout the studied clastic deposits and consistently
present across nearly all sampling sites. These clasts, as
well as the Alveolina, Opertorbitolites and gypsinid tests
found in the conglomerate matrix in sites 07, 08, 09, 11 and
12, were also eroded from the Ypresian (Ilerdian) Orpi Fm.
(see Anadon, 1978).

Type C clasts: Cenomanian

The grainstone with well-formed ooids ( )
exhibiting radial and concentric coatings sampled in site
01 is probably Cenomanian in age. Esteban (1973) reported
similar facies from the Cenomanian Can Xuech Fm. in the
Montmell area ( ).

Type D clasts: Barremian-Aptian, Upper Cretaceous,
Ypresian

The age of the freshwater limestone facies with
ostracods ( ) and characeans recognized in clasts
from sites 01 and 03 could have been sourced from the
Barremian-Aptian and/or Upper Cretaceous as have been
reported in the CCR (e.g. Esteban, 1973; Salas, 1987,
Martin-Closas et al, 2018, this volume), but also from
the Ypresian (Cuisian) Santa Candia Fm., which belongs
to the Pontils-Cornudella Group and overlies the Ypresian
(Tlerdian) Orpi Fm. (Anadén, 1978).

Type E clasts: Barremian-Aptian

Clasts and matrix samples containing orbitolinids
also occur in almost all sampled sites (
). The presence of orbitolinids, and occasionally of
Nummuloculina, Marinella lugeoni, Permocalculus, as
well as fragments of rudist bivalves and belemnites (

), indicate a Barremian-Aptian age (Esteban, 1973;
Robles, 1982; Salas, 1987).

Type F clasts: Barremian-Aptian

The grainstones dominated by the presence of peloids,
scarce ooids, miliolids ( ) and fragments of molluscs
and echinoids found in sites 01 to 04 also show facies like
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those observed in Barremian-Aptian platform carbonates
from the CCR (Esteban, 1973; Robles, 1982; Salas,
1987) and are therefore ascribed to this age interval. The
“bacinellid” fabric-bearing clast ( ) recognized in
sampling site 03 is also representative of the Aptian Stage
(see Schlagintweit and Bover-Arnal, 2013).

Type G clasts: undifferentiated Cretaceous

In sampling site 02, a clast made up of highly
recrystallized limestone with abundant calcareous green
algae was collected ( ). The age of this sample is
unknown. Similar deposits dominated by calcareous
green algae, which are common in Cretaceous platform
carbonates (e.g. Esteban, 1973; Salas, 1987), have not been
reported in the Paleogene record of the CCR (Anadon,
1978). Therefore, the age of this sample has been ascribed
to the Cretaceous.

Type H clasts: undifferentiated Cretaceous or early
Eocene

In the CCR, dolostone stratigraphic intervals that could
have sourced the dolostone clasts found in the investigated
conglomerate deposits of the Cabra del Camp Mb. (Sites
01 to 04) include the Barremian-Aptian succession
(Robles, 1982; Salas, 1987), the Cenomanian Can Xuech
Fm. (Esteban, 1973) and the Orpi Fm. of Ypresian age
(Anadon, 1978). The Jurassic and Triassic record also
includes dolostone intervals (e.g. Salas, 1987). However,
non-dolomitized clasts older than Lower Cretaceous have
not been recognized in the sampling sites. Therefore,
the dolostone clasts identified are more likely to be of
Cretaceous or early Eocene in age.

Age of the Pontils magnetostratigraphic section

The proposed correlation of the Pontils local
magnetostratigraphic section to the GPTS (Gradstein
et al, 2020) suggests that the deposition of the Pontils
section occurred between C20r to C13r chrons (Lutetian
to Priabonian) ( ). This correlation is based on both
the reversal pattern, the location of fossil sites PO and
RO along the section and cartographic relationship with
neighbouring sections (Lopez-Blanco et al., 2024). Fossil
site RO (MP19-20) is located around the meter 1350 in the
Pontils section coinciding with the upper part of the normal
magnetozone NO ( ). Correlation of RO to C15n by
Barbera et al (2001) also favours the correlation of N9 to
C15n in the Pontils section, which pins the upper part of the
section. The base of the Sant Miquel conglomerates is also
characterized by a long normal magnetozone N6, which
we propose to correlate to C16n based on the geological
mapping-deduced vertical and lateral relationships with the
Tossa Fm. (Lopez-Blanco et al, 2024) that is correlated
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to Cl16n by Costa et al (2013). Therefore, deposition of
the Sant Miquel conglomerates occurred from C16n up to
C13r (36.2 Ma up to 34.5 Ma according to GPTS version of
Gradstein et al (2020)). The Riu de Boix-Montblanc Fm.
does not provide a characteristic reversal pattern since no
data are available due to bad outcrop conditions. However,
it has been assigned to C16r.2-C17n.1n ( ). Below,
the Vallespinosa Fm. within the Santa Maria Gp. yields N3,
N4 and part of N3 normal magnetozones and R4 and RS
reversed magnetozones. N5 is correlated to C17n.2n and
3n (Priabonian-Bartonian), whereas R5, N4, R4 and top of
N3 are correlated to Bartonian chrons C17r.3r, C18n.1n,
Cl18r.1r and top of 18n.2n, respectively. The Montblanc
Fm., in a stratigraphic position equivalent to the Pontils
fossil site (MP15, ), also records the magnetozone
N3 and the reversed magnetozone R3, which are correlated
to C18n.2n and the base of C18r.2r respectively. Therefore,
the Pontils fossil site correlation to the GPTS confirms the
Bartonian age assigned by Minwer-Barakat et al (2023)
and not the uppermost Lutetian age as previously suggested
by Beamud ef al (2003) and Beamud (2013) due to an
imprecise location of the fossil site on top of the Bosc d’en
Borras Fm. Limestones and the heterochronous character
of its top due to the transition to SW to detrital Montblanc
Fm. strata. From this correlation the fossil site spans from
approximately 41 Ma (PO22, reversed polarity) to 39.8
Ma (PO39, normal polarity). Following down-section,
the Bosc d’en Borras, Valldeperes and Carme formations
reversal pattern formed by magnetozones N2, R2, N1 and
R1 are proposed to correlate to C19n, C19r, C20n and C20r
respectively ( ).

Although bio- and chronostratigraphic implications
of the European Paleogene reference levels are beyond
the scope of this study, it is worth pointing out that the
Bartonian age of the Pontils fossil site derived from this
work only refers to the Pontils fossil site and not to the
calibration of the MP15 reference level. As an example, the
Sant Jaume de Frontanya, (SJF) fossil site (Busquets et al.,
1992; Moya-Sola and Kohler, 1993), which is also assigned
to MP15 reference level, has been traditionally dated as
early Bartonian (Bonilla-Salomén et al., 2016). However, a
new 6.5 km thick composite magnetostratigraphic section
within the Ripoll syncline, in the south Pyrenean foreland,
correlates the SJF fossil site to C20n (late Lutetian) (Juvany
et al., 2024). This implies a time span of more than 3Myr
between SJF and Pontils fossil sites, both belonging to the
MP15 reference level. Therefore, further studies are needed
in order to understand the chronostratigraphic significance
of the Paleogene mammal reference levels.

Using the absolute ages obtained from the correlation
of the magnetostratigraphic log with the GPTS 2020 and
the stratigraphic thickness corresponding to the different
magnetozones, values of sedimentation rates have also been
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calculated ( ). The Pontils-Cornudella Group (C20n
to C19n) correlates to low sedimentation rates with an
average value of 10.6cm/kyr. The Montblanc, Vallespinosa
and Riu de Boix formations (C18n to C16r) also represent
low sedimentation rates, although slightly increasing the
values between 7.3 at the base and 13.6 cm/Kyr towards the
top ( ). Conversely, the base of the Sant Miquel Fm.
at C16n shows an abrupt change in the sedimentation rates
to much higher values sustained for 1Myr (from 50.6cm/
kyr at C16n to 51.2 cm/kyr at C15r), finally decreasing to
22cm/kyr at C15n.

Tectonostratigraphic evolution of the central Catalan
Coastal Ranges during the Paleogene compression:
relative and absolute timing of thrust emplacement

The compressional phase related to the convergent
motion between the Iberian and Eurasian plates started in
the late Santonian (Late Cretaceous) (Roest and Srivastava,
1991; Rosenbaum et al., 2002). However, the first evidence
of the transmission of the compressional stresses into
the Catalan Coastal Ranges area occurs at the end of the
Cretaceous (possibly Maastrichtian), as recorded in the
Miramar-Gaia Domain by the presence of a paraconformity
that brings in contact basal Paleogene and Triassic
(Keuper) strata ( ; 5). This unconformity denotes a
period of regional uplift linked to either, a Late Cretaceous
contractional deformation, or an isostatic adjustment after
the Late Jurassic to Early Cretaceous rifting phase (Marin ef
al.,2021). A subsequent period of tectonic quiescence from
Paleocene to middle Eocene (late Lutetian) is illustrated by
the sedimentation of conformable fine-grained terrigenous
and carbonate beds deposited in the distal areas of the
South-Pyrenean foreland (Anadon, 1978 a, b; Anadon et
al., 1985). The presence of Alveolina and Opertorbitolites,
as well as freshwater limestone facies in clasts from the first
conglomeratic beds present in the basin margin suggests
that, at least, Paleocene-Ypresian (Ilerdian to lower
Cuisian) strata from the Mediona, Orpi and Santa Candia
formations and, probably, upper Cuisian to Lutetian from
the Carme, Valldeperes and Bosc d’en Borras formations,
were unconformably overlying Cretaceous rocks of the
Montmell-Garraf Basin area ( ). This stratigraphic
succession indicates the absence of significant deformation
or creation of relief in the adjacent areas and its extension
towards the southeast remains uncertain.

The first significant compressional period in the study
area corresponds to the beginning of the tectonic inversion
of the Montmell Fault, which drives the uplift of Montmell-
Garraf Basin and the overlying strata over the undeformed
Ebro Basin ( ). This inversion is characterized by
the development of footwall shortcuts in the upper part
of the reactivated faults as well as the presence of minor
buttressing (e.g SE-directed backthrusts and pop-up

|15 |
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A: Paleocene to late Lutetian (pre-compression stage) NW-SE

Mesozoic sediments of the Montmell-Garraf Basin overlaid by a pre-compression Paleocene to lower Eocene succession.

Ebro High Montmell-Garraf Basin
?

S S

B: Bartonian - early Priabonian (syn-compression | stage)

Tectonic inversion of the inverted Montmell-Garraf Basin.

Start of the Catalan Intraplate Chain build-up: uplift, denudation and sediment transport of exhumed the Mesozoic towards the NW.
Deposition of the syn-compression I (syn-inversion) sequence north of the Montmell Fault.

E

Undeformed Ebro Basin denudation Inverted Montmell-Garraf Basin

=
=5,

Cabra alluvial fan
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C: Early to late Priabonian (syn-compression Il stage)

Development of the Gaia-El Camp Thrust as a major short-cut of the Montemell Fault.
Uplift and erosion of the Miramar-Gaia Domain including the syn-compression I sequence.
Deposition of the Sant Miquel del Montclar conglomerates (syn-compression II sequence)..

| i
| i

Undeformed Cabra-Carme Inverted Montmell-Garraf Basin

Ebro Basin Monocline Miramar-Gaia Domain denudation

St. Miquel del Montclar denudation
alluvial fan - __

PALEOGENE (Paleocene-Eocene)

Lithostratigraphy Age ¥ Fixed point for restoration
Sant Miquel Fm. - Priabonian Fault
Vallespinosa Fm. (Sta Maria Gr.) - ) Inverted fault
Cabra del Camp Mb. (Montblanc Fm.) [ | S:rrlt;g:;)onian Future fault
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FIGURE 10. Schematic sequential structural restoration of the Gaia-Montmell section applying flexural slip and bed length preservation. A) late
Lutetian pre-compressional stage. B) late Lutetian — middle Bartonian syn-compressional stage. C) middle Bartonian to late Priabonian latest stages
of the compressional stage. No vertical exaggeration.
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Cabra-Carme Monocline «— EI Camp Basin—

Ebro Basin

[ syn-compression II / Syn-i
[ Syn-compression |/ Syn-inversion | (pre-Gaia-El Camp Thrust kinematic) .~ Paleogene thrust

ion Il (syn-Gaia-El Camp Thrust kinematic) .~ Neogene extensional fault

[ Pre-compressoin / Pre-inversion .~ Reactivated fault

[ Basement

(projected topography
from the NW)

El Cogullé (Catalan Coastal Ranges)

La Voltorera

i Cabra del
Camp

FIGURE 11. Geological cross-section of the SE margin of the Ebro Basin across the locality of Cabra del Camp showing the tectono-sequences
differentiated by the tectono-stratigraphic analysis. See Figure 4 for section location.

structures) in the Montmell Fault hangingwall (Marin et al.,
2021). The uplift of the Montmell-Garraf Basin controlled
the denudation of the positive reliefs and the deposition
of the first syn-compression succession recorded in the
studied sector of the Ebro Basin margin (Fig. 11). The base
of this succession corresponds to the first conglomerates of
the Cabra del Camp Mb. (Montblanc Fm.). The observed
parallelism with the strata underneath denotes that their
deposition was before the emplacement of the Gaia-El
Camp Thrust (pre-Gaia-El Camp Thrust kinematic, Fig.
1) therefore contradicting previous interpretations that
included these conglomerates as part of a growth sequence
(ie. Anadon et al., 1986).

The analysis of the fossil content in clasts from the Cabra
del Camp Mb. conglomerates and coeval units (Montblanc
and Vallespinosa formations) reveals that the source area
contained rocks from the Lower Cretaceous (Barremian-
Aptian), Upper Cretaceous (Cenomanian, Turonian and,
possibly, Senonian) and lower to middle Eocene (Ypresian-
Lutetian). Despite the current levels of erosion south of the
Montmell Fault in the Miramar-Gaia Domain does not allow
the recognition of rocks younger than Paleocene (Figs. 2B,
(), an alluvial system at the footwall of the Montmell Fault
and extending up to the present-day location of Cabra del
Camp is proposed for this period (Cabra alluvial fan, Fig.
10B). This reconstruction contemplates the presence of
(unpreserved) proximal alluvial facies at the foothills of
the inverted Montmell-Garraf Basin laterally changing to
distal facies towards the northwest above the still inactive
Gaia-El Camp Thrust. This reconstruction is supported
by the measured NW-directed paleocurrents and the fact
that one of the main sources of the sediments consisted of
Cretaceous rocks comparable to the formations described
in the Mesozoic basins located southeast of the study
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area (e.g. Montmell-Garraf) (Esteban, 1973; Esteban and
Robles, 1976; Salas et al, 2001; Moreno-Bedmar et al,
2017; Martin-Closas et al., this volume). Consequently,
the conglomerate beds currently outcropping in the
surroundings of Cabra del Camp in the Ebro Basin margin
(Cabra del Camp Mb., Fig. 4) can be described as the
distal remains of an alluvial system that expanded over the
Miramar-Gaia Domain (Fig. 10B). To the northwest, the
Cabra alluvial system would laterally transition into the
finergrained facies of the Montblanc Fm. and the marine
sediments of the Vallespinosa Fm. (Fig. 4B)

The beginning of the inversion and the uplift of
the Montmell-Garraf Basin can be stablished from the
paleomagnetic analysis performed in sediments of the
Santa Maria and Barbera-Anoia groups (Iig. &), which
constrains the age of the base of the Montblanc Fm. and
its lateral equivalent the Cabra del Camp Mb. (Figs. 4; 5)
as early Bartonian (41Ma). This age of initial contractional
movements and inversion agrees with the fact that the
compressional deformation in the Catalan Coastal Ranges
progressed from northeast to southwest up to the middle
Oligocene (Guimera and Santanach, 1978; Guimera,
1984; Anadon et al, 1985). The earliest syn-tectonic
sediments recorded along the SE Ebro Basin margin are
the early Eocene Cairat Fm. (Ypresian-early Cuisian in
age), which were deposited northeast of the study area in
the Montserrat-Sant Lloreng del Munt area (LL.opez-Blanco,
2002) (Fig. 2A).

The compressional deformation continued and the
whole ensemble of the MiramarGaia Domain became
uniformly uplifted by the Gaia-El Camp Thrust (Fig.
10C), a low-angle thrust previously interpreted as a major
footwall shortcut that provided a smoother fault trajectory
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during the inversion of the Montmell Fault (Marin et al.,
2021). The emplacement of the Gaia-El Camp Thrust is
the responsible of the Cabra-Carme Monocline formation,
which represents the deformation front of the Catalan
Coastal Ranges. The deformation was first accommodated
within a trishear triangular zone developed at the tip of
the Gaia-El Camp Thrust. As deformation progressed, an
out-of-syncline back-thrust developed to accommodate
the shortening, folding the previously deposited syn-
compression I succession ( ; ; 1'1) and resulting
in the characteristic anticline-syncline pair observed
north of Cabra del Camp ( ). Similar out-of-syncline
structures have been previously recognized in the Miramar
Range southwest of the study area by Gomez and Guimera
(1999) (see map in for location).

The Sant Miquel conglomerates were deposited during
this period as the result of the uplift, denudation, and
transport of coarse-grained sediments from the adjoining
reliefs towards the southeast ( ). The projection of
topographically higher dip data from the Sant Miquel Fm.
located to the northeast ( ), shows that this formation
probably onlaps and/or truncates the strata underneath. The
internal structure of these conglomerates seen northeast of
the Vallespinosa town ( ), which includes at least two
intraformational angular unconformities (Lopez-Blanco et
al., 2025), is coherent with its deposition during the coeval
development of the Cabra-Carme Monocline. The observed
geometries would suggest that this monocline developed
following a limb rotation model that generated a fan of beds
with intraformational unconformities ( ). This fact
agrees with the interpretation of the frontal structure as a
fault-propagation fold developed by a triangular shear zone
at the tip of the Gaia-El Camp Thrust (Marin ef al., 2021).

If we consider the results of the magnetostratigraphic
analysis ( ) and the above-mentioned geometrical
relationships of the Sant Miquel conglomerates, it is
possible to refine the age of the deformation as Priabonian
and not late Bartonian as previously suggested by Marin
et al (2021). The end of the compressional deformation
is difficult to establish in the study area considering that
the stratigraphic record is limited. However, it probably
ended in the uppermost Priabonian, as suggested by the
end of the conglomeratic sedimentation and the presence
of lacustrine facies that would denote tectonic quiescence
(Anadon et al., 1985, 1989).

Combining thickness and precise age control provided
by magnetostratigraphic analysis sedimentation rates
have been calculated for the Pontils magnetostratigraphic
section. The evolution of these sedimentation rates shows
a tight correlation with the deduced tectonic evolution of
the Ebro Basin margin ( ). The calculated values
for the Pontils Group and Montblanc Formation (10.6cm/
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kyr and 7.3cm/kyr, respectively) show, in average, the
lowest sedimentation rates of the section. These low
values correspond to areas of low subsidence attributed
to a relative quiescence episode during the Late Lutetian
pre-compression stage ( ). The Bartonian-early
Priabonian units (Vallespinosa and Riu de Boix Formations)
show higher sedimentation rates (9.8cm/kyr and 13.6cm/
kyr, respectively). These values still represent relatively
low subsidence rates. However, they correspond to syn-
compression I stage ( ) and thus, associated to the
first significant compressional period in the study area. In
this case, it can be interpreted that the inversion of high-angle
faults bounding the Montmell-Garraf Basin did not induce
a major change in subsidence rates. However, the increasing
trend in sedimentation rates would record a progressive rise
in subsidence rates due to a change in the tectonic activity.
The calculated values for Sant Miquel Formation imply an
abrupt increase in the sedimentation rates of up to 51.2cm/
kyr. This shift corresponds to the beginning of the early
Priabonian late Priabonian syn-compression II stage (

) and can be interpreted as related to the continuation
of the Montmell-Garraf Basin inversion and mostly to the
onset of the Gaia-El Camp emplacement. This resulted
in a major load of basement units causing an increase in
subsidence rates in the basin. However, this period (Cl6n
and C15r) also shows relatively high sedimentation rates
in other sections and sub-basins from the South-Pyrenean
foreland (Garcés et al, 2020). In these other areas, the
increase in values has been interpreted as being related
to the disconnection of the South-Pyrenean foreland from
the Atlantic Ocean (Garcés et al., 2020). Thus, the abrupt
increase in sedimentation rates observed in the Pontils
section could be interpreted as a combination of the basin
margin tectonics and the evolution of the Ebro Basin from
exoreic to endorheic conditions during C16n (Costa ef al.,
2010). The final decrease in the sedimentation rates from
51.2cm/kyr to 22cm/kyr (in C15r and C15n respectively)
at the top of Sant Miquel Fm. can be interpreted as related
either to the end of the whole syn-compression stage or to
a gradual return to trends of the previous externally drained
stage (Garcés et al, 2020). This decreasing trend is also
recorded by the very low sedimentation rates (6 cm/kyr)
in C13r at the neighbouring Sarral section (Barbera et al.,
2001) corresponding to the strata just overlying the Sant
Miquel conglomerates.

Additionally, the results of the provenance analysis
in clasts from the Sant Miquel conglomerates indicate
that Barremian-Aptian orbitolinids and Ypresian
(Ilerdian) Alveolina are prevalent throughout the
studied samples. This denotes the continuation of
tectonic inversion of the Montmell Fault, the uplift
and denudation of the Montmell-Garraf Basin and, the
potential cannibalization of the proximal zones of the
previously deposited Cabra alluvial system ( ).
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In terms of Paleogene compression, uplift and its related
denudation, significant erosion estimates of up to 2-3km
are reported from fission-track thermal modelling
southwest of the study area in an equivalent structural
position in the Prades Block ( ) (Juez-Larré and
Andersen, 2002).

CONCLUSIONS

The integration of a new geological map, structural
analysis as well as magnetostratigraphic and provenance
analyses has allowed the refinement of the tectono-
stratigraphic evolution of the central Catalan Coastal
Ranges and the SE margin of the Ebro Basin during the
Paleogene compression.

The correlation of the new Pontils magnetostratigraphic
section with the Geomagnetic Polarity Time Scale
allows constraining the absolute ages of the Paleogene
stratigraphic units along more than 1,400m of succession
from Lutetian to Priabonian. The sedimentation of the
uppermost Carme Fm. occurred during the late Cuisian,
while the Valldeperes and the Bosc d’en Borras formations
occurred during the Lutetian. The age of the deposition of
the Vallespinosa and Montblanc formations (including the
Cabra del Camp Mb.) has been established as Bartonian
to early Priabonian. The paleomagnetic study also dates
the Pontils fossil site (MP15 reference level) as Bartonian,
ranging from 41 to 39.8Ma.

The conglomerates of the Cabra del Camp Mb.
correspond to distal facies of an alluvial system (Cabra
alluvial system). This system expanded to the northwest
of the Montmell Fault over the Miramar-Gaia Domain due
to the onset of compression and the tectonic inversion of
the fault during the Bartonian to early Priabonian. This
proposed age refines previous estimates for the timing of
the Montmell Fault inversion that placed the reactivation in
the late Ypresian (Cuisian). Additionally, it aligns with the
diachronous record of the compression observed along the
SE margin of the Ebro Basin, where the timing varies from
Ypresian in the northern sector to Bartonian in the central
area, and middle to late Eocene in the south.

The provenance analysis of the Cabra del Camp
conglomerates indicates that the source area of this alluvial
system was located southeast of the studied area and
corresponded to the Montmell-Garraf Basin. The proximal
facies of Cabra alluvial system would have been located
in the footwall of the Montmell Fault although these have
not been preserved due to later uplift and denudation. The
composition of clasts suggests that the Mesozoic Basin
included Upper Cretaceous (Cenomanian, Turonian and
minor Senonian), and Lower Cretaceous (Barremian-
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Aptian) strata. The Mesozoic Basin was overlaid by
Paleocene to Lutetian sediments (Mediona and Orpi
formations and Pontils-Cornudella Group), which confirms
this as a period of tectonic quiescence. However, the extent
of these Paleogene successions towards the southeast
remains uncertain.

A second pulse of compression is recorded
by intraformational angular unconformities in the
conglomerates of the Sant Miquel Formation (syn-
compression II stage) during the Priabonian. The
deformation of these conglomerates is associated with the
growth of a fault-propagation fold known as the Cabra-
Carme Monocline, which resulted from the emplacement
of the Gaia-El Camp Thrust. This thrust uplifted the
Miramar-Gaia Domain over the Ebro Basin. The Cabra-
Carme Monocline constitutes the deformation front of
the Catalan Coastal Ranges at this location. Additionally,
out-of-syncline backthrusting deformed the previously
deposited syn-compression I sequence, which includes the
conglomerates of the Cabra del Camp Mb. The beginning
of this stage is marked by the abrupt increase in the
sedimentation rates, which is related to the increase in the
tectonic subsidence caused by the onset of the Gaia-El
Camp low angle thrust.
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The goal of this contribution (Marin ez al., 2023) was to investigate the variations along strike of the
Montmell-Valles Fault System, which has previously been defined as inherited from the Mesozoic. The
study focuses on the characterization of each of three segments that define the entire fault system
through the lens of fluid-rock interactions and emphasizing how mineral precipitation and cementation
can modify the mechanical properties of fault zones (i.c., damage zone, fault core), therefore influencing
their different reactivation during the subsequent tectonic phases that characterize the Cenozoic

evolution of the central Catalan Coastal Ranges.

Global and Planetary Change is a journal addressing all aspects of Earth System Science published by
Elsevier at Science Direct. The journal aims to promote a multi-disciplinary understanding of planetary
change by exploring global-scale processes across geological, historical, and present-to-future scenatios.
It emphasizes studies leveraging observational records, experimental research, or modelling, and

welcomes regional or process-specific research that enhances understanding of the Earth System.
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whfiRuate zn:urnlt(nzulchldthfi(du eda:u G(nwn: k apfawmht(wd hfithazute ::i:ntlo athtlornuGis d: thenu (| g ayg d(d(drut e enzuchtn: thazuean: ywhazu

ficnvo s:wahtlormuhs d: g d (U ( @ancu ehtr tean: pt
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g d(uhue thenhazud @ cuhd salu @Osch::dul uGenlhtn s:uc tr:m
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nc :0 au G0sch::dthaziGenlhtn s:w tr:yd(awg seusHh:ld(hld , u @
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ca Idficn: nalm

lut alch:lyu:malnt]l aduBhen Hhanuznleddheu:nzal nal: u@ul(nu
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I(mzad haleaHi GOs ch::dvhazud haenF g ncuGenlhtn s:usttni:oa:u
qF “finkiOchat wlihgy?7PPPAw hcawlthegy?P7; Bl (a1 sewazdhlnd(hlu
SV u@ d u(nuFe *cnthlw orncyul (nut hlt(d naluhenh: ve thinzuS, u Gi( nu

\ Late Jurassic-Early Cretaceous Extension \

E 3 ro L} 1 g "T 7 L2 \/ Mesozoic {greached)
R/relay ramp?
2

S

C - Extensive dissolution of host limestones and high ’
fluid / host-rock interaction. \

Esparraguera @
- Calcite precipitation in marine

i : Montmell-Garraf
environment cementing o ontmell-Garraf
fault core breccias. . /4 = @ Guardiola de Baein =
oY ont-Rubi Das S
. . . . Q

p =D B - Extensive dissolution of host limestones S

- High fluid / host-rock interaction.
- Fault core fomred by calcite-cemented breccias.

NS

\ Paleogene Compression \

El Camp-Gaia Els Brucs
Thrust Thrust —

B - High-angle low-slip inverse faults and stylolites.
- Intense karstification and calcite precipitation.
- Footwall short-cut development. ,

i
oL N

Guardiola de ®
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w) Msthazu( nenC end ( nunal eenufien: nalizhmGG- g nenud hz nu* miGenlhi
tn s:wc tr:pRd( sH yd(mtscenald , wead du Gi( mOs ch:: ¢ thazuGenlhi
tn s:uc tr:uficn: nevnzus azncanhl( ul( nui n Hhanu) heax iBnanzn: u*h: au
@8en e thinzihfific j al hlnemy Pud 6V u G( niFe *cnthle ovncth:us:i
lThanzdmi( nbh*:natnu Ge tr:u G ahHhead( nwhe cned; & en( enbazu
d: tficn: nat mead( mha®hzs cad; u en( enwgFhahhyy 45320hcl cea hml thepu
; 447BRqMith7thazu lchldrhfi( duntlo a: wauViHhi REws caHi(nu fifincu
Osch::diF gncGenlhtn s:yd(nu , veed du Gl(nuw ald nedWhechGOh: au
g setne thinzue :nd dicn: nalizhmFe *cnthlu ovnepl (nuhtru G fifincu
Osch::diF gncuGenlhtn s:wsttn::o a:ul , u @l(nuFe *enbhle- ovncwzni
a Inu(hlwscaHl(nwn: k dul( nu) heax wnH nalu Gl( nuw) Msug h:u
ahtlornu cu( hzuhud @ cuzafightnd nalua cl(u Ql(nuFe *cenbhlu- ovncu
gV pi Rihaz6Fu

Sant Esteve
a Garriga N _gvePalautordera _ \
IR P g A
LS o WA e SRR
N1/, LAtmelladel
' Valies

PR >

Z
® Terrassa
A - High-temperature chlorite indicating presence of hot springs.

- Hectometric damage zone and development of blue fault gouge.
- K-white mica and calcite precipitation in marine-influenced conditions.

25 km

Sant Esteve
-de Palautordera
Tkl

NN

® Terrassa

— Nz
. —X LAtmella del
Vallés

A - Subvertical quartz veins and horizontal slickensides indicating left-lateral displacement.

%’ - Font.Rubi gz - No mineral precipitation nor cementation (e.g. calcite cements).
/ - S - Footwall short-cut development.
228\ EN
2 C - Karstification filled by carbonate sediments. %
- Footwall short-cut development.
\Late Oligocene-Neogene Extension
Llobregat Relay Ramp

[ - Branched fault segments and splays at surface.
- Cohesive fault core formed by calcite-cemented breccias
and cataclasites.

Marmellar P
Accommodation - | o Guardiola de

Vallés-Per 8
> ) ) 3
- Font-Rubi N ) =
Zone - [ 2= Basin g
AEES - Q.
= &
S //// S
Z
- / C - Calcite-cemented breccias. X

il

P - Cohesive fault core due to presence of calcite cements that
.7 heal breccias and cracks.
- High fault strength and high coefficient of friction.
- present-day 1 to 2 km-wide damage zone, 2 km-deep in the fault

(Belenguer et al., 2012)

La Puda

La Garriga
Sant Esteve
_de Palautordera

Caldes de
Montbui

< g .
\ LAtmella del Samalts

Vallés

A - Narrow (<5m) and impermeable fault core made up by mud-to-clast supported breccias.
- Cataclasites cemented by chlorite and associated calcite and laumontite minerals.
- Meteoric fluid circulation within the damage zone.
- Presence of hot springs along fault.

footwall, which acts } @

as fluid conduit. It is not possible to establish its age or the tectonic phase that formed it.

A: Northern sector (Vallés area)
B: Central sector (Penedés area)
C: Southern sector (Montmell area)

Thrust
Strike-sl

MY

@ Hot spring @ Information from MT Related

Main fault trace
Fault splays |:| Triassic evaporites, siliciclastics

Extensional fault Host-rock / protolith lithology in the

upper part (<1 km) of the fault

ip fault Paleozoic granites and
1 metasedimentary rocks

footwall/hangingwall and carbonates

structures Mesozoic carbonates

2iG. 7. St(nd hldw hfiu G( mw ald ned) hes: whs d®mlind u( g @HGsdwhd hHuk ant(hchtlncald:u Gl( cnnuntl ¢ WRyObaz GRzs caHI( nz dcnal Fhlngs ch: : diu
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OhAs 11: wl theuf7 PPSHOhAS 1: wl theuf7P; PEOhAs 1i: wlthef7P; 7HiOhAs fi: wlthen7P; ' FhazGhalhene wlthen7P; ' hy?P; ' t FaFe *cnbhlu nehmi hd fil® d Onenats newlthem

@7P; 7FawhHanl Ines cd whlhuwl E@ d wyhoawmltheu7P7; Hu

113



MhMgniAumng, k

I (nth dnleu Gi(nwn: k datlonunMd nal:u Gl(nw) Mwdi  cemu
t a:lchamnzug d(ul( nuhvheh*ewizhlhpiTaem@w: d nu:nHd nal:u Ql( nu
w ald neadvhs dig (nend (nemo e WGna k dwnhtlovhlo ayg mthathlln:lu
1( hlythlu s ctit nyd: fiehamg h: u lnnfieme difi@Hg>6P°HEil g hez: d(mSS, u
QViHpDEpRl e nfil(yd(nf cdk alhabh d nlemu G n A enenl ntlovme g ncu
tes:ltte ::d( nwalemGG- WSh*hlwlhgyy 4432} @ henlhgyy 445 (d(u
g h:1C cd nzthld(nnazu Gi(nw heathaul'c HhamqO oy 447Bwna lniu
I(hluwn: k dutsd: u*nthd nuianhcan( ck alhen cu e leme difimHi i
g hez:d(mB, m

I (nwn: k daulestlscnu Gi( nunalchaGG- ififinhe: the @ alc emzumu
1( nufihchemeuS, iz difimHiOhctne ahuMhs dpil (aud h9 cuGna k dutsdyu
e thinzu@( cnte :nd d(ndicn: nalizhmt h: leangVity B h: the nnau
fi :lseilnzth:wa(nednz@ d d(nuwn: k dthazig seu con:fi azd d(nu
hatmald V wod du Gha 1(neFhlmOs ch:: a1, hcemGenlhtn s:njlna:o ahen
*h:aug d(uw>7wd u(drua8eaq thuhazuWs ol nchyg 4472r  thunluheyu
; 4442h: fihci, :tcoha unluhgn7PP' ol (nuwn: k duhtlovnuOhctne ahu
Misdthazuw ald ned) hexn: uvhs diSmind wa fiehmhwdd li: Infifinz wAlal 61
a TAt a8k chlo awMithi REhazthanchinz iV SV iz dfifia Henehmehd fivau
1( necu vneehfifiea Hhenhpl (o whd fiye thinz thld( nficn: nalizhmfi :do au @
1(mFe *cnbhlu ovncyzn8anzd(nd , wad du GI( mw ald ned Whech@Oh: ayu
hazg h:u (hchtlncdnz wmhd(dran::watenh:nd g hez:d(n SV u Gl(nu
. fifincs ch:: ¢iF g naGenlhtn s:usttni:o a:u@ d PPwd d wnhavud m

Bed-parallel
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:( dna@Hw:pi , ilcnaza@Hits d: 25 al nchys 45' yw7PP' Bul ( n: nu Innfiu
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(s d:uRahz “aunluheyr 456Fpd nvnel( nen:: s t (ulcha: fien: : o aheuenht i
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znvne fid nalu @Fsllen::@Hrlestlsenugd @ aC ez:yl(cs:l:vhazuthtri
1( cs:1: Bmd ( naeu( haHaHg heag\Vit pi Othaz w OFu

lucnéilo aul ul(nuhenheuzaleo'slo au Qil( nualncfienlnzuC 1g heu
:( dtslyd( nficn: natnu G( o wazu Giles tls cn: wad( ng hear: unHd nalu G
1(mw) Mous H: 1: u(hld( mwn: k dauhsdu sazaHl( nu fifincds ch: : diu

Pre-littoral
Thrust

.....

Vallés-Penedes Basin

........

i { __Topography|

Damage zone correspondmg fo
the Miocene extensional fault
propagatlon fold

Damage zone associated to the

pre-middle Eocene fault gouge
(Paleozoic rocks with thin -~ ~

fault gouges and shear bands )

Vallés-Penedés _—7

Hagingwall
buttressing  ~

@ 2.5 km Fault
I:l Quaternary ngé’ﬁ:”e‘midd'e - Rhaetian I:l Variscan basement ~ . Unconformity
- . ; U perTrlassm Main Neogene extensional
I:I Serravallian-Tortonian I:I Barremian I:l euper) falt (faultgcore) ™ Concordant contact
i ini M'dd|e Triassic Main Paleogene thrust ~ ~~.. i
:‘ IAangthlan . - Valanginian - (Muschelkaik \ (faultcore)g . Bedding
quitanian?-lower ; Lower Triassic i i M7
I:I Langhian - Jurassic - {Buntsandstein) S~ Maip(mizjlstoczgrlg)exten&onal Fault damage zone

FAuLT ROCKS A

- Pre-Paleogene metric to hectometric thick fault gouge formed by Paleozoic and Lower
Triassic rocks with subhorizontal to slightly south dipping foliation and fault surfaces

— Paleogene centimetric to decimetric-thick fault gouge with predominant north to
northwest-directed shear bands

Neogene centimetric to decimetric-thick fault gouge or breccia with a foliation nearly
parallel to the bedding planes

FAauLT ROCKs B

\ Mesozoic calcite-cemented (blocky) fault (up to 5 cm wide) in Barremian shallow marine
limestones. They correspond to type 2az fractures defined by Baqués et al., (2012)

== Paleogene centimetric to decimetric-thick cohesive cataclasites. They correspond to type 3
fractures defined by Baqués et al., (2012)

Neogene centimetric to decimetric-thick cohesive fault breccia. They correspond to type 5
fractures defined by Baqués et al., (2012)
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:IThHn:u Gl(nw) Muwv eslo afthEhBclus *vncddhats dik amen:ledlnzu
1 d(mC lgheu GQl( mBhen HhamBeniedl chal (cs:12FEhunt azubsdu
k anueH lenz difi@Hl d( 8, d(hliC ee g :d( a Bhen Hhand( cs:13hazu 1
hi(ezuhs dik amearnzd d( nehlnd eH tnanii n Hhanwj lna:o au Gl(nu
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Reactivation of

FAULT ZONE CHARACTERISTICS OF THE ACTIVE FAULTS

Fault geometry

pre-existing fault

Fault core

Fault damage zone

Upper fault panels:
Decametric to hectometric thick formed by

Upper fault panels:

compression

thrusts (Pre-littoral
Thrust):
~30° SE-dipping NW-
directed short-cut thrust
fault.

Reactivation of the low
angle (~30°) panels of
the Mesozoic fault.

Thrust):

1 to 3-m-thick constituted by cemented
(calcite) breccias and cataclasites and
vertical non-cemented stylolites when
developed in Triassic carbonate rocks
Foliated clay gouges with abundant shear
bands and without cement precipitation when
formed in metamorphic Paleozoic rocks.

Ju:'-:st:ic- Sfij'tp‘f"iqg fx:)enls;z::ml blue clay gouges with a sub-horizontal to o Paleozoic rocks cut by metric to decametric
Earl anels: an u elPdi in Not observed shallow-dipping foliation and cataclasites faults developed in the finest grained
Cret y pabout'60° a‘:\% a Io‘\jvperg . embedding metric to decametric blocks of lithologies.
ret aceous iooing less than 30° Paleozoic Lower and Triassic rocks. ¢ No evidence of induced syn-kinematic
exiension pping No evidence of induced syn-kinematic cement precipitation
cement precipitation.
Upper fault reactivated panels:
Decametric to hectometric thick blue clay
Upper fault reactivated gouge with a nearly vertical E-trending
panels: foliation and rod-shaped ellipsoidal quartz . .
Steep SE-dipping left- Reactivati fh blocks with a vertical long axis and are . l’:llgtpsll;sfz:lvl(ta;eactlvated panels:
lateral strike-slip fault. eactivation orthe encircled by near-horizontal striae
upper steep panels of
Paleogene New formed short-cut the Mesozoic fault New formed short-cut thrusts (Pre-littoral New formed short-cut thrusts (Pre-littoral

Thrust):

Metric (occasionally decimetric) to
decametric thick zone.

Amalgamated thrusts and deformation bands
that define different scale duplexes

Valles-Penedés Fault:

than 30°.

Partial reactivation of
the upper steep panels
of the Mesozoic faults

Late kinked SE-dipping planar
Oligocene- fault with an upper panel Reactivation of the
Neogene dipping around 60° and a lower fault panel (~30°)
extension lower panel dipping less

of the Mesozoic fault
and the Paleogene
related short-cut thrusts.

Upper fault panels (Vallés-Penedés Fault):
Narrow (<5 meters).

Mud-to-clast-supported non-cemented
breccias with SSE foliation.

Cataclasites cemented by chlorite and
associated calcite and laumontite minerals.

Upper fault panels (Vallés-Penedés Fault):
Hectometric to kilometric thick zones.
Footwall: <100 meters wide with ENE-
trending extensional faults whose intensity
increases towards the fault core.
Hangingwall: hectometric to kilometric wide
extensional fault propagation fold cut by
conjugated extensional planar faults.
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FAULT ZONE CHARACTERISTICS OF THE ACTIVE FAULTS

Reactivation of

compression

Gaia-El Camp thrusts):
~30° SE-dipping NW-
directed short-cut thrusts.

lower low angle (~30°)
fault panel.

vertical non-cemented stylolites when
developed in Triassic carbonate rocks
Foliated clay gouges with abundant shear
bands and without cement precipitation when
formed in metamorphic Paleozoic rocks.

Fault geomet s
9 i pre-existing fault Fault core Fault damage zone
Late _— )
Jurassic- SE-dipping fault with two Upper fault panels: Ubper fault panels:
Ext planar panels: one dipping Not observed Metric to, occasionally, decametric thick. R M'i)nF:)r NNW-t':endin. extensional faults filled
Cretaceyous around 60° and a lower : Calcite cemented breccias with abundant by calcite 9
extension dipping less than 30°. tension veins. 4
;l:x;?;med short-cut thrusts (Els Brucs Upper fault panels:
New formed short-cut 1 to 3-m-thick constituted by cemented * Not studied/observed
Paleogene thrusts (Els Brucs and Reactivation of the (calcite) breccias and cataclasites and New formed short-cut thrusts:

o Metric (occasionally decimetric) to

decametric thick zone.

e Amalgamated thrusts and deformation bands

that define different scale duplexes.

Valles-Penedés, fault
Les Torres and Foix
faults:

with a dip of about 60°
and a lower one that dips
less than 30°.

Reactivation of the

Late SE-dipping extensional lower panel of the
Oligocene- pping Mesozoic fault as well
fault with two planar
Neogene anels: an upper stee as of some segments of
extension P ) pp P the Paleogene short-cut

thrusts.

Upper fault panels (Valles-Penedés Fault):
Metric to exceptionally decametric wide fault
core mainly formed by calcite-cemented fault
breccias that are affected by calcite-filled
tension fractures.

Upper fault panels (Vallés-Penedés Fault):
Nearly vertical calcite-cemented tension
fractures and high-angle extensional faults
whose density increases to the fault core.

pmivh :
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Fault geometry

Reactivation of

FAULT ZONE CHARACTERISTICS OF THE ACTIVE FAULTS

compression

Thrust):
~30° SE-dipping NW-
directed short-cut thrusts.

low angle (~30°) fault
panel.

pre-existing fault Fault core Fault damage zone
Late kinked SE-dipping fault U fault Is:
Jurassic- inked SE-dipping fau pperiault panels: Upper fault panels:
with an upper panel of Narrow fault core made up of carbonate . . .
Early 460°and al Not observed. . ion f e Hangingwall: small-scale calcite-cemented
OGS aroun and a ov:/er brecc@s cut by tension fractures and extensional faults
extension panel of around 30°. extensional faults. .
New formed short-cut Contractional
Paleogene thrusts (Gaia-El Camp reactivation of the lower

Fault zones cannot be characterized by surface observations.

New formed extensional
short-cut faults (Baix
Penedés Fault):

steep with a dip of about
60° and a lower one that
dips less than 30°.

Late SE-diopi tensional
Oligocene- ~clpping extensiona Extensional reactivation
fault with two planar
Neogene panels: an Upper one of the lower low angle
extension ) (~30°) fault panel.

Upper fault panels (Montmell Fault):
Carbonate fault-core-related breccias and
cataclasites that are cut by second-order
extensional faults.

Cohesive fault core due to the presence of
different generations of calcite cement, which
strengthen and heal breccias and cracks.

Upper fault panels (Montmell Fault):
¢ Nearly vertical calcite-cemented tension
fractures and high-angle extensional faults
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General Discussion M. Marin, 2025

5.1. Introduction to the summary and integration of the

discussions

The purpose of this chapter is revisiting the key objectives of the developed research and link them to
the results of each of the three core publications comprised in this dissertation (Matin ez a/, 2021, 2023
and 2025) to integrate and synthesize the findings presented, thereby establishing a narrative that
addresses the research questions stated in chapter 1.1. Each independent paper contributes from a
different perspective and explores specific topics at a particular scale within the area of study. Though,
together they provide new insights about the complex tectonic evolution, dynamics, fluid-rock
interactions, the impact of structural inheritance as well as the response in the sedimentary systems in
the central Catalan Coastal Ranges (CCR), the southeast margin of the Ebro Basin and, to a degree, the
northwest Mediterranean margin from Mesozoic times to the present-day. This chapter is therefore a
linking section that serves to bridge these independent studies highlighting their connections,
identifying common aspects, and addressing potential discrepancies. This approach aims to enhance a
better understanding of the studied area and relate the outcomes within the existing literature. The

different methodological approaches are also considered for the general contribution of the research.

Thus, this chapter discusses and integrates the key results from the above-mentioned three publications
which include the sequential restoration of the Gaia-Montmell Section and the analysis of the Neogene
extensional structures present in the Gaia-Montmell High (GMH) and neighbouring areas (Marin ez al.,
2021); the tectonostratigraphic maps, conceptual cross-sections and fault zone properties schemes for
each tectonic phase that regionally cover the central CCR (Marin e a/., 2023); and the detailed Paleogene
tectonostratigraphic evolution reconstruction of the GMH, which contains the results from the

provenance and the magnetostratigraphic analysis (Marin ef a/., 2025).

In brief, this chapter aims to address some of the existing key gaps in understanding the tectonic
evolution of the CCR and prepare the way forward for future studies. To highlight the influence of
structural inheritance, the discussions included in this chapter are organized chronologically, starting
with the reconstruction of the Mesozoic basin configuration, later following through the two main

Cenozoic tectonic phases: the Paleogene compression and the Neogene extension.
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5.2. Mesozoic configuration of the central Catalan Coastal

Ranges

5.2.1. Geometrical reconstruction of the Mesozoic structures

As already shown in the publications included in the Chapter 2 of this dissertation, the reconstruction
of the Mesozoic configuration of the central CCR is of high complexity because of the two later tectonic
phases that affected the area during the Cenozoic (Anadon ez al., 1985; Roca ez al., 1992, 1994; Bartrina
et al., 1992; Roca, 1994; Gaspar-Escribano ez al., 2004). Consequently, these two tectonic phases prevent
the direct observation of the pre-Cenozoic structures, either due to their erosion during the Paleogene
ot because of their burial during the Neogene, facts that make the reconstruction an arduous task. For
these reasons and as explained in the previous chapter, the characterization of the Mesozoic has been
mostly inferred from two main types of observations: 1) the preserved Mesozoic stratigraphic
succession within the Neogene structural highs, paying special attention to its lateral thickness
variations (e.g., Esteban and Robles, 19706), and 2) the identification of Paleogene compressional
structural features that can be associated to tectonic inversion processes and, therefore, allowing
inferring the location and geometry of pre-existing Mesozoic structures. These two particularities are
present in the Gaia-Montmell High (GMH), area studied in this research. On the one hand, this
Neogene structural high can be divided into two main stratigraphic domains with a very different
Mesozoic succession record (Miramar-Gaia and Montmell domains, Figure 5.1). This fact directly
allows assuming a major (structural) limit between these two domains and provide insights about the
tectonostratigraphy of the region during the Mesozoic (e.g., differentiation of the rifting phases). On
the other hand, the conducted structural analysis in the area, including the construction of geological
cross-sections and its later structural restoration focussing on the removal of the two Cenozoic phases

of deformation (Figure 5.2), enables the identification of the Mesozoic structure.

Five different characteristics point to the interpretation of the Montmell Fault as a pre-existing
Mesozoic Fault that controlled the later tectonic evolution of the area during the Cenozoic. As
previously inferred, the first one is related to the fact that this major fault aligns with the limit between
two differentiated stratigraphic domains that separates the thin Mesozoic succession only composed
by Ttiassic rocks in the Miramar-Gaia Domain from a more complete Mesozoic succession including

Triassic, Jurassic, and Cretaceous in the Montmell Domain.

The second characteristic is that the Montmell Fault corresponds to the southeast limit of the narrow
and highly deformed band (“L'Arbocar deformation strip” in Figure 5.2B) characterized by highly
deformed Middle Triassic and Lower Ypresian (Ilerdian) strata belonging to the Miramar-Gaia Domain
and displaying northwest-verging recumbent folds, thrust faults and backthrusts that are interpreted as

detached at the top of the Lower Triassic (Buntsandstein).



General Discussion M. Marin, 2025

==41°36’

Q.% Ebro Basin /
%,

Lottt g mas %, VB
- Ramp

==41°30'

‘ - | Neogene extensional fault

/ Paleogene thrust
L —

Reactivated fault

Miocene to Quaternary

Paleocene-Eocene

Jurassic-Cretaceous buried
beneath the Neogene

Jurassic-Cretaceous
(Mesozoic Montmell-Garraf Basin)

Triassic

I:I Variscan basement

—~—

Figure 5.1. Simplified geological map of the central Catalan Coastal Ranges highlighting the major Cenozoic
faults and the sectors of the Montmell-Valles Fault System. The location of the Gaia-Montmell Section as well as
the three main sectors of the Montmell-Valles Fault System ate also indicated. VB: Valles Basin; PB: Penedes
Basin; BPB: Baix Penedes Basin; ECB: El Camp Basin; MAZ: Marmellar Accommodation Zone; Ma-1:
Martorell-1 borehole; §S-1: San Sadurni-1 borehole. Paleogene alluvial and fan-delta systems: SLM: Sant Lloreng
del Munt alluvial fan and fan delta; Mr: Montserrat fan delta; SMM: Sant Miquel del Montclar alluvial fan. The

subsurface distribution of the Jurassic-Cretaceous is based on Lanaja (1987) and Bartrina 7 al. (1992).

The third characteristic is related to the fact that, northwest and southeast of this deformed band,
Triassic rocks are at the same structural level, but the base of the Cenozoic would occupy a significantly
lower position in the Miramar-Gaia Domain than in the Montmell Domain since the top of the
outcropping thick Mesozoic succession in the Montmell Domain indicates that this would be located
at least 500 m higher. The fourth characteristic is the fact that the “L'Arbocar deformation strip” is
slightly tilted towards the northwest by what we interpret as a footwall short-cut formed during the
compression. Finally, the fifth observation is related to the recognition of buttressing structures (minor
folds, thrusts, and back-thrusts) within the Montmell Fault hangingwall damage zone in the Marmellar

Accommodation Zone (see map in Figure 5.1 for its location).

All the above-mentioned stratigraphic and structural observations suggest that the northwest limit of
the Montmell Domain belongs to a basement-involved, southeast-dipping, high-angle pre-existing
Mesozoic extensional fault nearly complete inverted during the Paleogene compressional phase. As it
will be explained with further detail in the next section, the positive tectonic inversion of the Montmell

Fault propagated the compressional deformation into its footwall with the development of the thin-
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skinned thrusting and folding within a narrow deformation strip and the formation of a footwall short-
cut (Figure 5.2B), as well as to its hangingwall developing buttressing-related structures (Figure 6B in
the publication included in Chapter 4, Marin ¢# al, 2023). Similar characteristics (i.e., high-angle dips,
footwall short-cuts, hangingwall deformation) have also been observed in synthetic southeast-dipping
faults southeast of the Montmell Fault. These series of extensional faults bounded the depocentres that
characterized the northwestmost portion of the Montmell-Garraf Basin development during the Late
Jurassic-Hatly Cretaceous rifting phase (Figure 5.2C).

A: Present-day (after the Neogene extension) .
CIC compartmentalized by Neogene extensional faults linked to the opening of the Western Mediterranean. NW-SE

(km)

Undeformed Ebro Basin Gaia-Montmell High Baix Penedés Basin

B: Early Oligocene (end of the Paleogene compresion).

Catalan Intraplate Chain build-up and full inversion of the Garraf-Montmell Basin.

St Mique! del Montclar L'Arbogar Uplifted Montmell-Garraf Basin
alluvial fan deformational strip i

() Undeformed Ebro Basin Miramar-Gaia Domain

C: Middle Albian (end of the Late Jurassic-Early Cretaceous extension).
End of the Montmell-Garraf Basin formation

(km)
0

Ebro High Montmell-Garraf Basin

¥ Fixed point for restoration

|| Pre-existing inactive fault
|- | Future fault location

Figure 5.2. Sequential structural restoration of the Gaia-Montmell Section. A) Present-day after the latest

Oligocene-Neogene extension. B) Early Oligocene (end of the Paleogene compression). C) Late Cenomanian
(end of the Late Jurassic-Early Cretaceous extension). Restoration performed with the software Dynel 2D®. No

vertical exaggeration.



General Discussion M. Marin, 2025

The Montmell Fault accounts for the southwestern segment of a larger structural entity that we call the
Montmell-Valles Fault System (MVES) that includes several branched segments and displays a right-
stepping en-echelon arrangement with a <2 km trace separation. The Marmellar Accommodation Zone
represents the relay zone between the Valles, Penedés and the area of the Montmell Fault segments
(Figure 5.1). Therefore, considering the structural observations mentioned before, the MVES can be
interpreted as the system's breakaway fault during the extensional phase and development of the
Montmell-Garraf Basin. The geometry of the MVES during the Mesozoic remains indeterminate with
the existing data. Only in the fault segments where there is an absence of strong Cenozoic reactivation
(e.g., Montmell Fault) we can ascertain that fault planes exhibited, at the surface, a steep dip (>50°)
towards the SSE (Figure 5.2C). At depth, the horizontal configuration of the highly reflective lower
crust throughout the entire CCR (Sabat ez a/, 1997; Vidal et al., 1998) indicates that Mesozoic faults

transitioned to a nearly horizontal position or are slightly dipping towards the SE.

The schematic reconstruction of the base of the Late Jurassic-Early Cretaceous rift basin system of
Figure 5.3 shows that the central CCR displayed an ENE-trending right-stepped en-echelon
arrangement of SE-dipping basement faults (MVES and the Barcelona Fault) between several other
second order faults. This basin configuration shows a progressively deepening from ENE to WSW
(Figure 5.3B), that later influenced the Paleogene compressional structures by determining the
orientation and location of thrusts and folds (Esteban and Robles, 1976; Anadén ez al., 1979; Roca and
Guimera, 1992; Salas and Casas, 1993; Salas ez /., 2001). This arrangement also led to the development
of a major relay ramp roughly at the present-day Llobregat River location, which further controlled

sediment thickness and distribution.

The extent of the northernmost segment of the MVES (Valles area in Figure 5.1) during the Mesozoic
remains relatively uncertain due to the uplift and erosion of this sector of the CCR during the Paleogene
contractional deformation. However, provenance analysis of Paleogene sediments in the SE margin of
the Ebro Basin provides some insights about this limit (Lépez-Blanco e 4., 2000). Clast composition
in the Sant Lloren¢ del Munt alluvial fan (SLM in Figure 5.1) indicates predominance of Triassic and
Paleozoic rocks with minimal Jurassic to Cretaceous presence in the Valles sector. This fact suggests a
very thin or not present Jurassic to Cretaceous stratigraphic succession and, therefore, a diminution of
the subsidence north of the Llobregat River (Figure 5.1). In contrast, syn-tectonic Paleogene detrital
sediments in the Montserrat fan delta and Sant Miquel del Montclar alluvial fan (Mr and SMM in Figure
5.1) include predominantly clasts from Jurassic and Lower Cretaceous successions deriving from the
dismantling of the uplifted areas SE of the MVES (Lopez-Blanco ¢z al., 2000). The current northeastern
boundary of Jurassic and Cretaceous rocks beneath the Neogene Valles-Penedes Basin is approximately
10 km southwest of the Llobregat River, as indicated by the absence of these rocks in the Martorell-1
borehole and their presence in the Sant Sadurni-1 borehole (Lanaja, 1987; Bartrina ez a/., 1992) (Figure

5.1). However, Paleogene uplift and erosion should be taken into consideration for the reconstruction.
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Thus, during the Upper Jurassic-Lower Cretaceous period, the northeastern limit of the Montmell-

Garraf Basin was near the present-day Llobregat River valley.

W-E
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S Ebro High Sub-basin  Sub-basin Sitges Sub-basin \'4
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. Marmellar - Montmell Baix Penedes ~ Sitges Late Jurassic-Early Cretaceous syn-rift sucession
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1) Montmell-Vallés Fault System
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Figure 5.3. A) 3D schematic view of the base of the Late Jurassic-Early Cretaceous rift basin system developed
in the central CCR. Sn-1: Senant-1 well; SS-1: Sant Sadurni-1 well; Ma-1: Martorell-1 well; B¢ E-1: Barcelona E-
1 well. B) Schematic cross-sections across the rift basin system (see location in Figure 5.3A) showing the main
basins and sub-basins and the corresponding extensional faults. Orange portion in section i-i' corresponds to the

present-day location of the GMH.
5.2.2. Late Jurassic (Oxfordian) - Early Cretaceous (Albian) rift basin-fill

The first signs of tectonic subsidence recorded in the area initiated during the Late Jurassic as part of
the Iberian Basin rift system development related to the opening of the Alpine Tethys, the North-
Atlantic and the Bay of Biscay domains (e.g., Srivastava ez a/., 1990; Salas and Casas, 1993; Salas ¢z 4/,
2001; Sibuet 7 al., 2004). This tectonic extension is recorded by the deposition of Upper Oxfordian to

Valanginian carbonate-dominated sediments, the sedimentation of which attests a steady subsidence
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rate during this period. The constant thickness of the Valanginian succession would also indicate that
this succession was deposited over a planar extensional ramp (McClay, 1995; Ferrer ¢ al., 2016). Late
Valanginian to Hauterivian strata are notably absent in the area stating a significant hiatus and a period
of tectonic quiescence. This Neocomian stratigraphic gap is widespread across the region and is
interpreted as the result of either a decelerated tectonic activity or a thermal post-rift phase (Anadén ef
al., 1979; Salas et al., 2001, Salas ez al., 2020). Barremian sedimentation marks the onset of a renewed
and accelerated tectonic subsidence within the Montmell Garraf Basin that can be subdivided in two
phases: Barremian to early Albian and late Albian to Cenomanian (Salas, 1987). The end of the
extensional phase and the transition to post-rift dynamics has been associated with the development
of the Middle Albian Unconformity (Salas, 1987; Salas ez a/., 2001; Salas ez al., 2020). In this situation,
the Miramar-Gaia Domain represented a structural high northwest of the MVFES (Ebro High) (Figure
5.3). If we consider the entire length of the CCR, Late Jurassic-Early Cretaceous basins essentially
developed in the central and southern part of the CCR (Montmell-Garraf and Perell6 basins
respectively) while the northern part of the CCR remained as a structural high with no significant

deposition at this area (Anadoén ez al, 1979).
5.2.3. Post-rift phase reconstruction

Post-rift sedimentation was characterized by the entrance of clastic sequences with consistent
thicknesses across the basin during the Cenomanian (Salas and Casas, 1993) and a generalized eustatic
rising of the sea-level (Haq ez a/, 1988; Alonso ez al., 1993; Salas ¢ al., 2001). However, considering the
absence of younger than Cenomanian sediments in the Montmell-Garraf Basin domain (Salas, 1987;
Salas ez al., 2001), several scenarios are possible. Two main hypotheses could explain the time span
between the end of the rift and the beginning of the Paleogene compression: 1) a cessation of the
tectonic activity corresponding to post-rift thermal subsidence (Robles, 1982; Alonso e# al, 1993) that
would have resulted in the no deposition of post-Cenomanian sediments in the central CCR north of
the Perellé Basin (Gil e al., 2004; Segura ef al., 2004), underscoring a period of tectonic quiescence in
the area; or 2) the development of late tectonic extensional activity and sedimentation over a low-angle
fault (Tugend ¢ al., 2015) followed by uplift and erosion. The uplift and the associated exhumation and
erosion could be explained by a post-rift isostatic uplift (e.g., Burov ¢z a/., 1997) or, otherwise, by an
carly uplift related to the compression affecting the western Tethys and related to the Pyrenean

Orogeny (Stivastava ef al., 1990; Rosenbaum ¢z al., 2002).

Nevertheless, the results from the provenance analysis presented in the third paper included in this
dissertation (Chapter 2; Marin ez al., 2025), provide some insights to this respect. The clast composition
analysis carried on the synorogenic Paleogene conglomerates in the southeastern margin of the Ebro
Basin shows that the youngest Mesozoic clast component corresponds to grainstone facies that exhibit

radial and concentric coatings and can be attributed to the Cenomanian Can Xuech Fm. (Marin ez al,
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2025; Esteban, 1973). Thus, the lack of identification of younger than Cenomanian clastic components
suggests that Cenomanian was the latest unit deposited in the Montmell-Garraf Basin. Moreover, the
presence within the same synorogenic units of carbonate clastic components from the lower Ypresian
Orpi Fm. would imply that: 1) Paleocene (Thanetian Mediona I'm.) and Lower Eocene (Ypresian Orpi
Fm.) were paraconformably overlying the Montmell-Garraf Basin SE of the MVFES and became
exhumed together with Mesozoic strata, and 2) a long post-Cenomanian period of tectonic quiescence
took place in the area, which confirms the paraconformable relationship reconstruction between the

Cenomanian and Cenozoic sediments.

5.2.4. Relative position of the Montmell-Garraf and Barcelona basins in the Alpine

Tethys rifting margin

The development of the Mesozoic basin system in northeastern Iberia was linked to the opening of the
North Central Atlantic and the Bay of Biscay, as well as to the continuing opening of the Western
Tethys (Stivastava ez al., 1990; Salas and Casas, 1993; Salas ez a/., 2001; Sibuet ez al., 2004; Tavani ez al.,
2018). Therefore, the basins that formed in the northeastern margin of Iberia (Ebro Block) are
considered as part of the northwestern divergent extensional margin of the Alpine-Ligurian Tethys
(Salas ez al., 2001; Tavani ez al., 2018) (Figure 5.4). In these basins, the Mesozoic sedimentary fill exhibits
increasing thickness and environmental deepening trends in from NW to SE and from N to S (Roca,
2001), primarily driven by the Late Jurassic-Early Cretaceous rifting phase.
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Figure 5.4. A) Schematic cross section highlighting the primary morphology of magma-poor rifted margins

showing the main tectonic domains (modified from Chenin ez 4/, 2017); B) Reconstruction of a synthetic crustal
section across the Alpine-European margin and the former Alpine Tethys rift system. Abbreviations: hyperext.:
hyperextended; dom.: domain; C) Reconstruction of a synthetic crustal section showing the proximal domain of

the Ibetian/Ebro margin across the central Catalan Coastal Ranges; D) Schematic map showing the succession
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of rifting events and in Western Europe and the location of sections i-i' and ii-ii' (modified from Chenin ez a,

2022).

The continental crust currently observed beneath the northeast margin of Iberia (CCR and the Valencia
Trough) was originated during the Variscan orogeny and later extended during the Mesozoic rifting
phase (Roca, 2001). The present-day structural configuration of the Valencia Trough and its northwest
margin, represented onshore by the CCR, estimate a continental crustal thickness of 32 to 35 km in the
proximal domain (Roca, 2001). Deep reflection seismic profiles, such as those from the ESCI-Catalan
and Valencia Trough surveys (Vidal ez al., 1998; Sabat et al., 1997), provide further evidence for this
evolution. These profiles reveal a highly reflective lower crust at about 12-15 km beneath the Iberian
mainland that thins to 1-4 km beneath the axial part of the Valencia Trough (Sabat e a/., 1997). The
pronounced reflectivity observed in the lower crust has been interpreted as possibly pre-Cenozoic
(Watts ez al., 1990; Sabat ez al., 1997), potentially underscoring the significance of Mesozoic rifting in
influencing the structural configuration of the crust within the region during subsequent tectonic

reactivation phases.

In an effort to reconstruct crustal configuration and the relative position of the central CCR during the
Late-Jurassic-Early Cretaceous rifting phase, analogous estimations for the unstretched crustal
thickness (32 km) and the top of the reflective crust (at approximately 15km) have been considered
(Figure 5.4C). This configuration has also been compared to similar reconstructions performed towards
the north in the Alpine-European margin (Chenin ez a/, 2022; Figure 5.4B). In this scenario, the
Montmell-Garraf and Barcelona basins would belong to the proximal domain, although the external
parts of the Barcelona-Maresme Basin may transition to the initial necking domain (Figure 5.4C).
Despite the lack of data constrain the eastward continuation reconstruction of the Mesozoic margin, it
is contemplated that crustal thinning, progressive extensional faulting, and the development of syn-rift
depocenters extended towards the east-southeast into the distal domains (i.c., necking, and

hyperextended domains).

The Mesozoic basins mainly formed in the study area during the Late Jurassic-Early Cretaceous
extensional phase were totally or partially inverted during the latest Cretaceous-Oligocene because of
the convergence between Iberia and Eurasia (Fernandez ¢f al., 1995; Gaspar-Escribano ez al, 2004;
Roca, 1996). This compressional phase is thoroughly explained in the following section of this

dissertation.
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5.3. Paleogene compression and tectonic inversion in the central

Catalan Coastal Ranges
5.3.1. Regional context and pre-compressional stage in the Gaia-Montmell High

The convergent motion between the Iberian and Eurasian plates was regionally activated from late
Santonian (Roest and Srivastava, 1991; Rosenbaum ez a/., 2002), yet the transmission of compressional
stresses into the study area did not appear until the lattermost Cretaceous, and from which it was
formed the Catalan Intraplate Chain (CIC) (Roca ¢z al., 1999; Lopez-Blanco ef al., 2000a). Up to three
phases of tectonic evolution can be distinguished during this period of the convergence. Following the
post-Cenomanian period of tectonic quiescence taking place in the area and described in the previous
section, the first phase took place probably at the end of the Cretaceous (Maastrichtian?) as recorded
in the Miramar-Gaia Domain by the paraconformity developed between the Upper Triassic Keuper
facies and the lowermost Paleocene record preserved in the area (Thanetian Mediona Fm.). This
unconformity would indicate a regional pre-Paleocene uplift probably linked to an uppermost
Cretaceous contractional deformation over the entire area. The second phase, Paleocene to early
Eocene in age, was characterized by the sedimentation of conformably overlying fine-grained
terrigenous beds and carbonates with little lateral thickness variations that were deposited in the distal
areas of the Pyrenean foreland (Anadon ez al, 1979; Anadon ez al., 1985). These deposits indicate the
absence of significant deformation or relief development in the adjacent areas of the central CCR and,
therefore, a period of tectonic quiescence. The provenance analysis performed in synorogenic
conglomeratic strata from the central southeastern margin of the Ebro Basin (Marin ef al, 2025, see
Chapter 3) supports a better characterisation of this stage. The presence of Akweolina sp. and
Opertorbitolites sp., as well as of freshwater limestone facies in clasts from the first conglomeratic beds,
which were deposited along the studied Ebro Basin margin, suggests that at least Paleocene (Thanetian),
carly Ypresian (llerdian), and lower Cuisian strata from the Mediona, Orpi and Santa Candia formations
were present southeast of the Montmell Fault and unconformably overlying Cretaceous rocks of the
Montmell-Garraf Basin area (Figure 5.5A). The upper Cuisian to Lutetian Carme, Valldeperes and Bosc
d'en Borras formations might have been deposited in the same area. However, the precise extension of
these Paleogene successions towards the southeast remains uncertain due to their erosion. The third
and most relevant compressional phase regionally occurred from Middle Eocene to early Oligocene
(Guimera and Santanach, 1978; Guimera, 1984; Anadon e al., 1985). This period characterizes the
formation of the CIC and, the compressional structures that emerged in the study area. A detailed
description of this phase, supported by structural, provenance and magnetostratigraphic data shown in
the Chapters 2 and 3, is described in detail in the next section, focussing on the absolute ages of the

inversion and emplacement of the different compressional structures.
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Figure 5.5. Schematic sequential structural restoration of the Gaia-Montmell Section applying flexural slip and
bed length preservation. A) late Lutetian pre-compressional stage. B) late Lutetian — middle Bartonian syn-
compressional stage. C) middle Bartonian to late Priabonian latest stages of the compressional stage. The images
include the location of the later compressional structures. See approximate location of the reconstructed section

in Figure 5.1. No vertical exaggeration.
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5.3.2. Paleogene compressional evolution in the Gaia-Montmell High: positive

inversion of the Montmell Fault and emplacement of the Gaia-El Camp Thrust

The first significant compressional signs in the Gaia-Montmell High (GMH) correspond to the tectonic
inversion of the Montmell Fault, which drives the uplift of Montmell-Garraf Basin and the overlying
strata over the undeformed Ebro Basin (Figure 5.5B). This inversion is characterized by the
development of footwall short-cuts in the upper part of the reactivated extensional faults, the formation
of the thin-skinned compressional system northwest of the Montmell Fault (the so-called "L'Arbogat
Deformation strip") (Figure 5.2B), as well as the development of buttressing resulting in the SE-
directed backthrusts and pop-up structures as observed in the hangingwall fault damage zone of the
Montmell Fault in the Marmellar Accommodation Zone (see Figure 5.1 for location; detailed
explanations of the hangingwall deformation in Chapter 3). The uplift of the Montmell-Garraf Basin
triggered the denudation of the exposed rocks and the sedimentation of what has been interpreted as
the first syn-compression sequence recorded in the studied sector of the southeast Ebro Basin margin
(SMM area in Figure 5.1). The base of this succession corresponds to the first conglomerates of the
Cabra del Camp Mb. (Montblanc Fm.), the concordance with the strata underneath of which denotes
that their deposition was pre-Gaia-El Camp Thrust emplacement (Figure 5.6). This result contradicts
previous interpretations of the area that included Cabra del Camp Mb. as part of a growth sequence or

progressive unconformity related to the formation of the CIC during the Eocene (Anadon ef al., 1986).
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(m) Ebro Basin Cabra-Carme Monocline

«— El Camp Basin —»

(Catalan Coastal Ranges)
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-1500

Figure 5.6. Geological cross-section of the SE margin of the Ebro Basin across the locality of Cabra del Camp
(Cabra Section in Figure 5.1). The section includes the NW frontal structure of the Catalan Coastal Ranges (Cabra-
Carme Monocline) as well as the location of the Cabra del Camp Mb. (Montblanc Fm.) sampling sites referred in

the text.

The contractional reactivation of the Montmell Fault is also supported by the magnetotelluric (MT)
data, which allows the interpretation of this inherited Mesozoic fault as a SE-dipping band of relatively
low resistivity 2 km depth underneath the NW limit of the Montmell Domain (see 2D MT model in

Chapter 2). The origin of this band is interpreted as related to a mechanical boundary that controls the
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spatial limits of tectonic reactivation, which triggers a higher degree of deformation that would
correspond to the damage zone located at the Montmell Fault footwall. The conductivity of this damage
zone would be enhanced by the presence of fluids within fractured and permeable rocks (e.g., Pous e#

al., 2001).

The presence of an alluvial system at the footwall of the Montmell Fault extending up to the present-
day location of Cabra del Camp is proposed for this period (Cabra alluvial fan system, Figure 5.5B).
This reconstruction contemplates the presence of unpreserved proximal alluvial facies at the foothills
of the inverted Montmell-Garraf Basin, which laterally change to distal facies towards the northwest
above the still inactive Gaia-El Camp Thrust. This is also supported by the provenance analysis
performed in clast samples from the Cabra del Camp Mb. conglomerates (Figure 5.6), which shows
NW-directed paleocurrents and clasts consisting of Cretaceous rocks comparable to the formations
described in the Montmell-Garraf Basin (Esteban, 1973; Esteban and Robles, 19706; Salas e/ a/., 2001;
Moreno-Bedmar ¢z al., 2017) (see Chapter 3 for further details about clast identification). Consequently,
the Cabra del Camp Mb. conglomerates can be described as the distal remains of an alluvial system that
expanded over the Miramar-Gaia Domain (Figures 5.5 and 5.6). Towards the northwest, the Cabra
alluvial system would laterally interfinger and grade into the finer-grained facies of the Montblanc Fm.

and the marine sediments of the Vallespinosa Fm.

The age of the beginning of the inversion and the uplift of the Montmell-Garraf Basin has been
stablished from the paleomagnetic analysis performed in Paleogene successions from the southeastern
Ebro Basin margin (Figure 5.7). This analysis constrains the age of the base of the Montblanc Fm., its
lateral equivalent the Cabra del Camp Mb. and, therefore, the age of the inversion of the Montmell
Fault as carly Bartonian (41Ma). Further details of these results are included in the publication in the
Chapter 3 (Marin ez al.,, 2025), which refine the previous, and approximated estimates of the inversion

as post-carly Ypresian (post-Ilerdian) that are present in the publication in Chapter 2 (Marin et al., 2021).

The compressional deformation continued and the whole ensemble of the Miramar-Gaia Domain
became uniformly uplifted by the Gaia-El Camp Thrust (Figure 5.5C), a low-angle thrust interpreted
as a major footwall short-cut of the Montmell Fault (see Chapter 2). The emplacement of the Gaia-El
Camp Thrust is the responsible of the formation of the Cabra-Carme Monocline, that represents the
front of deformation of the Catalan Coastal Ranges and the margin of the Ebro Basin at this location.
As deformation progressed the previously deposited succession corresponding to the syn-compression
I stage (Figure 5.5B) became folded (Figure 5.5C). During this second stage of compressional
deformation, the Sant Miquel Fm. conglomerates were deposited as the result of the uplift, denudation,
and transport of coarse-grained sediments from the adjoining reliefs towards the southeast. The internal
structure of these conglomerates includes at least two intraformational angular unconformities (Lopez-
Blanco ¢ al., accepted), fact that is coherent with its deposition during the coeval development of the

Cabra-Carme Anticline. The observed geometries agree with the interpretation of the frontal structure
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as a fault-propagation fold developed by a triangular shear zone at the tip of the Gaia-El Camp Thrust
(Marin ez al., 2021, see Chapter 2 for further details).
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Figure 5.7. Magnetostratigraphy of the Pontils section. A) Magnetostratigraphic section and correlation to the

GPTS (Gradstein ef al., 2020). PO and RO correspond to Pontils and Rocafort de Queralt fossil sites, respectively,

with their attribution to Mammal Paleogene Reference Levels in brackets. White squares in the VGP graph
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Sedimentation rate values and evolution for the Pontils section. Blue arrow: Bartonian transgressive event at the

base of Santa Maria Group. Orange arrow: time of disconnection from the ocean of the Ebro Basin.
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The results of the provenance analysis in clasts from the Sant Miquel Fm. conglomerates indicate that
Barremian-Aptian orbitolinids and eatly Ypresian (llerdian) Alveolina are prevalent throughout the
studied samples. This denotes the continuation of tectonic inversion of the Montmell Fault and the
uplift and denudation of the Montmell-Garraf Basin as well as a potential cannibalization of the
proximal zones of the previously deposited Cabra alluvial system. Additionally, if we consider the
results of the magnetostratigraphic analysis (Figure 5.7) (see Chapter 3 for further details, Marin e al.,
2025) and the abovementioned geometrical relationships within the Sant Miquel conglomerates, it is
possible to refine the age of deformation as Priabonian (~36Ma) and not as late Bartonian (~41Ma) as
previously suggested in the work included in Chapter 2 (Marin e a4/, 2021). The end of the
compressional deformation in the Gaia-Montmell High area is difficult to establish in the study area
because of the limited stratigraphic record. However, it probably ended in the uppermost Priabonian,
as suggested by the end of the conglomeratic sedimentation and the presence of lacustrine facies that

would imply a transition to tectonic quiescence (Anadon e al., 1985 and 1989).

Sedimentation rates calculated from the Pontils magnetostratigraphic section analysis (Figure 5.7B; see
Chapter 3 for further details) provide a tight correlation with the proposed tectonic evolution of the
central Catalan Coastal Ranges during this period. Late Lutetian pre-compression stage (Figure 5.5A)
shows the lowest sedimentation rates (7.3cm/kyt) that correspond to a stage of tectonic quiescence.
The Bartonian-early Priabonian stage (syn-compression I, Figure 5.5B) shows an increased but still
relatively low sedimentation rate (9.8 to 13.6cm/kyr) during the tectonic inversion of the Montmell-
Garraf Basin. A progressive rise in subsidence rates with an abrupt increase of the rates (up to
51.2cm/kyrt) is present during the early Priabonian-late Priabonian stage (syn-compression II, Figure
5.5C), which is interpreted as the continuation of the Montmell-Garraf Basin inversion and the onset
of the Gaia-El Camp Thrust emplacement. A decrease from 51.2cm/kyr to 22cm/kyr of the
sedimentation rates is interpreted as related to the end of the compression, also shown by the eatly

Rupelian low sedimentation rates (6cm/kyr), as recorded at neighbouring areas by Barbera ez a/. (2001).
5.3.3. Paleogene compression and inversion along the Montmell-Vallés Fault System

The Cenozoic structure of the central CCR is mainly controlled by two major ENE-trending structures:
the Montmell-Valles Faults System (MVES) and the Barcelona Fault (Figure 5.8). These basement-
involved faults dip to the SE, display a right-stepping en-echelon arrangement and, as previous studies
illustrate, experienced Paleogene contractional motions followed by Neogene extension (Bartrina ez a/.,
1992; Roca and Guimera, 1992; Lépez-Blanco ef al., 2000a; Gaspar-Escribano ez al., 2004; Marcén ¢t al.,
2018).

Evidence of tectonic inversion during the Paleogene is present all along the central Catalan Coastal
Ranges, and mainly preserved in the Neogene structural highs. The development of Paleogene

basement-involved ENE-trending folds and thrusts, as seen in the footwall of the MVES, evidences
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the positive inversion of this inherited Mesozoic fault system during the Paleogene compressional
phase (Gaspar-Escribano ¢ al, 2004). Specifically, tectonic inversion is substantiated by the
compressional reactivation of the low-dipping lower panel of the faults and the formation of the
footwall short-cuts, as it is exemplified by the development of the Gaia-El Camp Thrust in the southern
and central sectors of the MVES. Similarly, the Prelitoral Thrust (Lépez-Blanco, 2000b; Gaspat-
Escribano ez al., 2004) should be considered as its equivalent in the northern sector of the MVES (Figure

5.9). Detailed descriptions of these compressional structures in the southern sector of the fault system

(Montmell area), involving major and minor footwall short-cuts are included in Chapter 2 (Marin ¢ al.,

2021).

Main faults

(1) Montmell-Vallés Fault System
(2) Barcelona Fault

(3) Baix Penedés Fault

(4) Barcelona Plain Fault
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Figure 5.8. Tectonostratigraphic map showing the end of the positive inversion of the Mesozoic faults and
contractional footwall short-cuts in the central Catalan Coastal Ranges at late Oligocene (approximately 28My).

The location of the Gaia-Montmell Section and the section in Figure 5.10 are also indicated.

On the other hand, reactivation of the upper fault panels appears limited and shows notable differences
along-strike the MVES. Left-lateral displacement of the steep upper panels of the fault system is
recognized in the northern sector (Ashauer and Teichmuller, 1935; Llopis, 1947; Guimera, 1984;
Anadén et al., 1985; Julia and Santanach, 1984, 1998) (Figure 5.9). This fact is coherent with the oblique
trend of the MVES to the regional shortening direction (i.e., N-S shortening vs. NE-trending faults;
Guimera, 1984; Guimera ¢f al., 2004). However, this transpression is not generalized and, while mainly
obsetrved in the northern sector of the MVES (Vallés area) it hasn't been recognized in the central and
southern segments of the fault system (Penedés and Montmell areas). The strike-slip component is,
however, limited in the northern sector (Vallés area), and a notable the development of footwall short-
cuts is present (Figure 5.9). This circumstance would reinforce the idea of the presence of an inherited
Mesozoic precursor in this area (i.e., the fault limiting the Upper Jurassic- Lower Cretaceous Montmell-
Garraf Basin towards the northwest), which, at least, would have been present up the current location

of the La Garriga town.

In the northern sector of the MVES, the fault zone related to the emplacement of the Paleogene thrust
sheets is mostly characterized by 1) a fault core mainly formed by foliated clay gouges with abundant

shear bands that denote a thrust transport direction towards the north and northwest, and 2) a damage
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zone consisting of a system of amalgamated thrusts and deformation bands that define different scale
duplexes. These deformation features predominantly developed in Paleozoic phyllites and wackes and,
to a lesser extent, in thin Triassic carbonate rocks. Consequently, foliated fault gouges and minor
cement precipitation compared to the central and southern sectors are present in this area (Cantarero

et al., 2014a).
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Figure 5.9. Schematic map of the Montmell-Vallés Fault System showing fault damage zone characteristics of
three sectors (A, B and C) during the Paleogene compressional phase. Fluid and petrological descriptions
compiled after Travé and Calvet (2001), Baqués ez a/. (2008, 2010, 2012, and 2014), and Cantarero ¢z al. (2014a
and 2014c).

Pliocene and Quaternary sediments frequently cover Mesozoic and late Oligocene-Neogene
extensional faults of the central and part of the southern sectors of the MVES (Gallart, 1981), which
makes difficult the study. Additionally, the presence of relatively thick Middle to Upper Triassic
evaporite and mudstone stratigraphic levels result in the formation of drape and fault-propagation folds
above the MVES (e.g., Marmellar Section shown in Chapter 2, Marin ¢z al., 2021). These folds absorbed
part or all the motion of the underlying basement faults, delayed their upwards propagation and,
therefore, prevented or hampered the observation and recognition at surface of the fault zones related
to the motion of the MVFES. Compression in these sectors is also represented at surface by buttressing
structures (minor folds, thrusts and backthrusts) in their hangingwall, reflecting a minor degree of
positive inversion during Paleogene times. As previously pointed out, this type of deformation is
described in the Marmellar Accommodation Zone (see location in Figure 5.1) where SE-directed
backthrusts and pop-up structures are observed in the hangingwall fault damage zone of the Montmell

Fault (Baqués e7 al., 2012 and Marin e/ al., 2023 in Chapter 4).

The direct observation at surface of Paleogene fault zones in the central and southern sectors is limited
and can only be described in the newly formed footwall short-cuts thrusts (e.g., Els Brucs Thrust in the
Penedes area, Figure 5.9). This fault zone is predominantly characterized by the presence of intense

karstification processes and a 1 to 3m-thick fault core constituted by calcite-cemented breccias and
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cataclasites, vertical non-cemented stylolites when developed in Triassic carbonate tocks as well as
foliated clay gouges with abundant shear bands an no cement precipitation when formed in
metamorphic Paleozoic rocks (Cantarero ez al., 2014c). However, as we move towards the southwest
along the trace of the MVES, a notable increase of calcite cemented breccias and NNW-trending
extensional faults filled by calcite that formed during the Mesozoic characterize this fault zone
(Guardiola de Font-Rub{ in Figure 5.9; Baqués et al., 2012). These pre-existing features are cut by minor
ENE-trending reverse and strike-slip faults filled by calcite cements that can be related to compression
and, therefore, the tectonic inversion of the previous Mesozoic extensional fault in this area during the

Paleogene (Amigo, 1984; Baqués ez al., 2012).

5.3.4. Comparison between the Paleogene compression in the southern and northern

sectors of the central Catalan Coastal Ranges

A comparison between the interpreted compressional structures in the Gaia-Montmell Section
(southern sector of the central Catalan Coastal Ranges) and a section through the northern sector
previously published by Roca e 2/ (1999) and structurally restored by Gaspar-Escribano e a/ (2004)
has been performed in order to provide regional insights about tectonic evolution of the area during

the Paleogene compressional phase.

The Figure 5.10 shows the structural reconstruction of the northern sector of the central Catalan
Coastal Ranges and the Valencia Trough domain at the end of the compressional stage (Early
Oligocene, 30Ma). The main structures included in this reconstruction are from northwest to southeast:
1) the Ebro Basin, filled-up by Paleogene sediments covering a thin Mesozoic cover; 2) the Prelitoral
Range, which represents the frontal structure of the Catalan Intraplate Chain (CIC) and developed as
result of the NW verging contractional structure that uplifts a ~20 km wide area of exhumed Variscan
basement to the southeast (hinterland) and a thin Mesozoic cover to the northwest (foreland); 3) the
Barcelona piggy-back basin filled-up with Oligocene sediments ovetlaying an area where the Mesozoic

cover thickens towards the Valencia Trough domain.

The Paleogene compressional stage in this northern sector occurs in four different pulses from Late
Paleocene to Eatly Oligocene (Gaspar-Escribano ef al., 2004), three responsible of the development of
the Prelitoral Range and the last responsible for the development of the Barcelona piggy-back Basin.
The first pulse starts in the Paleocene-Eocene boundary (53Ma) (Lopez-Blanco, 2002) and reactivates
with reverse motion and sinistral strike-slip movement (Guimera, 1984) the pre-existent northern
segment of the MVFES until the end of Ypresian (49Ma). The second pulse, from Lutetian (~45Ma?) to
Bartonian (~36Ma?), is the responsible of the developing of the frontal anticline of the CIC, but implied
low shortening (Lopez-Blanco, 2002). This pulse continued and evolved to the third active faulting

pulse from Bartonian (35Ma?) to Rupelian (29Ma) (Lopez-Blanco ez al, 2000a). Finally, southeast
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towards the hinterland, compression took place during the early to late Oligocene transition (latest
Rupelian-early Chattian) leading the development the Barcelona piggy-back basin (Parcerisa ez al., 2007).
The analysis of the Barcelona Basin fill shows an Upper Eocene-Oligocene succession that is coeval to
the development of the CIC (Roca ¢ al., 1999). Occurrences of sediments with similar age (Oligocene)
are also present in the footwall of the Barcelona Basin in an area affected by compressional features

(Parcerisa, 2002; Parcerisa ¢ al., 2007).
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Figure 5.10. Structural reconstruction of the northern sector of the central Catalan Coastal Ranges and the
Valencia Trough domain at the end of the compressional stage (late Oligocene - Chattian, approximately 28Ma).
An estimate location of the limit of the Late Jurassic-Early Cretaceous rift basin is shown with red dashed-lines.
Depth of the basal detachment corresponding to the top of the reflective crust based on Fernandez and Banda

(1990), Sabat ez al. (1997) and Roca ez al. (2004) (modified from Gaspar-Escribano ez al., 2004).

A summary of all these kinematic pulses is illustrated in Figure 5.11 providing a comparison with the
fault activity ages proposed for the southern sector of the central CCR including the Montmell Fault
inversion and the development of the Gaia-El Cap Thrust. The age comparison agrees with the carliest
syn-tectonic sediments recorded along the margin (Ypresian-early Cuisian Cairat Fm.), deposited
northeast in the northern sector in the Montserrat-Sant Lloren¢ del Munt area (Lépez-Blanco, 2002)
(Figure 5.1), and the fact that the compressional deformation in the Catalan Coastal Ranges progressed

from northeast to southwest up to the Late Oligocene (Chattian) (Guimera, 1984; Anadén ez al., 1985).

Some previous works account for the presence of an inherited Mesozoic structure, related to changes
in thickness of the Jurassic-Cretaceous sequences that potentially acted as weakness zones within the
crust during the Paleogene development of the central CCR (e.g., Roca and Guimera, 1992, Gaspat-
Escribano ¢t al., 2004). However, the proposed reconstructions do not account to the effect and control
of the extensional Mesozoic fault geometry on the later compressional phase. A tentative
reconstruction of the limits of the Late Jurassic-Eatly Cretaceous rift basin, together with their
associated inversion-related structures (e.g., footwall short-cuts) is added to the section in Figure 5.10.
This inherited structure would be rooted to a basal detachment corresponding to the top of the

reflective crust between 12 and 15 km depth (Fernandez and Banda, 1990; Sabat ez al., 1997).
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Figure 5.11. Time chart showing the periods of tectonic activity of each individual major fault in the southern
and northern sectors of the Central Catalan Coastal Ranges during the Pyrenean Orogeny (see the location of the
sectors in Figure 5.1). Ages for the southern sector are based on the results of this research. Ages for the northern
sector are based on previous publications (e.g., Lopez-Blanco ¢ al., 2000a; Lépez-Blanco, 2002; Parcerisa ef al.,

2007; Gaspar-Escribano ¢z al., 2004).
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5.4. Neogene extension and negative inversion in the central

Catalan Coastal Ranges
5.4.1. Neogene extension in the Gaia-Montmell High

The Paleogene structure of the Gaia-Montmell High (GMH) previously described in Section 5.3 was
later imprinted by the Neogene extensional deformation that cut or reactivate the inherited
compressional structures in the CCR from latest Oligocene to late Miocene (Bartrina ez al., 1992; Roca,
et al., 1999; van Hinsbergen e al.,, 2014). In general terms, as previously stated, the GMH corresponds
to a major relay zone between two major NE-SW-trending, SE-dipping faults: the Montmell-Valles
Fault System (MVES) and the El Camp Fault, though, a closer view reveals that the structure of the

GMH exhibits further complexities related to the extensional phase during the Neogene (Figure 5.12).
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Figure 5.12. Schematic geological map of the Gaia-Montmell High pointing out the major Neogene extensional

faults. Up to three relay ramps linking extensional faults are present in the area.

The Valles-Penedes Fault exhibits a progressive reduction in its displacement towards the southwest.
As a result, the Valles-Penedes Fault oversteps the Montmell and Baix Penedes faults in the respective
Marmellar and Sant Mart{ Sarroca transfer zones, which are characterized by NW-SE-oriented
breaching faults (Figure 5.12). Consequently, the extensional displacement is transferred to the

Montmell and Baix Penedes faults, which propagates towards the southwest with a comparable
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orientation. The Montmell Fault shows a low accumulated extensional displacement. The Baix Penedes
Fault, instead, shows a considerably higher accumulated throw reaching several hundreds of meters
represented by a segmented fault pattern with several SE-dipping splays at surface (Figures 5.12 and
5.13). As seen in the Gaia-Montmell Section (Figure 5.13), the Baix Penedes Fault is interpreted as
rooted at the deep SE-dipping basement ramp underneath the area. In contrast, in the western side of
the GMH, the displacement of the El Camp Fault experiences a pronounced drop towards the
northeast, culminating in a narrow assemblage of SE-dipping faults characterized by hectometric
accumulated displacements along the Carme-Cabra Anticline backlimb (Figure 5.13). Considering the
geometry of the Miramar-Gaia Domain, which arises from displacement and uplift over a low-angle
basement ramp that shallows towards the northwest, this array of extensional faults at the northeastern
terminus of the El Camp Fault has been interpreted as being rooted in the Gaia-El Camp Thrust.
Within this framework of overlapping extensional faults, the NW-SE-oriented faults observed in the
Sant Marti Sarroca Transfer Zone and the Pont d'Armentera Fault (Figure 5.12) are regarded as relay
ramp breaching faults of a soft linked extensional system (Fossen and Rotevatn, 20106). These zones
facilitate the transfer of displacement between the Valles-Penedés and Baix Penedés faults, as well as

between the El Camp Fault and the Montmell-Valles Fault System, respectively.
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Figure 5.13. Structural cross-section across the Gaia-Montmell High illustrating the age of the different faults

that are present in the area as well as their reactivation during the Cenozoic.

Several indicators suggest the extensional reactivation (or negative inversion) of pre-existing faults
including: 1) the formation of an array of extensional faults that are rooted in the discrete fault plane
of the Paleogene Gaia-El Camp Thrust at the NE extremity of the El Camp Fault; 2) the extensional
geometry of the Montmell Fault, despite its reverse movement during Paleogene times; or 3) the Baix
Penedes Fault and its splays, which also root in the Paleogene reverse fault footwall ramp. However,
the reactivation of the Montmell Fault is comparatively constrained, with the extension predominantly

being relayed to the Baix Penedes Fault.
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All the aforementioned structural observations suggest a latest Oligocene-Miocene extensional phase
that led to the reactivation of pre-existing Late Jurassic-Early Cretaceous and Paleogene fault systems.
Accordingly, the array of extensional faults formed at the NE end of the El Camp Fault developed as
hangingwall short-cuts product of the negative inversion of the Gaia-El Camp Thrust. Likewise, the
Baix-Penedés Fault developed as a hangingwall short-cut during the reactivation of the sole thrust as

an extensional detachment (Figure 5.13).

The timing of the reactivation can be outlined based on tectonostratigraphic relationships. For instance,
the undeformed Pleistocene alluvial deposits that cover most of the major Neogene faults in the central
CCR, denote that their extensional activity is pre-Pleistocene. Furthermore, as seen in the Marmellar
Accommodation Zone (see Marmellar Section in Chapter 2; Marin ez a/., 2021), major faults frequently
exhibit drape-fold structures on their hangingwalls that either intersect or deform Serravallian
sediments (Benzaquen ez al, 1972b). Consequently, their extensional motion must be accounted as
post-Serravallian. Nevertheless, at this location, extensional growth strata geometries are observed in
upper Serravallian-lower Tortonian sediments deposited in the Valles-Penedés Fault hangingwall
(Benzaquen ez al., 1972b; Baqués ef al, 2012), hence indicating, at least for this particular fault,
extensional motion during this period. This observation is consistent with prior regional investigations
that suggest the occurrence of extension in the CCR between Burdigalian and Late
Tortonian/Messinian times (Gallart, 1981; Cabrera e al, 1991; Cabrera and Calvet, 1996; Porta and
Civis, 1996; Cabrera et al., 2004). However, the absence of preserved upper Oligocene and Neogene
sedimentary deposits in the Miramar-Gaia and Montmell domains prevents to establish the relative

ages of activity for the observed extensional faults.

5.4.2. Mesozoic structural inheritance and Neogene fault zone characterization along

the Montmell-Valles Fault System

The pre-existing Montmell-Valles Fault System (MVES) became reactivated during the latest
Oligocene-Miocene extensional phase taking place in the area (Bartrina ¢/ 2/, 1992; Roca, 1994; van
Hinsbergen ¢f al., 2014). However, this reactivation didn’t take place equally along the whole fault
system trend (Figure 5.14). Whereas the lower fault panels, characterized by a low dip, underwent
extension all along the fault system (?) (Gaspar-Escribano e al., 2004), the reactivation of the steep
upper panels was restricted to the northern and central sectors of the MVES (Valles and Penedeés areas).
In these areas, the outcropping Valles-Penedés Fault aligns with the trajectory of the Mesozoic fault at
the broader regional scale. Nevertheless, the Neogene fault did not always reactivate the pre-existing
Mesozoic fault core but developed rather extensional shortcuts in their hangingwall (Fontboté, 1954;
Anadon ef al., 1985; Roca and Guimera, 1992) (Figure 5.15). Conversely, in the southern sector of the
MVES (Montmell area) the steep upper panels remained almost inactive throughout the Neogene

extensional period (see Montmell Fault segment in Figure 5.14).
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Neogene to Main faults
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(1) Montmell-Vallés Fault System
4‘ (2) Barcelona Fault
Upper Jurassic- ; R
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Figure 5.14. Tectonostratigraphic map showing the end of the extensional motion of the Valles-Penedes, El
Camp and Baix Penedes faults and related extensional short-cuts in central Catalan Coastal Ranges at late
Tortonian (approximately 7My). The locations of the Gaia-Montmell Section (Figure 5.13) and the Llobregat
Section (Figure 5.15) are indicated.

In this southern sector, the extensional reactivation of the low-angle lower fault panel culminated in
the development of a major extensional shortcut represented by the Baix Penedés Fault (see Chapter
2, Matin e# al., 2021). Therefore, although the MVES shows two episodes of tectonic inversion during
Cenozoic times, first positive during the Paleogene (Juez-Larré and Andriessen, 2006; Gaspat-
Esctibano ez al., 2004; Marin et al., 2021), and then negative during the latest Oligocene-Neogene
(Fontboté, 1954; Anadén ef al., 1985; Roca and Guimera, 1992; Lopez-Blanco ef al., 2000a). The steep
upper panels of the inherited Mesozoic faults experienced only partial reactivation in the northeastern

regions of the MVES, with no such activity occurring in its southwestern counterparts (Figure 5.13).

NW-SE Pre-littoral

= . lona Plain
= Vallés-Penedés Basin i : '_AI’O' nlnegre i

10 10 km
(km)
|~ Neogene extensional faut __ Fault reactivated during the Miocene to Variscan
9 P \Pg‘ljeor;eneamh'ag;lg andlor g:aternary basement
'~ Paleogene thrust ~ the Neogene extension. P leocene- -Tnassw

Figure 5.15. Llobregat section across the northern sector of the MVES (Valles area) (modified from Bartrina e/

al., 1992). See location in Figure 5.14.

The petrological characterization of the fault zones along the three different sectors of the MVES
provides insights about the abovementioned differences of reactivation (see Chapter 4 for detailed

descriptions). The northern sector of the MVES (Valles area; sector A in Figure 5.16) developed within
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a host-rock predominantly formed by the Variscan basement (granitoids and metasedimentary
siliciclastic rocks) and, at shallower levels, by a thin Triassic succession and thicker Paleogene siliciclastic
sediments corresponding to the Ebro Basin fill (Figure 5.15). The fault zone related to the latest
Oligocene-Neogene extension of the Valles-Penedes Fault is characterized by 1) narrow and
impermeable fault cores made up of mud-to-clast-supported non-cemented breccias; 2) cataclasites
cemented by chlorite and associated calcite and laumontite minerals; 3) meteoric fluid circulation within
decametric to kilometric damage zones at surface; and 4) the presence of multiple hot springs along

the fault (Cantarero e/ al., 2014a).

E - Branched fault segments and splays at surface.
- Cohesive fault core formed by calcite-cemented breccias

and cataclasites. A N Ides de La Garriga Sant Esteve
La Puda ontbui La Garriga ﬁl - .de Palautordera _
ms“ = o = 4{§MX§\H\®S>\ /s~ \l/\\// )
. '.Wt¥?’ VT —< LAtmella del Samalis ’
. ® Terrassa Vallés
Ammﬂf::;":; 4 'I",' = Suard s de Valles-Pened&s A -Narow (<5m)andimpermeable fault core made up by mud-to-clast supported breccias.
i T - Cataclasites cemented by chlorite and associated calcite and laumontite minerals.
/ - ?-Q - Meteoric fluid circulation within the damage zone.
QA “s - Presence of hot springs along fault.
C Calcnte-oemented breccias. s,
/'\.’ -7 - Cohesive fault core due to presence of calcite cements that
.7 heal breccias and cracks.
- High fault strength and high coefficient of friction. Host-rock / protolith lithology in the
upper part (<1 km) of the fault

- present-day 1 to 2 km-wide damage zone, 2 km-deep in the fault footwall, which acts | | d
as fluid conduit. It is not possible to establish its age or the tectonic phase that formed it. = Paleozoic granites and

metasedimentary rocks
A: Northern sector (Vallés area) ,‘/" Extensional fault !KMﬁ Information from MT D ;’rr)lgsgfb%\rlg:ggnes siliciclastics
B: Central sector (Penedés area) " Main fault trace > < )
C: Southem sector (Montmell area) _— Fault splays (Hs) Hot spring I:l Mesozoic carbonates

Figure 5.16. Schematic map of the Montmell-Valles Fault System showing fault damage zone characteristics of
three sectors (A, B and C) developed during the latest Oligocene-Neogene extensional phase. Fluid and
petrological descriptions compiled after Travé and Calvet (2001), Baqués ez a/. (2008), Baqués ez a/. (2010), Baqués
et al. (2012), Baqués ez al. (2014) and Cantarero ez al. (2014a and 2014c). Magnetotelluric data (MT) from Marin ez
al. (2021) included in Chapter 2.

In central sector (Penedés area; sector B in Figure 5.16) the MVES developed in a host-rock mostly
formed, at depth, by metasedimentary siliciclastic of the Variscan basement. However, at shallower
levels, host-rocks are composed by a thin Triassic to Lower Jurassic succession including carbonate,
siliciclastic and evaporite rocks overlain by a thicker Cenozoic syn-kinematic terrigenous cover. The
presence of pre-kinematic evaporite and mudstone layers are the responsible of the formation of drape
and fault-propagation folds above the MVES (see cross-section in Figure 5 in Matin ¢z al., 2021; Chapter
2). These folds absorbed, partially or totally, the displacement of the undetlying basement faults and
prevented the surface observation of the fault zones. Moreover, the presence of post-rift Pliocene and
Quaternary sediments frequently covering the Mesozoic and latest Oligocene-Neogene extensional
faults makes difficult the study of this area (Gallart, 1981). For this reason, fault zones of this sector
have only been described in its southern part. This area is characterized by the presence of a thick
Mesozoic carbonate host-rock, two splays of the Valles-Penedes Fault at surface (Amigo, 1984) and a
metric and cohesive fault core mainly formed by calcite-cemented breccias and cataclasites (Baqués ef

al., 2012) (Figure 5.16). The damage zone in the central sector consists of nearly vertical calcite-
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cemented tension fractures and high-angle extensional faults (Amigd, 1984; Baqués ¢z al.,, 2012), the

density of which increases towards the fault core.

In the southern sector (Montmell area; sector C in Figure 5.16), the upper panels of the MVES formed
in a host-rock with a thicker post-Triassic carbonate succession including Jurassic and Cretaceous
rocks. Like in the previous sector, the relatively thick pre-kinematic Middle to Upper Triassic evaporite
and mudstone layers resulted in the formation of drape and fault-propagation folds above the MVES
(see cross-section in Figure 5 in Marin e al., 2021; Chapter 2). The most important fault zone associated
with this sector is the one linked to the formation of the Baix Penedés Fault. This zone shows a cohesive
fault core due to the presence of different generations of calcite-cemented breccias and cataclasites
(Baqués ez al., 2010, 2014), which strengthen and heal breccias and cracks (Belaid e a/., 2008; Baqués ez
al., 2014).

5.4.3. Controls on the Montmell-Vallés Fault System extensional reactivation during

the Neogene

From the provided descriptions, two main aspects might control the extensional reactivation of the
MVES: 1) its inherited geometry; and 2) the petrological evolution and composition of the different
fault zones. From a geometrical point of view, the MVES shows similar kinked-planar geometry all
along its trace. This geometry is characterized by an upper panel dipping >60° towards the SE that
passes into a lower panel that dips around 30° at depth (Figure 5.15). This less dipping lower panel
would most likely correspond to the continuation of the Paleogene thrusts, the Pre-littoral Thrust in
the northern sector, the Gaia-El Camp Thrust in the central and southern sectors and, probably,
continuing towards the southwest of the GMH, underneath of the El Camp Basin. Considering the
constant orientation of the stress field across the region during the Neogene extension (Bartrina ef al.,
1992; Herraiz et al., 2000), the differences in Neogene reactivation cannot be only explained by potential
variations in the local stress due to changes in the fault plane orientation and dip. Therefore, the
inherited rheology of the pre-existent fault rocks, and the influence of mineralizations and cementations
within the fault zones during previous tectonic phases should be contemplated as a factor to explain

the different reactivation.

The extensional reactivation of the Montmell-Vallés Fault System during the Neogene was primarily
observed in regions with siliciclastic host-rocks and non-cohesive gouge in the fault core. In these cases,
the weaker fault rocks facilitated reactivation. Conversely, reactivation was limited or absent where
thick carbonate successions were present, and pre-existing fault rocks were composed of well-cemented
cohesive carbonate breccias. It is likely that cementation with calcite and other minerals increased the
strength of fault rocks, raising the failure envelope and welding fault breccias to the host-rock,

preventing fault planes from serving as weaknesses during deformation. This aligns with investigations

in the Valles-Penedes Fault (Travé ef al., 1998; Belaid ez al., 2008) as well as other Neogene faults in the
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Catalan Coastal Ranges (Cantarero ¢f al., 2014b, 2018), which demonstrate that carbonate precipitation
sealing fault planes may obstruct reactivation or reduce fault slip capacity (Li e# a/., 2003; Ferrill and

Morris, 2008; Hausegger ef al., 2010; Ferrill ez al., 2011; Hooker ef al., 2012).

The mechanical properties of fault rocks within the MVES zones differ due to mineralizations and/or
cementations, such as calcite precipitation, influencing the Neogene reactivation pattern. While
siliciclastic rocks from the Variscan basement and Triassic are present across all sectors, only parts of
the central and southern sectors exhibit a well-developed Mesozoic carbonate cover responsible of the
cohesive calcite-cemented fault breccia development. In the northern sector, low calcite precipitation
is present in the fault zone (Cantarero ez al., 2014a), rock strength remained low, and reactivation was
smooth. This reactivation was likely facilitated by silicate-rich fault gouge, reducing fault strength and
coefficient of friction (Wang ¢z al., 1980; Wintsch ez al, 1995; Alder ez al., 2016). Instead, in the southern
sector, petrological and geochemical analysis (i.e., Baqués ¢f a/., 2012) show that this area had very low
or non-existent permeability and, therefore, very low fluid pressure and higher strength at the end of

the Paleogene compression.

To summarize, the rheology of fault rocks played a crucial role in the reactivation of the Mesozoic fault
system. Reactivation was favoured in areas where Variscan basement was involved in deformation,
whereas it was limited in regions with a thick carbonate-rich Mesozoic cover. This led to differential

evolution among the three studied sectors, which can be summarized as follows:

e Northern sector: reactivation was facilitated by weak fault gouge in basement-involved

deformation.

e  Central sector: shallow fault zones with cemented fault breccia were insufficient (possibly too short
and too thin) to counteract weak fault gouge at depth.

e Southern sector: well-developed and cemented breccias appeared extensive enough (longer and

wider) to inhibit or decrease reactivation of underlying weak fault gouge.

Summarizing, the distinct mechanical and structural characteristics across the sectors underscore varied

reactivation processes and fault zone development.
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CHAPTER 6

SUMMARY OF THE CONCLUSIONS

0.1. Tectonic evolution and structural inheritance in the Gaia-Montmell High

0.2. Structural inheritance and control factors of the reactivation along the MVES
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6.1. Tectonic evolution and structural inheritance in the Gaia-

Montmell High

The new field-based and magnetotelluric (MT) dataset acquired across the Gaia-Montmell High has

allowed the characterization of the main features of its Alpine crustal structure.

The structural configuration of the Gaia-Montmell High comprises two domains with a differentiated

tectono-stratigraphic evolution. These domains are:

1) Miramar-Gaia Domain: area with a very thin Mesozoic succession (only Triassic) uplifted over the
Ebro Basin by a NW-vergent, low-angle basement thrust (the Gaia-El Camp Thrust).

2)  Montmell Domain: area with a well-developed Mesozoic succession including Triassic, Jurassic and
Cretaceous rocks and limited towards the NW by the Montmell Fault. Its structure involves NW-

vergent compressional faults affected by SE-dipping high-angle extensional faults.

A deformed zone in the footwall of the Montmell Fault including the presence of NW-vergent thrust

systems are present in the limit between the two domains listed above.

MT data along the Gaia-Montmell Section has enabled the delineation of the subsurface structure and
the recognition of zones depicting potential fractures, conductive fluids and/or mineralizations

belonging to Montmell fault hangingwall at depth.

The Montmell Fault represents the southwest prolongation of the Valles-Penedes Fault. Together they
form the Montmell-Valles Fault System (MVES). The area of overlap and relay corresponds to the

Marmellar Accommodation Zone.

The MVES constituted the northwest boundary of the Montmell-Garraf Basin developed during the
Late Jurassic-Early Cretaceous (Oxfordian to middle Aptian) rifting period. It extended several
kilometres northeast of the present-day location of the Llobregat River, progressively reducing its

displacement.

A period of tectonic inversion and contractional reactivation related to the Paleogene compressional
phase is attested by the presence of highly deformed areas in the Montmell Fault footwall. These
contractional structures include thin-skinned thrusting and footwall shortcut structures and

characterize the positive inversion of the Montmell-Garraf Basin.

The emplacement of the Gaia-El Camp Thrust, a NW-directed basement thrust that uplifted the
Montmell-Garraf Basin and the adjoining areas of the Ebro High. Its formation is related to a limited
reactivation of the Montmell Fault and the propagation of the deformation to its footwall as a major

short-cut structure
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The age of the positive inversion of the MVES was preliminarily established as, at least, late Ypresian
(Cuisian) considering the preserved pre-kinematic strata in its footwall, whereas the emplacement of
the Gaia-El Camp Thrust was established as late Bartonian to lower Oligocene considering syn-
kinematic sediments preserved in the SE margin of the Ebro Basin. These non-conclusive timespan
intervals have been refined with the integration of complementary structural, magnetostratigraphic and

provenance analysis performed in synorogenic Paleogene successions at the southeastern margin of the

Ebro Basin.
The new Pontils magnetostratigraphic section allows establishing the absolute ages of this syn-orogenic
Paleogene strata along more than 1,400 m of succession.

The paleomagnetic study also confirms the Pontils fossil site (MP15 reference level) as Bartonian,

ranging from 41 to 39.8 Ma.
The ages of the studied formations are the following: the

late Cuisian
Lutetian

uppermost Carme Fm. -
Valldeperes Fm. -

Bosc d’en Borras Fm.

Vallespinosa Fm.

Montblanc Fm. (including the Cabra del Camp
Mb.)

Sant Miquel de Montclar Fm.

Lutetian
Bartonian to early Priabonian

Bartonian to early Priabonian

middle to late Priabonian

The tectonostratigraphic reconstruction of the Paleogene compression allows outlining the
conglomerates of the Cabra del Camp Mb. as the distal facies of an ancient alluvial system (Cabra
alluvial system) that expanded northwest of the Montmell Fault over the Miramar-Gaia Domain as
result of the onset of the tectonic inversion of the fault during the Bartonian to early Priabonian. This
age agrees with the diachronous compression described along the SE margin of the Ebro Basin, from

Ypresian in the northern sector, Bartonian in the central area, and middle to late Eocene in the south.

Provenance analysis in the Cabra del Camp alluvial conglomerates ratifies that the source area
corresponded to the exhumed Montmell-Garraf Basin. The proximal facies of this alluvial system
would have been deposited in the footwall of the Montmell Fault. However, these haven't been

preserved due to uplift and denudation.

The composition of clasts from the Cabra del Camp Mb. suggests that the youngest stratigraphic units
deposited in the Mesozoic Basin were Upper Cretaceous (Cenomanian to Turonian). This Mesozoic
Basin was covered by Paleocene to Lutetian sediments (Mediona and Orpi formations and Pontils-
Cornudella Group), fact that defines this as a period of tectonic quiescence. The southeast extent of

these Paleogene successions remains uncertain.

A second pulse of compression is recorded during the middle to late Priabonian by intraformational

angular unconformities in the conglomerates of the Sant Miquel Formation. The deformation of these
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conglomerates is associated with the growth of the Cabra-Carme Monocline during the emplacement

of the Gaia-El Camp Thrust, which uplifted the Miramar-Gaia Domain over the Ebro Basin.

This second pulse deformed the previously deposited conglomerates of the Cabra del Camp Mb. and
lateral equivalents. The beginning of this stage is marked by the abrupt increase in the sedimentation

rates related to the increase in the tectonic subsidence caused by the onset of the Gaia-El Camp Thrust.

Negative tectonic inversion of the previously formed Paleogene and Late-Jurassic faults is observed in

the Gaia-Montmell High.

During Latest Oligocene(?)/eatly Miocene - late Miocene, the extensional slip at the southwest
termination of the Valles-Penedes Fault is relayed to the Baix Penedes Fault, which is considered as a
hangingwall short-cut product of the negative inversion. Accordingly, accommodation zones

characterized by the presence of relay ramp-breaching faults developed.

The negative inversion of the Gaia-El Camp Thrust is attested at the NE-end of the El Camp Fault,

where an array of extensional faults developed in the Miramar-Gaia Domain.

Tectonostratigraphic relationships in the area indicate that extension occurred mainly between

Burdigalian and Late Tortonian-Messinian times.
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6.2. Structural inheritance and control factors of the reactivation

along the MVES

The analysis of the structural styles and the fluid-rock interactions in fault zones along the three sectors
of the Mesozoic-inherited Montmell-Valles Fault System (MVES) allows discerning between different
levels of reactivation during the Late Cretaceous to late Oligocene compression, and the Latest

Oligocene(?)/eatly to late Miocene extension

A period of positive tectonic inversion and contractional reactivation of the pre-existing Mesozoic
structure is attested by the presence of highly deformed areas along the MVES footwall during the

Paleogene compressional phase. However, this reactivation appears decoupled.

The lower 30°-dipping panels of the MVES do reactivate practically all along the fault trace. However,
the reactivation of the upper and higher-dipping fault panels is restricted in the areas containing thick

carbonate protoliths.

The formation of calcite-cemented fault rocks (breccias), especially in the central and southern sectors,
due to fluid circulation during the Mesozoic extensional phase would have enhanced fault strength and
the coefficient of friction of the fault cores, thus limiting its reactivation. Consequently, this triggered

the propagation of the deformation to the fault footwall developing shortcut structures.

The Gaia-El Camp, Els Brucs, and Pre-littoral thrusts would correspond to major short-cut thrusts

uplifting the footwall of the MVES over the Ebro Basin during the Paleogene compression.

During the Neogene extension, the negative inversion of the MVES appears also governed by the
inherited fault zone anisotropies. A decoupling of the reactivation between the upper and lower fault
panels is also present. Whereas the deeper part was reactivated all along the MVES trend, the high

dipping and shallower fault panels experienced different degrees of reactivation.

The feasibility of fault reactivation appears highly controlled by three factors: 1) the host-rock lithology
that characterizes fault rock types and locations, 2) the formation of cements during the main fault
activity, and 3) the related change of the mechanical properties of fault rocks that governs the aptitude

of the fault to be reactivated.

Reactivation was effective in areas where the host-rock was composed by granitoids and siliciclastic
metasediments, and the pre-existent fault core was characterized by an impermeable and non-cohesive

gouge (i.e., northern sector).

Conversely, fault reactivation was restricted, or even avoided, in areas with thick carbonate host-rock

and highly cemented cohesive breccias in the pre-existing fault core (i.e., central and southern sectors
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of the MVES). These areas constituted the NW limit of an extensional basin filled-up with relatively

thick carbonate successions during the Mesozoic.

Differences in reactivation within the central and southern sectors appear rather associated to the size
of the highly cemented areas in the inherited fault zone. This increases towards the southwest
preventing (or restricting) the reactivation in the southern sector (Montmell area) and shifting the

extension towards the southeast along the Baix Penedés Fault.
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LIST OF ACRONYMS

The following list provides a complete overview of all acronyms used throughout this document,

including those appearing in both the text and figures. The intention of this list is to facilitate

understanding and ensure clarity for readers. Frequently used acronyms are highlighted in blue for

quick reference.

BB: Barcelona Basin

BCB: Basque-Cantabrian Basin
Bc E-1: Barcelona E-1 well

BF: Barcelona Fault

BMB: Barcelona-Maresme Basin
BP: Barcelona Plain

BPB: Baix Penedés Basin

CB: Cameros Basin

CCR: Catalan Coastal Ranges

ChRM: Characteristic Remanent Magnetization

CMH: Collserola-Montnegre High
DI: Durance Isthmus

ECB: El Camp Basin

ECF: El Camp Fault

FMB: Figueres-Montgti Basin
FNB: Flysch Noir Basin

GH: Garraf High

GMH: Gaia-Montmell High
GMtH: Garraf-Montnegre High
LP: Landes Plateau

Ma-1: Martorell-1 well

MAU: Middle Albian Unconformity
MAZ: Marmellar Accommodation Zone

MGB: Montmell-Garraf Basin

MH: Montseny High

MR: Miramar Range

Mr: Montserrat fan delta

MsB: Maestrat Basin

MT": magnetotelluric

MU: Messinian Unconformity

MVES: Montmell-Valles Fault System
NRM: Natural Remanent Magnetization
OB: Organya Basin

PB: Penedés Basin

PH: Prades High

PrB: Perell6 Basin

PrtB: Parentis Basin

PZ: Paleozoic

SLM: Sant Llorenc del Munt alluvial fan and fan delta
SMM: Sant Miquel del Montclar alluvial fan
Sn-1: Senant-1 well

SPB: South Provence Basin

SS-1: San Sadurni-1 well

VB: Valles Basin

VcB: Vocontian Basin

VPB: Valles-Penedés Basin

VPF: Vallés-Penedes Fault

VU: Variscan Unconformity

181






	MAMP_COVER
	Marin2025_PhD_Thesis_Final_Final PRINT

