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ABSTRACT: The direct insertion of Zn into olefin−halide bonds
is a challenge. When (E)-alkenyl iodides were treated with a very
large excess of Zn nanoparticles, in the presence of Pd(PPh3)4, the
dimerization was observed but, unexpectedly, yielding mainly Z,E-
1,3-dienes. This apparently contrathermodynamic E-to-Z isomer-
ization of organometallic intermediates is predicted to be general and is explained with the aid of DFT [principally M06/6-
311+G(d,p)], MP2, and CCSD(T) calculations.

In the past 25 years our research group has been involved in
the synthesis, bioevaluation, and molecular docking studies

of several cytotoxic macrolides.1 Often, the presence of various
conjugated dienes in their structures has posed the problem of
how to control the stereoselectivity of the formation of the
second double bond by C(sp2)−C(sp2) coupling reactions.2

When this coupling is planned to be carried out with advanced
fragments/synthons/chiroblocks in a multistep synthesis, all
the methods have pros and cons. The Pd-catalyzed Negishi
reaction has advantages when alkenylzinc halides to be coupled
(R*CH�CH−ZnX) contain various functional groups and
prone-to-inversion stereocenters (in R*). However, as is
known,3 the direct zincation of haloalkenes (nonactivated by
electron-withdrawing groups (EWGs)) is particularly compli-
cated; that is, it is more difficult to insert Zn into olefin−halide
bonds of nonactivated alkenes than into most other C−X
bonds.4 It is common to resort to lithiation (with ≥2 equiv of
tBuLi) or magnesiation, followed by in situ Li-to-Zn or Mg-to-
Zn exchange with ZnX2, but it may be incompatible with the
functional and protecting groups of R*. The question is how to
carry out direct Zn insertion into a vinyl iodide.
In preliminary experiments, before attempting cross-

couplings with expensive advanced fragments, we prepared
simple iodovinyl derivatives as substrates (RCH�CHI) and
examined their dimerization with a simple and well-known
“activator” of C(sp2)−X bonds, Pd0. In our hands, with Zn and
Pd, the expected conversion of (E)-1-iodo-4-phenyl-1-butene
(1) to (E,E)-2 (Scheme 1), henceforward also EE- 2, occurred
in 76% yield (not optimized). There are, obviously, many
precedents of homocouplings of alkenylmetal derivatives

(prepared from vinyl iodides),5 but we wanted to focus on
Zn-mediated Negishi-type reactions.
To our surprise, in some experiments with activated Zn dust

a byproduct was detected, which under appropriate conditions
and a large excess of Zn nanopowder (NP) turned out to be
the major compound in the final mixture. This product was the
ZE diene. Sometimes, during the reaction of metalated alkenes,
a partial inversion of configuration of the double bond has
been reported,6 but the E-to-Z isomerization detected here is
unprecedented, to the best of our knowledge (searching with
SciFindern).7 We therefore investigated the self-coupling of
(E)-alkenyl iodides to afford ZE dimers. This is the subject of
the present Note.
To pure 1 in N,N-dimethylacetamide (DMA) a large excess

of Zn NP (up to 500 mol %) was added, and afterward
Pd(PPh3)4 (10 mol %). The mixture was shaken or vigorously
stirred at 40 °C, under Ar, overnight or for 24 h. After dilution
with hexane(s), filtering the excess metal, and washing with
dilute acid, unexpected ZE-2 was the major compound. The
crude mixture was not separated but was analyzed by NMR
and GC-MS. The symmetry of the EE isomer allowed us to
distinguish it from its ZE isomer by 1H NMR spectroscopy
(Figure 1). Reference samples of pure EE-2 and ZE-2 were
prepared by standard reactions, that is, from 1 + 2 tBuLi +
ZnBr2 in THF, addition of Pd(PPh3)4, and of a second equiv of
1 or Z-1, respectively.
Other reaction conditions and substrates were examined.

The results are summarized in Table 1 and the following
paragraphs.
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Scheme 1. Dimerization of Alkenyl Iodide 1
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Table 1 shows that similar results were obtained: (i) with
DMA, DMF, and THF; (ii) by increasing the temperature to
60 °C; and (iii) with other vinyl iodides, linked to either
aliphatic chains or aromatic rings. The large excess of reducing
agent, which may shorten the lifetime of Pd(II) species, thus
relatively slowing the homocoupling step, is crucial.
Also with 500 mol % of Zn NP, the addition of 10 mol % of

either Pd(dba)2/Xantphos, Pd(dba)2/XPhos, or Pd(OAc)2/
2PPh3 yielded lower percentages of ZE-2 than of EE-2. In
short, although EE/ZE ratios were around 1:2 as a mean value
with Pd(PPh3)4, they were around 2:1 with other Pd sources
and ligands. Thus, a Pd(0) source less reactive or more
amenable to undergo a rapid Pd(II) to Pd(0) reduction is
instrumental. We believe that the surprising formation of ZE
dimers from E-vinyl iodides has not been reported previously
because Zn NP is seldom used in Negishi reactions. Moreover,
it made no sense to add such an excess of Zn; in our trial

experiments, we did so merely to accelerate the reduction of
RCH�CH−PdL2X to Pd0, with the intention of filtering the
large excess of Zn when the zincation reaction was completed.
The stereoinversion did not occur at the end of the reaction.

As expected, we did not observe a partial conversion of EE
dienes into ZE dienes under the reaction conditions,9 that is, in
the presence of Pd0, PdII, PPh3, Zn, or combinations of them.
Organometallic compounds of Z configuration must thus be

formed in one or another intermediate step of the process,
whatever the reaction mechanism (ionic or radical). As shown
in Table 2, first four rows, we compared the relative stability of

E and Z isomers of vinylzinc halides with the M06/6-
311+G(d,p) method, which is recommended for organo-
metallic compounds.10 For confirmation, we often applied
other DFT methods, as well as MP2 and CCSD(T);11 the
LANL2DZ basis set was used for elements > Kr.12

To our initial surprise, the Z-alkenyl intermediates were
predicted to be favored with respect to the respective E-alkenyl
intermediates. In fact, Table 2 shows that (E)-MeCH�
CHZnX and (E)-MeCH�CHZn(OMe2)2X are generally less
stable than the corresponding Z isomers. This also occurs with
PhCH�CHZnX and other RCH�CHZnX, such as deriva-
tives of 1 (PhCH2CH2CH�CHZnX). The gaps are smaller at
the CCSD(T) level (Supporting Information), but a cis effect
(Z effect) is evident. In organic chemistry the classical cis effect
refers to the 1,2-disubstituted double bonds in which isomer Z
is more stable than isomer E (cis effect in olefins, cEO); in

Figure 1. 1H NMR spectrum of the olefinic region of the crude
product (mixture of EE-2 and ZE-2) obtained from 1/Zn NP/Pd0.

Table 1. Dimerization of Iodovinyl Derivatives

aVariations from the standard conditions. bYields of the mixtures.
cThese ratios are mean values from different trials and from 1H NMR
and GC or HPLC. Small percentages (2−9%) of suspected-to-be
dienes ZZ were often detected, see the Supporting Information. With
the Z isomer of 1 (not included in Table 1 for the sake of simplicity)
we obtained a mixture of ZZ/ZE/EE dimers; the possible partial
stereoinversion of Z vinylmetal intermediates, although less
surprising,8 would deserve to be studied independently. dWith 250
mol %, the EE/ZE ratio was nearly 1:1; with 1000 mol %, the ratio
was the same as with 500 mol %. eNot detected.

Table 2. Relative Energies, in kcal/mol, of E vs. Z
Alkenylmetal Halides and of EE vs. ZE Dialkenylmetal
Compoundsa

aFrom M06/6-311+G(d,p) energies. Other DFT methods, MP2/6-
311+G(d,p), and CCSD(T)/6-311+G(d,p) gave similar gaps in most
cases (see Supporting Information). b0.7 in vacuum, 0.7 in THF/
CPCM, and 0.6 in DMF/CPCM. c0.4 in THF/CPCM and 0.4 in
DMF/CPCM. dFor analogous Ni compounds, see also the
Supporting Information (Table S1).
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inorganic chemistry the concept is used to explain the cis-
destabilizing effect of some ligands in octahedral coordination
complexes (cECC).
To summarize, the final ZE dienes are not thermodynami-

cally favored, as expected, but the Z-alkenylzinc halides are. As
these Z intermediates have lower energies than or similar
energies as the respective E species, the products that arise
from the former intermediates may be considered to be
(slightly) kinetically favored.
Furthermore, we calculated the total energies of the E and Z

isomers of other alkenylmetal halides and dialkenyl metals
(also see Table 2). M06/6-311+G(d,p)·LANL2DZ(Pd)//
M06/6-31G(d)·LANL2DZ(Pd) and M06/6-311+G(d,p)·
SDD(Pd)//M06/6-31G(d)·SDD(Pd)12 values were also
compared.13 The effect of solvents and of the entropy and
thermal corrections (calculation of G°) were also evaluated in
several cases, but in general they did not significantly change
the outcome of the comparison of the total energies (cf. the
Supporting Information). For the complexes, besides THF, we
used Me2O as a surrogate of Et2O and sometimes Me3P
instead of Ph3P.
The results were in agreement: alkenylmetal halides of the Z

configuration are thermodynamically favored. In other words,
Table 2 indicates that the above-mentioned cis effect is general.
One explanation may be based on favorable intramolecular
interactions (vdW forces, noncovalent interactions). A related
explanation is that the polarization of the C−M bond favors
the species with the cisMe group (or R or Ar groups), from an
electrostatic point of view, in the same way as the 1-propenyl
anion with the negative charge cis to Me is thermodynamically
more stable than its trans anion,14 as shown in Figure 2. For

PhCH�CH− there is a difference of ≥2.0 kcal/mol in favor of
the species with the negative charge cis to Ph. All these values
are in the gas phase; in THF and in DMF the predicted gaps
are smaller (0.8−1.0 kcal/mol). B3LYP-D3 calculations15 with
Pople, Dunning, or Ahlrichs basis sets gave similar results to
those indicated in Figure 2.
Proposals and hypotheses for Z-to-E isomerizations have

been published.2a,5a,7 To complement these proposals and to
try to understand the present E-to-Z case, further mechanisms
may be considered. For example, the coordination of Pd(0) to
(E)-alkenylzinc iodides (Scheme 2) might facilitate the E/Z
equilibrium as the C�C bond order may decrease. The Pd0/
PdII ratio may be relatively high throughout due to the large
excess of the reducing agent (Zn NP) in the medium. It can
thus be assumed that some (E)-RCH�CH−PdIL2 is
converted into (E)-RCH�CH−ZnI, which in part reacts
with the remaining (E)-RCH�CH−PdIL2 and in part
equilibrates with its Z isomer (by stereoinversion at C1 or at
C2); this isomer also reacts with (E)-RCH�CH−PdIL2, as
suggested in Scheme 2. For the sake of simplicity, we depict
the active species as PdL2 rather than as PdLn, that is, rather
than a PdL3/PdL2/PdL equilibrium (from the probably most

abundant but least reactive Pd complex to the least abundant
but much more reactive species), in a ratio depending on the
features of the ligands.
We also speculated that the configuration inversion may

occur through aggregates by migration insertion.2a,5a Another
possibility is that it takes place during the formation of
Pd(CH�CHMe)2L2 species8 or by equilibration of these
Pd(II) complexes. DFT calculations16 (see Scheme 3) suggest
that the ZE isomers of these complexes may have lower
energies than the respective EE isomers. Thus, partial
isomerization to ZE complexes is feasible.

Independently, it is worth noting that the M06 method
predicts that the cis-dialkenylpalladium intermediates shown in
Scheme 3 are favored with regard to the respective trans-
isomers. The short lifetime of these cis-EE and cis-ZE
intermediates, when formed, might be the cause of the limited
isomerization of ZE to the even more stable ZZ intermediates,
given that the ZZ-dienes have only been observed in very small
percentages (<9%, see footnote c in Table 1 and the
Supporting Information).
In conclusion, by means of the Negishi organozinc

chemistry, it is possible to dimerize E-vinyl iodides with
stereoretention (EE-dienes, Scheme 1), as expected, but under
appropriate conditions ZE dienes are the major products
(Table 1). The Z effect (classical cis effect in olefins, cEO)
explains that E-to-Z isomerizations of alkenylmetal intermedi-
ates are thermodynamically feasible and general, according to

Figure 2. Relative energies of the two stereoisomers of the 1-propenyl
anion and of the two isomers of the 2-phenylethenyl anion.

Scheme 2. Pd-Catalyzed Dimerization of Alkenyl Halides
with a Possible E-to-Z Isomerization Step of Alkenylzinc
Halides

Scheme 3. Calculated Relative Energies of Pd−Dialkenyl
Intermediatesa

aFrom M06/6-311+G(d,p)//M06/6-31G(d) energies, with the
LANL2DZ basis set for Pd.
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DFT, MP2, and CCSD(T) calculations (Tables 2 and S1). We
look forward to gaining more insight into the mechanism(s) of
these isomerizations, optimizing the reaction conditions for the
practical preparation of pure ZE-1,3-dienes, and carrying out
alkenyl−alkenyl cross-couplings with multifunctional sub-
strates sensitive to the previous lithiation or magnesiation.
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