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A B S T R A C T   

The present study was performed to compare the combined and individual effects of Pediococcus acidi lactici (PB) 
and natuzyme (a cocktail of protease, lipase as well as non-starch polysaccharidases) on the immune response 
and growth performance parameters of the juvenile beluga (Huso huso). To prepare the treatment diets, the basal 
diet was supplemented with either the exogenous natuzyme (at 0, 0.25 and 0.5 g kg− 1), PB (at 0% and 0.1%) or 
both of them. The six treatments were assigned to triplicate groups and the feeding trial lasted for two months. 
The results showed that PB treatment constrained the positive effect of EN (especially at the higher dose) on the 
FCR and final weight. However, IGF and GH expression not only increased following either PB or EN inclusion, 
but also, their simultaneous addition promoted their individual effects. Together, higher level of GH and IGF 
mRNA levels in this study was not associated with a significant growth enhancement, this can be due to the fact 
that more time should be considered to display their effects. In the light of these results, we recommend that the 
combined use of probiotics and exogenous enzymes especially at the higher dose can be inhibitory.   

1. Introduction 

To answer the growing global market demand for aqua-food and on 
the other hand, shortage of freshwater resources, aquaculture intensi
fication seems unavoidable (Hassaan et al., 2019; Rodriguez et al., 2018; 
Yao et al., 2019). Nowadays disease incidence and nutritional con
straints are the major challenges facing the aquaculture industry (Fuchs 
et al., 2015; Tarkhani et al., 2020). Intensification leading to stressful 
conditions suppresses immunity through cortisol level enhancement, 
thereby increasing the susceptibility to secondary infectious disease 
(Giri et al., 2019; Mohammadi et al., 2020). These issues can provoke a 
noticeable economic loss due to massive mortalities or a decrease in 
profit margin (Giri et al., 2019). 

Dietary inclusion of antibiotics was traditionally used as prophy
lactic therapy. However, due to the emergence of antibiotic-resistant 

bacteria, disturbance of the natural microbial equilibrium in either 
environment or fish gut (Yu et al., 2018), antibiotic residue in aqua
culture products, and low meat quality, their application was legally 
restricted and many efforts have been focused on their exclusion from 
the diets to reduce the abuse of antibiotics in aquaculture. Currently, the 
administration of probiotics as an environmental-friendly alternative to 
antibiotics has flourished to augment the immune system function 
(Fuchs et al., 2015; Wealleans et al., 2017; Yu et al., 2018). Indeed, 
probiotics confer health advantages by modulating the immune system, 
promoting the colonization of beneficial microbial flora as well as 
alleviating potential pathogens (Hassaan et al., 2019, 2020). Lactic acid 
bacteria including Peducoccos acidilactici (PB) are characterized by their 
ability to produce large amounts of lactic acid as the major end product 
of carbohydrate fermentation. Most of the Lactic acid bacteria species as 
the commensal fish intestinal bacterial flora, are extensively applied to 
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reduce disease probability and improve growth performance (Ahmadi
far et al., 2020; Hoseinifar et al., 2011; Tarkhani et al., 2020). 

All fish diets contain a significant portion of plant source ingredients 
which have a wide variety of antinutritional factors such as protease- 
inhibitors, phytic acid, and non-starch polysaccharides (NSPs), that 
negatively impact fish health and its growth performance because fish 
cannot digest them efficiently compared with mammals due to the 
deficiency in the secretion of gastrointestinal enzymes required to break 
down these complex cellular structures (Ai et al., 2007; Fuchs et al., 
2015; Hassaan et al., 2019; Zduńczyk et al., 2020; Zhou et al., 2013). To 
overcome the plant-by-product problems and expand their application, 
supplementation of exogenous enzymes like glucanase, phytase, xyla
nase, etc. has been proposed as a key solution for better nutrient di
gestibility of plant feedstuff in aquaculture diets (Diógenes et al., 2018; E 
Abd Elnabi et al., 2020; Hassaan et al., 2020; Rodriguez et al., 2018; 
Wickramasuriya et al., 2019). 

Application of exogenous enzymes in the poultry diet was associated 
with nutrient digestibility, energy availability, gut health improvement, 
growth performance promotion, and a decrease in phosphorous excre
tion into the environment (Wealleans et al., 2017; Wickramasuriya 
et al., 2019). Furthermore, the beneficial effects of protease supple
mentation in rainbow trout (Hassaan et al., 2020), Gibel carp (Liu et al., 
2017), Caspian Salmon (ali Zamini et al., 2014) have also been reported. 
Regardless of the positive effects of exogenous enzymes on nutrient di
gestibility and feed efficiency, they may change the activity and com
munity composition of intestinal microbiota, which play a key role in 
metabolic and immunologic functions (Ghodrati et al., 2021). Therefore, 
due to little work on the interaction between exogenous enzymes and 
probiotics in fish feed, the present study was conducted to compare the 
combined and individual effects of the PB and natuzyme (a cocktail of 
protease, lipase as well as non-starch polysaccharidases) on the immune 
response and growth performance parameters of the fish. 

Juvenile beluga (Huso huso), one of the most commonly cultured 
sturgeon, has a unique gastrointestinal tract with pyloric stomach caeca, 
which can be easily adapted to commercial diets containing a high 
percentage of vegetable ingredients (Matani Bour et al., 2018). How
ever, no previous investigation was done on the combination of exoge
nous enzymes and probiotics in belugas’ diet. Hence, to follow the 
effects of treatments, the experiment was conducted on juvenile beluga. 

2. Material and methods 

2.1. Diets preparation 

To prepare the treatment diets, the basal diet (Copenz, Germany; 
containing 54% crude protein, 15% lipid, 9.1% ash, 0.05% fiber and 
1.25% Phosphorous) was supplemented with either the exogenous 
natuzyme (Bioproton, Australia; at 0, 0.25 and 0.5 g kg− 1), probiotic 
(P. acidilactici of Lameland, France; at 0% and 0.1% (107 CFU/g)) or 
both of them. P. acidilactici was supplied in a lyophilized form and 
cultured in de Man, Rogosa & Sharpe (MRS; Oxoid, Basingstoke, UK) 
broth and centrifuged. To make the experimental diets, EN, PB, or their 
complex were mixed with a 2% gelatin solution and sprayed onto the 
basal diet. The control diet was also sprayed with a 2% gelatin solution. 
The diets were then dried in the open air for two hours, and sealed in 
plastic bags at 4◦C. The feeds were prepared as required every two days. 
The six treatments were assigned to triplicate groups and the feeding 
trial lasted for two months. The probiotic (PB) and enzyme (EN) sup
plemented diets were as follows: 

(T1) basal diet (control), 
(T2) basal diet + 0.25 EN, 
(T3) basal diet + 0.5 EN, 
(T4) basal diet + 0.1 PB, 
(T5) basal diet + 0.1 PB + 0.25 EN, 
(T6) basal diet + 0.1 PB + 0.5 EN. 

2.2. Fish rearing 

Following two weeks of acclimatization a total of 180 healthy ju
venile beluga with an initial weight of 12.56 ± 0.48 g, were randomly 
assigned into 18 reservoirs of 300 Lit. The fish were hand-fed trice a day 
with the mentioned diets at 3% of the body weight per day. The amount 
of feeding was adjusted every two weeks following a 24 h starvation, and 
batch weighing. During the trial, the photoperiod was considered at 12 
L: 12D. Water temperature, pH, and DO levels were monitored and 
maintained at 22 ± 2, 7–8, and 6–7 mg L− 1 respectively. 

2.3. Growth performance 

At the end of the feeding trial (survival rate 100%), growth perfor
mance and feed utilization were assessed by measuring Specific Growth 
Rate (SGR), Body Weight Increase (BWI), Food Conversion Ratio (FCR), 
and Feed Efficiency Ratio (FER) using the following formula: 

SGR =
Ln(Final weight)-Ln(Initial weight)

Day
× 100  

BWI = Final weight-Initial weight  

FCR =
Feed in take (g)
Weight gain (g)

× 100  

FER =
Weight gain (g)
Feed in take (g)

× 100  

2.4. Sample collection 

Following the sedation with clove powder (500 mg L− 1), blood 
samples from 9 fish per treatment were collected from the caudal vein, 
pulled, and divided into heparinized, and non-heparinized tubes for 
hematological and Serological assays respectively. 

2.4.1. Hematological assays 
Briefly, the red blood cells (RBCs) RBCs counts were determined 

using a Neubauer hemocytometer under a compound microscope at 
100 × magnification after diluting the blood sample in Hayem. He
matocrit (Hct) was determined after centrifugation of heparinized 
capillary tubes at 6000 × g for 5 min with a microcentrifuge and re
ported as a percentage (Blaxhall and Daisley, 1973). Hemoglobin level 
(Hb) was spectrophotometrically assayed based on the cyanomethe
moglobin method. The mean cell volume (MCV), the mean cell hemo
globin (MCH), and the mean-corpuscular hemoglobin concentration 
(MCHC) were calculated according to the method suggested by Drabkin 
(Drabkin and Austin, 1935). 

2.4.2. Serological assays 
Non-heparinized blood samples were allowed to clot at 4 ◦C (12 h) 

and then centrifuged at 3600 rpm (5 min at 4 ◦C). The Serum samples 
were isolated and stored at − 80◦C until use. The enzymatic activities of 
the liver including aspartate aminotransferase (AST), and alanine 
aminotransferase (ALT), were determined based on the colorimetric 
method (Reitman and Frankel, 1957). An aliquot of the serum sample 
(0.5 mL) was incubated for 30 min at 37 ◦C with 0.5 mL substrate (so
dium azide) and the solution was then mixed with 0.5 mL of 2,4-dinitro
phenylhydrazine to arrest the reaction. After incubation for a minimum 
of 20 min at 37 ◦C, the mixture reaction was stopped with the sodium 
hydroxide, and the enzyme activities were spectrophotometrically 
determined by measuring the optical density at 546 nm. Alkaline 
phosphatase (ALP) was analyzed according to the enzyme-mediated 
conversion of p-nitrophenyl phosphate to nitrophenol in an alkaline 
buffer using commercial assay kits (Pars Azmcon company, Tehran) 
according to the manufacturer instructions and a biochemical Auto 
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analyzer (Prestige-24i) (Reitman and Frankel, 1957). 

2.5. Mucus sampling 

Nine Fish per treatment were randomly selected, anesthetized, and 
individually transferred into polyethylene bags containing 10 mL of 
50 mm NaCl. After gently shaking for 2 min, the samples were collected 
and centrifuged (10 min at 4◦C). The supernatants were kept frozen at 
− 80 ◦C until use (Sukumaran et al., 2016). Mucus lysozyme activity 
was measured using a turbidimetric method based on the lysis of the 
lysozyme-sensitive gram-positive bacterium Micrococcus luteus (Sub
ramanian et al., 2007). Briefly, 50 μl of the mucus sample was added to 
50 μl of buffer suspension containing M. luteus, and the reduction in 
absorbance was measured after 10 min, at 450 nm using a spectropho
tometer (Biochrom Libra S12). Mucus IgM level was determined by 
ELISA method at 450 nm using a 96-well microplate reader. 

2.6. GH and IGF gene expression 

The liver and brain tissues of six juvenile beluga were dissected and 
immediately kept at liquid nitrogen and then transferred to − 80 ◦C 
until use. After sample homogenization, total RNAs were extracted using 
the RiboEx Kit according to the manufacturer’s protocol. The quality 
and quantity of total RNAs were assessed by 1% agarose gel and spec
trophotometer respectively. The first-strand cDNA was generated from 
1 μg of total RNA by Supreme script RTase (GENET BIO). The real-time 
PCR was Performed (BlO-RAD, IQ5) using 2X-SYBR Green PCR Master 
Mix (Ampliqon) according to the manufacturer’s instructions. The 
primers were as follows (Table 1) (Safari et al., 2020). Relative gene 
expression of each gene was quantified from threshold cycles for 
amplification, using the ΔΔCt method and normalized to b-actin levels 
(Livak and Schmittgen, 2001). 

2.7. Data analysis 

After the evaluation of the normality and homogeneity of data 
through Kolmogorov-Smirnov and Leven’s test, they were analyzed 
using 2-way ANOVA, followed by the Tukey test. Pearson’s correlation 
between variables was calculated as well. Differences were considered 
significant at a value of P < 0.05. Statistical analysis was done using the 
graph-pad prism and all the results were presented as mean ± SD. 

3. Results 

3.1. Growth performance 

Meanwhile, exclusive administration of either EN or PB had no 
overall effect on growth performance parameters, a crossover interac
tion among the treatments was seen. Indeed, the effect of EN on the final 
weight, weight gain, FCR, and FER, as the dependent variables, was 
suppressed depending on the value of PB (P < 0.05-Fig. 1). In other 
words, PB treatment constrained the positive effect of EN (especially at 
the higher dose) on the FCR and final weight. 

3.2. Hematobgical indices 

The treatments were found not to have a significant effect on the Hb, 
RBC, and MCH. Furthermore, no interaction between PB and EN was 
observed (P < 0.05-Fig. 2A, C, and E). Feeding on an EN supplemented 
diet resulted in the neutralization of the PB effects on MCV, and MCHC 
(P < 0.05-Fig. 2D, and F). Only in the case Hct, where no interaction 
effect between treatments was seen, administration of PB was associated 
with a significant difference. 

3.3. Serological parameters 

The treatments exerted no significant effect on AST. However, di
etary inclusion of PB significantly increased the ALP surface compared 
to the control group. But, PB’s negative interaction with EN at the 0.05 
level confined EN’s positive effect on the ALP (Fig. 3A) i.e. the combined 
application of EN and PB attenuated their exclusive increasing effects on 
ALP (P < 0.05, Fig. 3C). A strong decrease in ALT level was observed 
after PB and or EN application. No significant interaction did not impact 
that relationship their exclusive effects(Fig. 3C). 

3.4. Mucosal parameters 

Dietary inclusion of exogenous EN had no effect on lysozyme content 
of mucus, while PB addition promoted that. The addition of EN did not 
intensify the positive effects of PB treatment (P > 0.05). No significant 
difference was observed in mucus Ig level among the treatments (Fig. 4). 

3.5. GH and IGF gene expression 

IGF and GH expression increased following either PB or EN inclusion. 
Besides, their simultaneous addition promoted their individual effects, 
therefore application of PB and EN at the higher level maximized the 
expression of IGF and GH genes (Fig. 5). 

3.6. Evaluation of the correlation between variables 

Pearson’s correlation (r) was calculated between variables. As can be 
seen from the graph (Fig. 6), the changes in the weight gain were 
correlated positively with other growth performance parameters except 
the FCR (P < 0.01). In addition, the GH was positively correlated with 
IGF and lysozyme, (rIGF01 = 0.893, rLysozyme = 0.918, P < 0.05). An 
increase in the GH, IGF, and lysozyme corresponded with reductions in 
the ALT and Hct levels (P < 0.05). 

4. Discussion 

One of the objectives of this study was to explore the synergy be
tween enzyme and probiotic supplementation. Not only, dietary sup
plementation of either EN or PB had no effects on growth performance 
parameters, but also, the use of EN, in the presence of PB, could not 
affect them positively, i.e. their simultaneous administration resulted in 
an antagonistic effect on final weight, weight gain, FCR, and FER. 
Likewise, Mass et al. showed that there are no synergistic effects be
tween enzymes (phytase and xylanase) and probiotic supplementation 

Table 1 
The sequences of primers used in the experiment.  

Sequence of primers Connection temperature (◦C) Length of the piece (bp) Gene Primer performance 

F: AGACATCAGGGTGTCATGGT 
R: CTCAAACATGATCTGTGTCAT  

58  224 Beta-actin (GenBank: MK771092.1) 99% 

F: TTCATGATGAGTGCTCCGTTC 
R: GTCAGAATTCAAGTGGCGAATC  

58  210 GH (GenBank: AB517597.1) 99% 

F: CAAACATGATCTGTATGTG 
R: AGAATTCAAGTGGCGACATG  

58  220 IGF (GenBank: AB512770.1) 99%  

M. Musavi et al.                                                                                                                                                                                                                                 



Aquaculture Reports 24 (2022) 101180

4

(Bacillus amyloliquefaciens) on growth parameters in Nile tilapia (Maas 
et al., 2021). Following the same pattern, the probiotic, 
B. amyloliquefaciens, and the multi-enzyme complex did not enhance the 
growth performance of snakehead (Dai et al., 2019). These negative 
interactions can be ascribed to probiotic functions. Probiotics alter the 
gut environment in various ways (physiology, gut microbiota, produc
tion of metabolites, pH, etc.) by releasing many metabolic compounds, 
which in turn, lead to a less favorable condition for the exogenous and 
endogenous enzymes and decrease their activity (Dai et al., 2019). 
Furthermore, based on Maas et al. enzymes had a strong effect on 
nutrient digestibility and retention of N, energy, and P, which were 
higher for the enzyme- treated group, compared to the probiotic one 
(Maas et al., 2021). If enzymes and probiotics compete for the same 
substrate, this might also explain the lack of additivity. Besides, the 
antagonistic effect of PB on EN could partly be due to the control diet 
with a good FCR (0.9), and a high nutritional value which already limits 
any further improvement in diet quality through additional additives, 

such as other enzymes and probiotics (Maas et al., 2019). Therefore, it 
could be expected that under challenging conditions, the combination 
could lead to better growth performance. 

Hematological indices were measured to evaluate general health 
status as well as nutritional and environmental conditions influencing 
fish (Hoseinifar et al., 2011). Based on our findings, either EN, PB or 
their combination made no significant effect on these parameters. 
Similar results have been reported earlier (Adeoye et al., 2016; ali 
Zamini et al., 2014). However dietary inclusion of papain proteinase 
(Prabjeet et al., 2011) provoked a significant increase in RBC, in Nile 
tilapia (Oreochromis niloticus). Aside from a few beneficial reports in this 
context, the health status of fish has not been affected negatively in this 
experiment as well. 

A rise in the hepatic enzymes’ levels including AST, and ALT, as the 
biomarkers of hepatocellular dysfunction, elucidates a liver injury. 
Indeed, a wide range of AST-containing organs such as kidneys or 
muscles makes it a relatively less specific indicator of liver damage 

Fig. 1. Growth performance and nutrient utilization of juvenile beluga (Huso huso) fed experimental diets supplemented with either PA probiotic (PB), natuzyme 
(EN) or both over 2 months. Data are mean ± SD. Letters indicate significant differences in treatments, according to Tukey test (P < 0.05). 
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compared to ALT (Giannini et al., 2005). Although our results displayed 
no significant difference in serum AST concentration in different treat
ments, application of EN or PB lowered ALT level compared to the 
control group and their combined administration had no additive effect 
on the ALT decrease. The results were in line with previous reports 
following the application of Pediococcus acidilactici in rainbow trout 
(Ferguson et al., 2010) and rockfish (Rahimnejad et al., 2018). Although 
present knowledge about the combined effects of dietary probiotics and 
exogenous enzymes on serum liver enzymes is scant in fish, previous 
studies reported the lower serum level of liver enzymes related to pro
biotics function (Ghodrati et al., 2021). Thus, combined administration 
of PB and EN provided at least a liver care in beluga juveniles by 
decreasing ALT concentration. 

Alkaline phosphatase is a lysosomal enzyme, which acts as a po
tential defensive component against parasite invasion and other stressful 
statuses (Fast et al., 2002). Therefore, improved ALP activity can lead to 
better immunity function (Hoseinifar et al., 2018). Based on the results, 

increased ALP activity may be a result of improved mucosal immunity 
over feeding by either EN or PB treated groups, and combined EN and PB 
application intensified the ALP enhancement. 

Fish skin mucus contains various components of the innate immune 
system, like Ig and lysozyme, to combat pathogens entry. The skin 
mucus parameters can be extensively affected by environmental and 
nutritional modifications (Caipang and Lazado, 2015), like the dietary 
combination with probiotics. According to our results, dietary inclusion 
of EN made no significant differences in mucus lysozyme level, while the 
PB application significantly stimulated skin mucus innate immunity by 
lysozyme enhancement that might be ascribed to modulation of the 
intestinal microbiota in favor of the lactic acid bacteria population, 
stimulating bactericidal activity of skin-associated lymphoid tissue 
through lysozyme (Ashouri et al., 2018; Tarkhani et al., 2020). In 
addition, the lysozyme concentration in groups treated by EN and PB 
combination was not significantly higher than those of fed PB singularly. 
Therefore, no synergistic effect was observable. Indeed probiotic 

Fig. 2. Hematological parameters of juvenile beluga (Huso huso) fed experimental diets supplemented with either PA probiotic (PB), natuzyme (EN) or both over 2 
months. Data are mean ± SD. Letters indicate significant differences in treatments, according to Tukey test (P < 0.05). 
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bacteria and gut-associated lymphoid tissue interaction stimulated 
mucosal immunity in the host whether in the gut or its skin mucus (Jami 
et al., 2019) and put the body on alert condition to fight against path
ogens. The increase in skin mucus lysozyme level has been reported in a 
variety of studies following the probiotic application in agreement with 
our results (Dawood et al., 2015; Jami et al., 2019). Altogether, it seems 
that probiotic administration strengthens the host immune system and it 
can be considered an eco-friendly alternative for antibiotics in the 
aquaculture industry. 

Ig protecting fish against pathogens showed no significant differ
ences in the skin-associated lymphoid tissues among the different 
treatments. In contrast, serum Ig enhancement has been reported in 
various studies following either probiotic or multienzyme treatments. 
These discrepancies might be attributed to the fish species, size, 

experimental design, etc. (Ashouri et al., 2018). 
Dietary inclusion of either PB or EN significantly increased the 

expression of GH and IGF genes as observed in gilthead sea bream 
(Sparus aurata) fed with either Shewanella Puterfaciens (Guzmán-Villa
nueva et al., 2014) or Lactobacillus plantarum and Bacillus lichen
iformis-TsB27 (Bahi et al., 2017), also in common carp fed with L. casei 
(Safari et al., 2017), and in zebrafish fed with royal jelly (Aksakal et al., 
2021; Vural et al., 2021). The combination of EN and PB further 
enhanced GH and IGF, compared to the EN or PB alone treatment. 
Indeed, impaired food digestion in juvenile fish because of the 
non-developed digestive system and insufficient endogenous enzymes 
production, was associated with lower GH and IGF mRNA levels. But 
exogenous enzymes administration underpinned the endogenous en
zymes and nutrient bioavailability (ali Zamini et al., 2014) which in turn 

Fig. 3. Serological parameters of juvenile beluga (Huso huso) fed experimental diets supplemented with either PA probiotic (PB), natuzyme (EN) or both over 2 
months. Data are mean ± SD. Letters indicate significant differences in treatments, according to Tukey test (P < 0.05). 

Fig. 4. Mucosal immunity parameters of juvenile beluga (Huso huso) fed experimental diets supplemented with either PA probiotic (PB), natuzyme (EN) or both over 
2 months. Data are mean ± SD. Letters indicate significant differences in treatments, according to Tukey test (P < 0.05). 
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triggered GH & IGF gene expression. Additionally, probiotic bacteria 
increased nutrient assimilation by their exogenous enzymes and stimu
lation of host digestive enzymes secretion (Irianto and Austin, 2002; 
Tarkhani et al., 2020). Notwithstanding, higher level of GH and IGF 
mRNA levels in this study was not associated with a significant growth 
enhancement, this can be due to the fact that higher levels of GH and IGF 
mRNAs do not necessarily mean higher levels of those proteins, and or 
maybe more time should be considered to display their effects. 

Based on the results, the positive correlation between GH, IGF, and 
lysozyme was significant. Likewise, an increase in lysozyme activity was 
found in olive flounder fed a diet containing 20 mg GH Kg− 1 (Lee et al., 
2008). In another study, a dose-dependent increase in plasma lysozyme 
level in rainbow trout was observed by implantation of a cholesterol 
pellet containing GH (Yada et al., 2004). Indeed, it has been determined 
that GH stimulates the expression and secretion of IGF, which is 
responsible for sulfate uptake, thereby increasing the synthesis of pro
teins, RNA, and DNA (Aksakal et al., 2021; Triantaphyllopoulos et al., 
2020; Vural et al., 2021). Therefore, due to the promotion of liver 
health, GH and IGF showed negative correlation with ALT 
concentration. 

5. Conclusion 

Together, while PB treatment constrained the positive effect of EN 
(especially at the higher dose) on the FCR and final weight, IGF and GH 
expression increased following either PB or EN inclusion, besides, their 
simultaneous addition promoted their individual effects. However, 
higher level of GH and IGF mRNA levels in this study was not associated 
with a significant growth enhancement, this can be due to the fact that 
more time should be considered to display their effects. In the light of 
these results, we recommend that the combined use of probiotics and 
exogenous enzymes especially at the higher dose can be inhibitory. 
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