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Abstract
This paper builds a spatial model of trade with supply-chain links to examine the effect
of economic links and anti-COVID policies on the spread of the COVID-19 pandemic
during the first wave across NUTS2 regions of the European Union (EU) and the UK.
We find that the effort to reduce infection rates was more successful in the UK than in
the EU, and that the deaths due to the trade vector were 10% on average across Europe.
Our results imply that without the policy response in Europe, the number of deaths
during the first wave would have been about 4,520,000 higher in the EU and around
1,240,000 greater in the UK, with significant variations across regions. Oberbayern
in Germany and South Yorkshire in the UK appear as the most effective in reducing
the death burden of COVID-19 at different points during the first wave. Moreover,
42% and 37% of the total deaths in the UK and the EU, respectively, could have been
prevented if the policy implemented in these two regions had prevailed throughout
Europe.
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1 Introduction

The COVID-19 pandemic ended 4.55 million lives (as of October 1, 2021), forced
quarantines all over the world, stopped global value chains for a significant amount
of time, and created one of the largest global recessions in recent years. However, as
with the spread of other infectious diseases, its impact in terms of lives and economic
activity varied greatly across regions and industries (see, e.g., Villani et al. (2020) and
de Vet et al. (2021)). In this paper, we build on the idea that diffusion of infectious
diseases depends on human interactions (e.g., see Fogli and Veldkamp (2021)), and
in particular, on how dense is the economic network of a given area. We consider
endogenously determined economic interactions and analyze the effect of the policies
adopted to fight the first wave of the pandemic across different regions in the United
Kingdom (UK) and the European Union (EU). More specifically, the paper asks the
following questions. What is the contribution of economic linkages to the expansion
of the disease? How many lives have the polices implemented saved?

The model we develop embeds a spatial economic model in the spirit of Allen
and Arkolakis (2014), Caliendo and Parro (2015), and Caliendo et al. (2017) into the
canonical susceptible, infected, and recovered (SIR) model by Kermack et al. (1927).
The purpose of the proposed framework is to analyze the two-way causation between
the spatial dynamics of an epidemic and the spatial distribution of economic activity.
More specifically, the setup incorporatesRicardian tradeá laEaton andKortum (2002),
and extends the SIR model in two ways. First, similar to Fernández-Villaverde and
Jones (2022), we consider five population groups composed of susceptible, vaccinated,
infected, resolving, and recovered individuals, and also account for deaths. Second,
we allow for spatial connections that are endogenously determined by the structure of
our economic geography model. The assumption is that when regions trade, people
enter in contact with one another so they put themselves at risk of getting infected
or that the virus is itself transported through the imported goods. As a result of the
economic geography model, denser regions will experience more rapid increase in
infections for two reasons. First, within the region, there are more interactions across
individuals and thus, a higher probability of transmission. Second, the larger a region
is, the more it will trade with other regions, and thus, the higher the probability of
transmitting the disease across regions.

In our framework, the economy is composed of a set of locations that produce goods
in different sectors. Each sector produces three goods: a final product, an intermediate
good, and a composite intermediate or material. The first two can be traded but trade is
costly. The third one is only sold domestically within the region. In addition, following
Caliendo and Parro (2015), whereas the domestic movement of materials is inter-
industry, cross-regional trade of intermediate goods is purely intra-industry.1 This
feature captures that the latter type of trade represents the largest component of the
trade flows of intermediates. For example, World Bank (2009) finds that, from 1962 to
2006, worldwide intra-industry trade in intermediate goods increased approximately

1 Compared to the sectoral structure presented by Caliendo and Parro (2015), the main difference with ours
is that we consider that final consumption products can be cross-regional borders. The reason is that some
of them, like tourism, can be important for the propagation of the virus and are tradable.
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from 30% to 60% of total trade. This share equals 42% in our European Union 28-
country group (EU28) dataset, which include the current European Union plus the
UK for the year 2013. What is most important is that these inter- and intra-industry
links across sectors mean that policies and changes that affect a given industry can
potentially affect all other sectors and regions. Our main contribution is to assess how
the heterogeneity in production structures and regional connections affect the spread
of the disease and its economic impact.

The model proceeds in two phases. For the population composition in a given day,
the first phase obtains the distribution of economic activity and bilateral trade shares. In
the second phase, we take as given the bilateral trade shares and the spatial distribution
of economic activity along with the disease ecology to determine how the population
composition changes from one day to the next. This creates a loop in which disease
dynamics and economic activity affect each other. In particular, disease prevalence
can reduce the labor force in a region through either mortality, morbidity or policy
actions. These shocks affect the level of economic activity and reduce international
trade. The modification of the trade patterns, in turn, has an impact on the spread of
the disease by decreasing the amount of infection “exported” to other regions. These
general equilibrium forces resemble a behavioral response in which agents protect
themselves from the infection.

The explicit modeling of the geography is important to understand the disease
dynamics.2 In general, those regions that are more isolated will receive and transmit
less the infection. As an example, take the evolution of the pandemic in Spain versus
Italy and the UK. The spread of the infection in Spain was faster in Madrid (a region
in the center of the country) and then expanded throughout the nation. In Italy, the
infection started in the north and then moved slowly toward the south. In the UK,
in turn, the disease was more concentrated in the south but, at the same time, more
widespread than in other parts of Europe. Our model addresses these singularities
through the explicit modeling of the geography of trade in Europe.

We calibrate the model to match the distribution of workers and wages across
230 regions from 28 countries in Europe for 10 sectors of production comprising the
whole economy and use our framework to assess through a set of counterfactuals, how
policies adopted during the coronavirus pandemic, which include social distancing and
regional lockdowns, have affected the impact of the disease.We focus on the first wave
that goes from February 25 to July 15, 2020. For each of these regions, we use data on
fatalities by COVID-19 to back out an estimate of the infection rate using the structure
of the model. Essentially, this estimated infection rate is a residual that makes sure the
model can track the evolution of the disease for each region,which is the same approach
as the one followed by Fernández-Villaverde and Jones (2022) at a country level. We
interpret changes in this infection rate as policies against COVID-19 and validate this
interpretation in Sect. 6.1 by relating our recovered infection rate on several indices
that track government responses against COVID-19. We find a strong relationship

2 Wilson (2010) surveys the literature on the links between geography and infectious diseases and notes
that socioeconomic conditions, public health infrastructure, urban versus rural environments, density and
mobility of the population are important factors explaining the types and abundance. In the context of
COVID-19 across the USA, Desmet and Wacziarg (2021) document spatial factors such as population
density and distance to major airports that can explain the spatial variation in COVID-19 severity.
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with containment and health-related policies, and for the government response index.
These results suggest that our recovered infection rate in fact reflects anti-COVID
policy responses.

The data indicates that despite a higher incidence of the disease in the UK compared
to the European Union, the fight to reduce the infection rates was more successful in
the UK than in the European Union. Our assessment reveals that the trade vector
contributed to 10% of the fatalities caused by COVID-19. We also conduct policy
counterfactuals, where policy interventions are captured by a residual-like parameter.
We simulate two types of scenarios. In the first one, policy responses are shut down
over time in different geographical areas. In the second type, we allow all regions
to enjoy the disease-transmission probabilities of the most successful areas regarding
COVID-19 containment.

The results imply that without the policy reaction in Europe, the number of deaths
during the first wave of the pandemic would have been about 4,520,000 larger in the
European Union and about 1,240,000 higher in the UK, with significant variation
across regions. Comparing the effects of the policies implemented in the EU27 and in
the UK, we estimate that in the absence of European Union’s anti-COVID measures,
the number of deaths in the UKwould have been an 83% higher, equivalent to an addi-
tional 36 deaths per 100,000 inhabitants. Conversely, the UK’s anti-COVID measures
saved 51,706 lives in the European Union and about 1,200,188 lives in the UK.

Our calculations indicate that the policies implemented by the region of Oberbay-
ern in Germany were the most effective in reducing the death burden of COVID-19
across Europe during the first two months (or 61 days) after the onset of the disease.
Subsequently, South Yorkshire in the UK was the area that managed to maintain con-
trol over the infection more effectively. Utilizing the daily decrease in transmission
probabilities implied by the combination of these two areas, we find that 12,752 and
38,883 lives, amounting to 42% and 37% of the total deaths, could have been saved
in the UK and the European Union, respectively, if the disease ecology and policy
implemented in the two aforementioned regions had prevailed throughout Europe.

The paper proceeds as follows. Section2 describes the related literature. Section3
provides evidence in support of the mechanisms highlighted by our model. Section4
introduces the model. The calibration of its exogenous variables and parameters is
discussed in Sect. 5. Section6 presents the results. Section7 concludes.

2 Related literature

Our paper contributes to a large and growing literature on the link between economic
activity and infectious diseases.3 Wecontribute by constructing and calibrating amodel
that features a set of European regions at different stages of development and assesses

3 Several papers have highlighted the significance of infectious diseases in developing countries. In one
such contribution, Chakraborty et al. (2010) introduce rational disease behavior in a general equilibrium
framework, focusing on the effects of the burden ofmalaria and theHIV infection on economic development.
They show that these diseases can create economic growth traps. In developed nations, similar evidence
arises. For instance, focusing on European pandemics going back to the 14th century, Jordà et al. (2022)
find important long-run economic consequences even after 40 years.
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the importance of trade on the spread of the COVID-19 pandemic. In this model, trade
serves as a vector of disease transmission through the transportation of goods and
people.

It is well documented that goods transportation across regions can help spread
infectious diseases.4 In the context of the HIV infection in Africa, Oster (2012) shows
that the movement of truckers engaged in exports leads to a significant increase in
new infections. Specifically, she estimates that doubling exports increases HIV infec-
tions by 10–70% through truckers. In a similar vein, Bajunirwe et al. (2020) analyze
the spread of COVID-19 in Uganda through trucks drivers. They find that the very
first cases arrived through international arrivals from Asia and Europe. However, by
29 April, out of the total amount of travellers with a tested confirmed case, 71.8%
were long-distance trucks drivers, while only 11.3% were international arrivals. Fur-
thermore, the majority of community cases were associated with contact with truck
drivers. Similarly,Martini et al. (2022) find that the infectionwas significantly common
among truck drivers in Uganda, Kenya, Rwanda, and South Sudan.

In a Latin American context, Calatayud et al. (2022) focus on the spread of COVID-
19 in Colombia through the trucking network. They demonstrate that the number of
confirmedCOVID-19 cases in amunicipality is positively linked to its level of trucking
network centrality. Bernardes-Souza et al. (2021) perform a household survey and a
case–control study in two towns in Brazil between May and June 2020, and find that
logistics workers were the main source of COVID-19 contagion among households.

In Asia and Europe, similar patterns emerge. For example, Lan et al. (2020) study
the progression of COVID-19 in HongKong, Japan, Singapore, Taiwan, Thailand, and
Vietnam during the first 40 days after the initial locally transmitted case. They discard
all imported cases to identify the occupation groups with most work-related cases.
They find healthcare workers (22%) and driver and transport workers (18%) to be the
twomain occupations affected by work-related cases. Adda (2016) provides evidence,
based on microdata, that the expansion of transportation networks and inter-regional
trade had a significant impact on virus spreading in France. Focusing on France, Italy,
and Spain, Bontempi et al. (2021) find that there is a strong statistical relationship
between international trade intensity and severity of the COVID-19 pandemic across
their regions.

Humanmobility, in general, and tourism, in particular, emerge as significant vectors
of COVID-19 transmission. Iacus et al. (2020) use variation in mobility restrictions
across countries of the European Union and find that Human mobility alone explains
92% of France and Italy initial spread of COVID-19. Farzanegan et al. (2021) analyze
the relationship between the COVID-19 spread and international tourism across coun-
tries. They find that, up until April 30, 2020, those countries receiving larger inflows
of international tourists experienced a higher level of confirmed COVID-19 cases and
deaths even when normalizing these COVID-19 outcomes by the country’s popula-
tion. Domestic tourism acted as well as a vector of the COVID-19 virus spread. For

4 In the case of COVID-19, virus transmission through transportation primarily occurs from one human to
another, as the main mode of transmission is through respiratory means. However, although limited, there
has been some evidence suggesting the potential for COVID-19 transmission from products to humans,
particularly from frozen foods. For example, Liu et al. (2020) found COVID-19 particles in imported frozen
products close to entering the distribution network in Qingdao, China.
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instance, Robin Nunkoo and Gholipour (2022) find that countries with a higher level
of domestic travel related to tourism experienced higher levels of cases and deaths
during the first six months of the pandemic.

Based on the empirical evidence above and the one we provide in Sect. 3, we argue
that trade and tourism, when people mobility was not restricted, are important vectors
of COVID-19 transmission. Therefore, our paper offers an alternative, complementary
channel to the business travel one proposed by Antràs et al. (2023). Antràs et al.
(2023) construct a two-country framework of human interactions through business
travel, combining a gravity equation structure and an epidemiological model of disease
evolution. In their model, the disease spreads as agents travel between countries. We
depart from them by building a multi-country and multi-sector setup with an input–
output structure rich enough to capture the transmission of the disease through bilateral
trade across all network nodes. Furthermore, a crucial ingredient in our model is that
it incorporates a time-variant local infection rate that tracks local policies against
COVID-19. Then, our simulations are able to compare the effectiveness of regional
policies at the NUTS2 level against COVID in the UK and the EU.

We are not the first in introducing spatial connections in epidemiological models.
Lloyd and May (1996) and Keeling (1999) are early examples of spatial models of
epidemics. Paeng and Lee (2017) extend the canonical SIR model by including spatial
infections assuming that the infection can be spread in a given radius. In the epidemi-
ological literature, the connection between trade and the spread of infectious diseases
is also known, and Mayer (2000) notes that vectors of transmission of dengue fever
or cholera were introduced in the USA through imported tires and through dumping
bilge water into the ocean. We depart from this literature by endogenizing the spatial
connections within a quantitative economic geography model, instead of assuming a
given radius of infection or stochastic encounters.

Spatial frameworks in which the spread of the disease can occur through the move-
ment of goods and people are also considered by Cuñat and Zymek (2022) and
Giannone et al. (2022). Cuñat and Zymek (2022) combine a simple epidemiologi-
cal framework with a dynamic model of individual location choice to study the impact
of quarantines and other mobility restrictions on the spread of COVID-19 in the UK.
In turn, Giannone et al. (2022) studies optimal containment policies in an economy
with connected regions focusing on the USA. Unlike them, we consider a richer model
of Ricardian trade and take advantage of a data set on sectoral bilateral trade flows
between European Regions, the Rhomolo-MRIO Tables for 2013 published by the
European commission (Thiessen 2020).

Other recent papers have studied the role of specific policies. For example, focusing
on optimal lockdown policies, Acemoglu et al. (2021) emphasize differences across
population groups, Alvarez et al. (2021) discuss the intensity and duration of the
policy, and Glover et al. (2023) analyze the distributional consequences of policies
that shut down sectors. More closely to our context, Fajgelbaum et al. (2021) find that
regional-specific lockdowns result in better outcomes than uniform lockdowns. We
depart from them by analyzing the policy effects at a higher regional level. We also
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depart from them by considering a compounded policy measure that captures broader
policies against COVID-19.5

Our article also talks to another branch of recent papers focused on consumer
behavior and output responses when faced with an infectious disease. Reductions in
production during COVID have been explained with lockdowns (Bonadio et al. 2021;
Sforza and Steininger 2020), supply shocks (Eppinger et al. 2021;Guerrieri et al. 2022;
Kejžar et al. 2022), short-term demand reductions (Krueger et al. 2022; Eichenbaum
et al. 2021; Liu et al. 2022), or risk aversion of forward-looking producers (Baker
et al. 2020), to mention a few. Crucially, we depart from them by looking at the effects
on the spread of COVID-19 within a multiple-region setting and a rich input–output
structure.

Finally, Çakmaklı et al. (2021) study how demand and supply shocks affect global
vaccinations and how vaccinations of other countries can potentially benefit home
countries. They do not include, however, endogenous links for the spread of the infec-
tion. We also extend the methodology by Fernández-Villaverde and Jones (2022) to
recover infection rates based on future deaths and use it to calibrate our model with
endogenous links in the disease.

3 Empirical motivation

Trade, as a vector of COVID-19 transmission through the transportation of goods and
tourism, is a keymechanism in our paper.While themovement of peoplewas restricted
in many countries during the first wave of the pandemic, freight transportation was
never entirely halted. In contrast, tourism was among the most affected sectors, facing
severe disruptions due to travel restrictions, lockdowns, and public health protocols.
However, these restrictions were not implemented uniformly across time or nations,
a factor our analysis will consider. For example, United Kingdom did not impose
restrictions to international traveling until June 8, andLatvia never imposed restrictions
to the internal movement of people. Consequently, both freight transportation and
tourismmay have contributed to the spread of COVID-19 in different ways, depending
on the specific circumstances in each location and period.

Toprovide additional empirical support for thismechanism,we assesswhether there
is a relationship between deaths by COVID-19 and past tourist visits. In particular, we
use variation across the regions in our analysis (see Table 1) to explore this relationship.
We use data on arrivals at tourist accommodation establishments by NUTS2 regions
from Eurostat and the compiled data on deaths by COVID-19 from different sources
(see Table 5).

Specifically, we regress the log of cumulative deaths by COVID-19 up to July 15,
2020, on the log of tourist arrivals in 2020 controlling for the log of population density,

5 Another difference in our model is that deaths represent a labor supply shock. However, its impact is
minor given the relatively lowproportion of deaths attributed toCOVID-19 compared to the total population.
Importantly, our main focus is not on how production is directly affected by the pandemic, but rather on
understanding the impact of trade links and disease containment policies on the spread of the COVID-19
pandemic. More significant labor supply shocks stemming from the pandemic include lockdowns (which
we also consider as a consequence of mobility restrictions) and social distancing policies; see Brodeur et al.
(2021), Section 5.1, for a review of the literature.
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Table 1 NUTS2 regions

Code Region Code Region

AT11 Burgenland (AT) BE1 Région Bruxelles-Capitale / Brussels H G

AT12 Niederösterreich BE2 Vlaams Gewest

AT13 Wien BE3 Région wallonne

AT21 Kärnten BG Bulgaria

AT22 Steiermark CYP Kypros

AT31 Oberösterreich CZ01 Praha

AT32 Salzburg CZ02 Strední Cechy

AT33 Tirol CZ03 Jihozápad

AT34 Vorarlberg CZ04 Severozápad

DE11 Stuttgart CZ05 Severovýchod

DE12 Karlsruhe CZ06 Jihovýchod

DE13 Freiburg CZ07 Strední Morava

DE14 Tübingen CZ08 Moravskoslezsko

DE21 Oberbayern DE30 Berlin

DE22 Niederbayern DE40 Brandenburg

DE23 Oberpfalz DE50 Bremen

DE24 Oberfranken DE60 Hamburg

DE25 Mittelfranken DE71 Darmstadt

DE26 Unterfranken DE72 Gießen

DE27 Schwaben DE73 Kassel

DE80 Mecklenburg-Vorpommern DEA1 Düsseldorf

DE91 Braunschweig DEA2 Köln

DE92 Hannover DEA3 Münster

DE93 Lüneburg DEA4 Detmold

DE94 Weser-Ems DEA5 Arnsberg

DED2 Dresden DEE0 Sachsen-Anhalt

DED4 Chemnitz DEF0 Schleswig-Holstein

DED5 Leipzig DEG0 Thüringen

DK01 Hovedstaden DK02 Sjælland

DK03 Syddanmark DK04 Midtjylland

DK05 Nordjylland EE00 Eesti

EL11 Anatoliki Makedonia, Thraki EL12 Kentriki Makedonia

EL13 Dytiki Makedonia EL14 Thessalia

EL21 Ipeiros EL22 Ionia Nisia

EL23 Dytiki Ellada EL24 Sterea Ellada

EL25 Peloponnisos EL30 Attiki

EL41 Voreio Aigaio EL42 Notio Aigaio

EL43 Kriti ES11 Galicia

ES12 Principado de Asturias ES13 Cantabria
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Table 1 continued

Code Region Code Region

ES21 País Vasco ES22 Comunidad Foral de Navarra

ES23 La Rioja ES24 Aragón

ES30 Comunidad de Madrid ES41 Castilla y León

ES42 Castilla-la Mancha ES43 Extremadura

ES51 Cataluña ES52 Comunidad Valenciana

ES53 Illes Balears ES61 Andalucía

ES62 Región de Murcia ES63 Ciudad Autónoma de Ceuta (ES)

ES64 Ciudad Autónoma de Melilla (ES) ES70 Canarias (ES)

FI19 Länsi-Suomi FI1B Helsinki-Uusimaa

FI1C Etelä-Suomi FI1D Pohjois- ja Itä-Suomi

FI20 Åland FR10 Île de France

FR21 Champagne-Ardenne FR22 Picardie

FR23 Haute-Normandie FR24 Centre (FR)

FR25 Basse-Normandie FR26 Bourgogne

FR30 Nord-Pas-de-Calais FR41 Lorraine

FR42 Alsace FR43 Franche-Comté

FR51 Pays de la Loire FR52 Bretagne

FR53 Poitou-Charentes FR61 Aquitaine

FR62 Midi-Pyrénées FR63 Limousin

FR71 Rhône-Alpes FR72 Auvergne

FR81 Languedoc-Roussillon FR82 Provence-Alpes-Côte d’Azur

FR83 Corse HRV Croatia

HU Hungary IE Ireland

ITC1 Piemonte ITC2 Valle d’Aosta/Vallée d’Aoste

ITC3 Liguria ITC4 Lombardia

ITF1 Abruzzo ITF2 Molise

ITF3 Campania ITF4 Puglia

ITF5 Basilicata ITF6 Calabria

ITG1 Sicilia ITG2 Sardegna

ITH1 Provincia Autonoma di Bolzano/Bozen ITH2 Provincia Autonoma di Trento

ITH3 Veneto ITH4 Friuli-Venezia Giulia

ITH5 Emilia-Romagna ITI1 Toscana

ITI2 Umbria ITI3 Marche

ITI4 Lazio LTU Lietuva

LUX Luxembourg LVA Latvija

MLT Malta NL Netherlands

PL11 Lódzkie PL12 Mazowieckie

PL21 Malopolskie PL22 Slaskie

PL31 Lubelskie PL32 Podkarpackie

PL33 Swietokrzyskie PL34 Podlaskie
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Table 1 continued

Code Region Code Region

PL41 Wielkopolskie PL42 Zachodniopomorskie

PL43 Lubuskie PL51 Dolnoslaskie

PL52 Opolskie PL61 Kujawsko-Pomorskie

PL62 Warminsko-Mazurskie PL63 Pomorskie

PT11 Norte PT15 Algarve

PT16 Centro (PT) PT17 Área Metropolitana de Lisboa

PT18 Alentejo PT20 Região Autónoma dos Açores (PT)

PT30 Região Autónoma da Madeira (PT) RO Romania

ROW Rest of the world SE11 Stockholm

SE12 Östra Mellansverige SE21 Småland med öarna

SE22 Sydsverige SE23 Västsverige

SE31 Norra Mellansverige SE32 Mellersta Norrland

SE33 Övre Norrland SI01 Vzhodna Slovenija

SI02 Zahodna Slovenija SK01 Bratislavský kraj

SK02 Západné Slovensko SK03 Stredné Slovensko

SK04 Východné Slovensko UKC1 Tees Valley and Durham

UKC2 Northumberland and Tyne and Wear UKD1 Cumbria

UKD3 Greater Manchester UKD4 Lancashire

UKD6 Cheshire UKD7 Merseyside

UKE1 East Yorkshire and Northern LincolnshireUKE2 North Yorkshire

UKE3 South Yorkshire UKE4 West Yorkshire

UKF1 Derbyshire and Nottinghamshire UKF2 Leicestershire, Rutland and Northamptonshire

UKF3 Lincolnshire UKG1 Herefordshire, Worcestershire and Warwickshire

UKG2 Shropshire and Staffordshire UKG3 West Midlands

UKH1 East Anglia UKH2 Bedfordshire and Hertfordshire

UKH3 Essex UKI1 Inner London-West

UKI2 Inner London-East UKJ1 Berkshire, Buckinghamshire and Oxfordshire

UKJ2 Surrey, East and West Sussex UKJ3 Hampshire and Isle of Wight

UKJ4 Kent UKK1 Gloucestershire, Wiltshire and Bristol/Bath area

UKK2 Dorset and Somerset UKK3 Cornwall and Isles of Scilly

UKK4 Devon UKL1 West Wales and The Valleys

UKL2 East Wales UKM2Eastern Scotland

UKM3South Western Scotland UKM5North Eastern Scotland

UKM6Highlands and Islands UKN0 Northern Ireland (UK)

that is, we estimate

log(Deathsg,c) = α + β1 log(Densityg,c) + β2 log(Touristsg,c) + μc + εg,c, (1)
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Table 2 Arrivals of tourists and COVID-19 deaths by region

(1) (2) (3)

Panel A: OLS

Log population density 0.114 0.234** −0.118

(0.139) (0.111) (0.206)

Log total arrivals (2020) 1.240***

(0.196)

Log domestic arrivals (2020) 1.411***

(0.293)

Log foreign arrivals (2020) 0.767***

(0.075)

Num.Obs 147 146 145

R2 0.543 0.575 0.491

Panel B: IV

Log population density 0.120 0.252** −0.121

(0.134) (0.101) (0.202)

Log total arrivals (2020) 1.282***

(0.190)

Log domestic arrivals (2020) 1.505***

(0.302)

Log foreign arrivals (2020) 0.805***

(0.090)

Num.Obs 145 144 143

R2 0.543 0.574 0.491

*p < 0.1, **p < 0.05, ***p < 0.01. The dependent variable is the log of cumulative deaths by COVID-19.
Controls are the log of population density, total, domestic, and foreign arrivals in 2020. The IV regressions
instrument the log of arrivals with the log of arrivals in 2018 and 2019

where Deathsg,c is the cumulative number of deaths by COVID-19 in region g of
country c, Densityg,c is the population density in region g of country c, Touristsg,c is
the number of tourists in region g of country c (total, domestic, or foreign), μc is a
country fixed effect, and εg,c is the error term.

We estimate Eq. (1) by OLS and find that tourist arrivals are positively associated
with more deaths by COVID-19 (i.e., β2 > 0), and this relationship is statistically
significant. Panel A in Table 2 presents these results. Although this is purely correla-
tional suggestion, it could be the case that there could be a negative reverse causality
bias (i.e., more deaths in a region reduce the number of visits). To mitigate that we
estimate the same regression (1) instrumenting by the log of number of tourists in 2018
and 2019. The estimated coefficients for the three tourism variables are positive and
economically and statistically significant, thus reinforcing our proposed mechanism.
Panel B of Table 2 presents the IV estimates. These are slightly larger than the OLS
estimates suggesting that the negative reverse causality bias was there.
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Table 3 Arrivals of tourists and COVID-19 deaths by region

Total Domestic Foreign

Log population density −0.092 −0.080 −0.212

(0.327) (0.315) (0.340)

Upper quartile in total arrivals 2.036***

(0.440)

Upper quartile in domestic arrivals 1.378**

(0.592)

Upper quartile in foreign arrivals 2.133***

(0.712)

Num.Obs 147 146 146

R2 0.421 0.420 0.446

*p < 0.1, **< p0.05, ***p < 0.01. The dependent variable is the log of cumulative deaths by COVID-19.
Controls are the log of population density, and dummy variables that is equal to 1 if the region is in the
upper quartile of the total, domestic, or foreign arrivals in 2020, 2019, and 2018

Table 4 NACE Rev2 sectors
included in the analysis

Section Industry

A Agriculture, forestry and fishing

B_E Industry (except construction and mining)

C Mining

F Construction

G_I Wholesale and retail trade, transport, accommodation
and food service activities

J Information and communication

K_L Financial, insurance, and real estate activities

M_N Professional, scientific, technical, administrative and
support service activities

O_Q Public administration, defense, education, human health
and social work activities

R_U Arts, entertainment and recreation; other service
activities; activities of household and extra-territorial
organizations and bodies

To further explore this mechanism, we also regress the log of cumulative deaths on
a dummy variable that takes value equal to 1 if the region is in the upper quartile (75th
percentile) of the arrivals distribution in the years 2020, 2019, and 2018, and we also
distinguish between domestic, foreign, and total arrivals. The results are provided in
Table 3. As before, the coefficients are positive and statistically significant reinforcing
the evidence of this mechanism.
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4 Themodel

We assume the economy is composed of a set of G geographical locations or regions
that belong to different countries and J sectors or industries. Regions are denoted by
g, i and h and sectors by j and k. In each industry, there is production of a composite
intermediate or material, an array of different varieties of intermediate goods, and a
set of different types of final consumption goods. Households provide labor to the
production process. Labor is mobile across sectors and immobile across locations. All
markets are perfectly competitive.

The model offers a rich supply-chain structure. Local materials from different sec-
tors are employed along with the labor input to produce intermediate goods. In the
next stage, intermediate goods produced by the same industry possibly in different
locations are combined to generate final consumption products and a composite inter-
mediate or material. These connections among the different stages of the production
chain can provide amplification effects of trade disruptions.

We assume that the intermediate goods and final products can be tradable or not,
whereas materials are not tradable. We consider that final consumption products can
cross-regional borders, because some of them, like tourism, can be important for the
propagation of the virus and are tradable. Trade in intermediate goods is intra-industry,
which represents the largest component of the world trade flows of intermediates.

Let us now move to describing the model demographics. For simplicity, we omit
time subscripts. The size of the population in region g equals Ng . This population
is composed of five groups: susceptible vaccinated and susceptible non-vaccinated
people—denoted by Vg and Sg , respectively—who are not infected but can develop
the disease; infected individuals, Ig; resolving cases Rg who can pass away with prob-
ability δ or recover with probability (1 − δ)6; and recovered Cg , who can potentially
get reinfected. Hence, it must be satisfied that

Ng = Sg + Vg + Ig + Rg + Cg. (2)

We will consider the possibility that recovered and vaccinated individuals may rejoin
the susceptible non-vaccinated population once the partial immunity acquired by being
exposed to the virus or the vaccine is lost.

Only a fraction lgH from each group H can supply labor services. This fraction lgH
will be taken as exogenous, given by morbidity and policy considerations. Then, the
available labor force Lg equals:

Lg = lgS Sg + lgV Vg + lgI Ig + lgR Rg + lgCCg. (3)

With these ingredients, the model is numerically solved through a loop that consists
of two phases, with each period corresponding to one day. In the first phase, for the
population composition in a given day, we obtain the spatial distribution of economic
activity. The second phase takes as given the spatial distribution delivered by the first

6 Resolving cases are infected individuals that cannot infect other people. Fernández-Villaverde and Jones
(2022) suggest that distinguishing between infection and recovery periods matters for the model to fit the
data well with biologically sensible parameters.
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phase, along with the disease ecology to determine how the population composition
changes from one day to the next. We consider that the infection can spread within and
across locations because of people contact. Finally, the new population composition
feeds again the first phase, and this loop continues until predictions for the desired
number of days are generated.

4.1 Phase 1: economic allocations across space

The first phase of the model determines the underlying economic geography through
which the virus and the economic consequences of policies will potentially spread.

4.1.1 Households

Welfare-maximizing consumers in each location have identical preferences given by7:

Wg =
J∏

j=1

(
c jg
)α

j
g ; (4)

where

c jg =
[∫ 1

0
c jg(�

j )1−1/ς j
d� j

]ς j /(ς j−1)

; (5)

the parameter α j
g represents the share of sector- j products in total consumption expen-

diture in location g, that is,
∑J

j=1 α
j
g = 1; the variable c jg(� j ) denotes the units

consumed in location g of variety � j from sector- j (� j is one among a mass of size
one of different varieties); and the parameter ς j gives the elasticity of substitution
between different varieties of sector- j consumption products.

In each location, the population size Ng is divided between workers Lg and non-
workers Ng − Lg . Each of the two consumer types has, in principle, a distinct
budget constraint, because income may differ depending on whether they work or
not. However, we assume that workers pay lump-sum unemployment insurance (tg)
at the location where they provide labor services, and these taxes are fully redis-
tributed as unemployment benefits (sg) to the non-working individuals at the local
level, that is, tg Lg = sg(Ng − Lg). Furthermore, this redistribution is such that their
incomes are equalized, wg − tg = sg , where wg is the wage rate, which implies that
tg = (Ng − Lg)wg/Ng , and thus,wg − tg = Lgwg/Ng . That is, if there are more indi-
viduals unemployed, income per capita falls, and the opposite occurs if more people
work.We also consider that consumers may pay lump-sum taxes τg that are directed to

7 The assumption of a unitary elasticity of substitution in consumption might seem restrictive at first.
However, it is worth pointing out that consumption in our framework denotes consumption of gross output,
that is, final consumption expenditure. Herrendorf et al. (2013) estimate an elasticity of substitution in the
range of 0.85–0.89, but also show that an elasticity of 1 can fit aggregate consumption shares as good as a
CES. As the number of sector increases, our assumption of a unitary elasticity becomes more credible.
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provide subsidies to firms. Therefore, letting lg be the fraction of workers in region g
(i.e., lg = Lg/Ng), the budget constraint—which is the same for all consumers—can
be written as:

lgwg + Fg + D̃g

Ng
− τg =

J∑

j=1

∫ 1

0
P j
g (� j )c jg(�

j ) d� j ; (6)

where P j
g (� j ) is the price of variety� j from sector- j consumed in g. The government

of region g can also collect revenues from tariffs (Fg) that are redistributed to thewhole
local population. The term D̃g represents the regional trade deficit. Financing a trade
deficit requires the inflowof resources fromother locations, and this is why D̃g appears
in the consumer’s budget constrain. Notice as well that this variable can be used in the
experiments as a fiscal policy tool.

Given these preferences, the optimality conditions imply that the share of variety
� j in consumption expenditure on the goods produced by industry j is a function of
relative prices and the elasticity of substitution. In particular,

P j
g (� j )c jg(� j )

P j
g c

j
g

=
[
P j
g (� j )

P j
g

]1−ς j

; (7)

where P j
g represents the ideal price index of the sector- j final products, which equals

P j
g =

[∫ 1

0
P j
g (� j )1−ς j

d� j
]1/(1−ς j )

. (8)

These preferences also imply that consumption expenditure on sector j products in a
location g is a constant fraction of total income given by α

j
g .

Since income is fully spent in consumption goods, as shown by the budget con-
straint (6), we can express welfare from Eq. (4) through an indirect utility function
as:

Wg = yg
Pg

; (9)

where yg is income per capita in region g given by

yg = lgwg + Fg + D̃g

Ng
− τg; (10)

and Pg provides the ideal consumption price index that households face in location g,

Pg =
J∏

j=1

(
P j
g

α
j
g

)α
j
g

. (11)
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Note that welfare depends on the fraction of workers lg , on the per capita trade deficit
and tariff revenue. Thus, shocks to a sector affect welfare through the trade deficit, the
tariff revenues and the price index. Furthermore, constraining the share of working
individuals in a region has ceteris paribus first-order effects on welfare.8

4.1.2 Firms

In each location g, a firm that operates in sector j produces either an intermediate
good variety (q j

g (ω j ), ω j ∈ (0, 1)), a final product variety (Q j
g(�

j ), � j ∈ (0, 1)), or

a composite intermediate or material (QM j
g ). The production of intermediate goods

uses labor and materials from other industries, whereas the production process of
final goods and materials demand intra-industry intermediates. Intermediate good
manufacturers and final good and material producers in sector j may benefit from
subsidization rates s jg and s

j
g , respectively, which reduce the costs of the different

production inputs in the same proportion. All markets are perfectly competitive and
firms maximize profits. We next describe in more detail each of the different stages of
the production chain.

4.1.3 Intermediate goods

A firm in sector j produces a variety ω j of intermediate goods using labor (L j
g(ω

j ))

and composite intermediates from every other sector k (mkj
g (ω j )) according to the

production function:

q j
g (ω j ) = a j

g z jg(ω
j )L j

g(ω
j )γ

j
g

J∏

k=1

mkj
g (ω j )γ

k j
g ; (12)

where a j
g is sector j’s fundamental productivity in intermediate goods manufacturing

by region g; z jg(ω j ) is a random sector-variety-specific productivity shock; and γ
j
g

denotes the share of value added on gross output. The term affected by the product
operator provides the use of materials from all other sectors, with γ

k j
g representing the

expenditure share of the material from sector k employed in the input composite of

8 In order to derive (9), notice that the indirect utiity functions for working (WL
g ) and non-working (WNL

g )
individuals are, respectively,

WL
g = 1

Pg

(
wg − tg + Fg + D̃g

Ng
− τg

)
and WNL

g = 1

Pg

(
sm + Fg + D̃g

Ng
− τg

)
.

Defining NgWg = LgW L
g + (Ng − Lg)WNL

g as total welfare in a location, Wg is given by

Wg = Lg
Ng

W L
g +

(
1 − Lg

Ng

)
WNL

g ,

which, substituting each of the indirect utility functions, and recalling that sm = wg − tg = wg Lg/Ng and
that lg represents the fraction of working individuals in a location g, we get Eq. (9).
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the intermediate good produced by industry j . We assume that
∑J

k=1 γ
k j
m = 1 − γ

j
g .

Production functions, then, exhibit constant returns to scale.
Because markets are perfectly competitive and firms are profit maximizers, inter-

mediate good prices must equal marginal costs, b j
g/[a j

g z
j
g(ω

j )], where b j
g gives the

cost of a unitary input bundle once subsidies are taken into account. The cost b j
g is

common to all varieties and given by

b j
g = (1 − s jg )ϒ

j
gw

γ
j
g

g

J∏

k=1

(
PMk
g

)γ
k j
g ; (13)

where the constant ϒ j
g equals

ϒ
j
g =

(
1

γ
j
g

)γ
j
g J∏

k=1

(
γ
k j
g

)−γ
k j
g ;

PMk
g is the price of the composite intermediate produced by sector k in region g;

and wg denotes the wage rate in location g. Equation (13) says that the subsidy will
translate into lower prices because it complements market revenues at paying for the
inputs. Notice that the term 1 − s jg can be written as a common factor because of
constant returns to scale and because production subsidies reduce all input costs by
the same proportion.

4.1.4 Final products

In each sector region ( j, g) pair, a set of final goods indexed by � j are produced
under perfect competition using intermediate goods from the same sector following a
Dixit–Stiglitz aggregator with a constant elasticity of substitution σ j > 1:

Q j
g(�

j ) = A j
g Z

j
g(�

j )

[∫ 1

0
r j
g

(
ω j
)1−1/σ j

dω j
] σ j

σ j−1 ; (14)

where A j
g is the sector region fundamental productivity in final goods production;

r j
g
(
ω j
)
represents the demand in region g for intermediate good ω j from the lowest-

cost supplier, which can belong to any of the regions.
Profitmaximization implies the following demand function for each or the varieties:

r j
g

(
ω j
)

=
[

(1 − s
j
g)p

j
g
(
ω j
)

B j
g

]−σ j

Q j
g(�

j )

A j
g Z

j
g(�

j )
; (15)
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where p j
g
(
ω j
)
is the price of intermediate good ω j in location g, and B j

g gives the
cost of the input bundle with subsidies already embedded as

B j
g = (1 − s

j
g)

[∫ 1

0
p j
g

(
ω j
)1−σ j

dω j
] 1

1−σ j

. (16)

Equation (15) implies that the demand of intermediate ω j per unit of final output
depends on the price of ω j relative to the price of the other varieties of intermediates.
Consequently, as a response to the subsidy, the amount for intermediate products
demanded can increase, not because of a change in the price that firms perceived(
(1 − s

j
g) p j

g
(
ω j
))
, but because of the decrease in the price of the final output (given

by the marginal cost), which can cause an increase in Q j
g(�

j ).

4.1.5 Composite intermediate goods

Production of materials in sector j uses a very similar technology to the one of final
goods. In particular,

QM j
g = A j

g

[∫ 1

0
r j
g (ω j )1−1/σ j

dω j
] σ j

σ j−1
. (17)

That is, it also combines varieties of intermediate goods coming from the same sector.
The difference with Eq. (14) is that productivity in the case of the production of the
composite intermediate is fully deterministic. The demand for intermediate inputs is
analogous to the one delivered by final goods; in particular,

r j
g

(
ω j
)

=
[

(1 − s
j
g)p

j
g
(
ω j
)

B j
g

]−σ j

QM j
g

A j
g

. (18)

Because composite intermediate goods do not engage in inter-regional trade, the
price paid for them by intermediate goods manufacturers is directly given by the
marginal cost of production in the same location. This implies that

PM j
g = B j

g

A j
g

(19)

which is the ratio between the cost of the input bundle accounting for subsidies divided
by the productivity of the composite intermediate goods producers.

4.1.6 Inter-regional trade and destination prices

Intermediate goods andfinal products can travel across locations. Inter-regional trade is
costly. Trade costs combine tariffs and iceberg transportations costs. We consider that
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tariff may be different for intermediate and final goods. More specifically, a sector- j
intermediate imported by region g from location i involves a trade cost equal to

κ
j
gi =

(
1 + τ

j
gi

)
d j
gi ; (20)

where τ
j
gi is the imposed ad valorem tariff on intermediate goods from sector j . The

transportation cost d j
gi implies that the arrival of one unit of an intermediate product

to g coming from i requires sending d j
gi units produced of that product. For the case

of final goods, trade costs equal

K j
gi =

(
1 + T j

gi

)
d
j
gi . (21)

Now, T j
gi represents the tariff on final goods from industry j , and d j

gi the iceberg costs
related to trade in final goods. Because we will use changes in iceberg costs as proxies
to study the effect of supply-chain disruptions, it is only assumed that d j

gi , d
j
gi ≥ 1

for all g and i . For the same reason, the usual triangular inequality κ
j
gi ≤ κ

j
hiκ

j
gh and

K j
gi ≤ K j

hi K
j
gh may not hold for all g, i and h.

Taking into account these trade costs, the prices at destination of the traded products
from the lowest-cost supplier are given by:

p j
g(ω

j ) = min
i∈[1,G]

⎧
⎨

⎩
b j
i κ

j
gi

a j
g z

j
g(ω

j )

⎫
⎬

⎭ (22)

and

P j
g (� j ) = min

i∈[1,G]

⎧
⎨

⎩
B j
i K

j
gi

A j
g Z

j
g(�

j )

⎫
⎬

⎭ . (23)

Equations (22) and (23) imply that the price at destinationwill be givenby theminimum
across locations of the product between the marginal cost and the trade cost. A more
expensive input bundle or higher trade costs will push the price up, whereas a larger
productivity will push it down.

Following Eaton and Kortum (2002), trade in the model obeys a Ricardian motive
generated by a random allocation of productivities across sectors and regions. In par-
ticular, the realizations of the productivity variables z jg and Z j

g for varieties ω j and
� j follow Fréchet distributions with location parameter equal to 1 and sector-specific
shape parameters θ j and � j , respectively. A smaller value of the shape parameter
implies a larger dispersion of the distribution. We assume that the random produc-
tivity variables are independently distributed across goods, industries, and regions.
Furthermore, we impose that 1+ θ j > σ j and 1+� j > ς j . Following Caliendo and
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Parro (2015), under these assumptions for the distributions of productivities, we can
rewrite Eqs. (16) and (8) as

B j
g = (1 − s

j
g) �

(
1 + 1 − σ j

θ j

)1/(1−σ j )

⎡

⎢⎣
G∑

i=1

⎛

⎝b j
i κ

j
gi

a j
i

⎞

⎠
−θ j⎤

⎥⎦

−1/θ j

, (24)

P j
g = �

(
1 + 1 − ς j

� j

)1/(1−ς j )

⎡

⎢⎣
G∑

i=1

⎛

⎝ B j
i K

j
gi

A j
i

⎞

⎠
−� j⎤

⎥⎦

−1/� j

; (25)

where �(·) is the gamma function.
In the case that a sector is not tradable, which implies that all the varieties of inter-

mediate goods and consumption products from that sector are bought from domestic
producers, Caliendo and Parro (2015) also show that the relevant price indices amount
to imposing that κ

j
gi = K j

gi = ∞ for all i �= g in Eqs. (24) and (25). Then, we can

express B j
g and P j

g as

B j
g = (1 − s

j
g) �

(
1 + 1 − σ j

θ j

)1/(1−σ j )
b j
g

a j
g

and

P j
g = �

(
1 + 1 − ς j

� j

)1/(1−ς j )
(
B j
g

A j
g

)
.

4.1.7 Expenditure shares

Let x j
g and X

j
g be region g’s total expenditures on intermediate goods andfinal products

from sector j , respectively. They are obtained at destination prices, and therefore,
include tariff payments. Define x j

gi and X j
gi as the expenditures in location g on sector-

j intermediate goods and sector- j final products, respectively, imported by location
g from location i . Finally, let π

j
gi and �

j
gi be region g’s total expenditure shares of

intermediate goods and final products from sector j exported by location i to location
g, respectively, that is, π

j
gi = x j

gi/x
j
g and �

j
gi = X j

gi/X
j
g . Following Caliendo and

Parro (2015), it can be shown that

π
j
gi =

(
b j
i κ

j
gi/a

j
i

)−θ j

∑G
h=1

(
b j
hκ

j
gh/a

j
h

)−θ j , (26)
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�
j
gi =

(
B j
i K

j
gi/A

j
i

)−� j

∑G
h=1

(
B j
h K

j
gh/A

j
h

)−� j . (27)

Bilateral trade shares contain important information. First, they are declining on
transport costs and increasing in the productivity of the producer (since this produc-
tivity reduces the marginal cost directly). Second, they include information on the
input–output structure of the whole economy through the prices paid for intermedi-
ate inputs. Furthermore, this input–output structure is also affected by the economic
geography, since intermediate inputs can be imported from abroad. In terms of the
effects of policies regarding the control of COVID-19, this gravity equation is poten-
tially informative for several reasons. It can potentially capture the fact that some
sectors might be more affected by social distancing policies, since sectors can differ
in their labor input intensities. Dingel and Neiman (2020) estimate that, in the USA,
the share of jobs that can be done from home significantly varies across cities and
industries and also show that this share is decreasing in the level of development of
the countries. Our model could plausibly capture this. Our model could also show the
effects of how shutting down a certain sector or region would affect the rest of sectors
and locations through the input–output structure. Furthermore, in the second phase of
the model, infections can be spread through economic linkages; since some sectors
are more interconnected than others, those regions that are more intensive in certain
inputs can show significantly faster infection rates.

4.1.8 Market clearing and government and regional deficits

Local labor markets require that the sum of labor employed in the different industries
equals the total amount of labor available in the region. Formally,

J∑

j=1

L j
g = Lg (28)

Furthermore, because in equilibrium labor costs must equal a constant fraction γ
j
g of

the value of the intermediate goods production, the following condition must hold:

wgLg =
J∑

j=1

γ
j
g

1 − s jg

G∑

i=1

x j
i π

j
ig

1 + τ
j
ig

. (29)

Notice that the right-hand side of Eq. (29) adds the expenditures across sectors and
regions on intermediate goods manufactured in location g that go to pay the labor
input. It also implies that payments to labor are in part satisfied using the subsidies,
in an amount equivalent to a fraction γ

j
g s

j
g/(1 − s jg ) of the revenues from sales. We

divide by the tariff to convert each expenditure amount into the value of production.
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In the same manner, the total value of the production of composite intermediates
from sector j in a location g has to be equal to a subsidy-weighted fraction (determined
by all γ

jk
g ) of the expenditure on region g’s intermediate goods across sectors and

locations. In particular,

PM j
g QM j

g =
J∑

k=1

γ
jk
g

1 − s jg

G∑

i=1

xki π
k
ig

1 + τ kig

. (30)

Notice thatmarket clearing conditions (29) and (30) imply aswell that the intermediate
goods market clears.

Employing again a production expenditure equality, market clearing in the location
g’s final goods market requires that the value of the sector- j final goods produced
in g equals the consumption expenditure across regions on final products from that
location. Taking into account that the revenues from the production activity of the
final product sector fully goes to pay for the intermediate goods used as inputs, we
can write the market clearing condition as:

x j
g − PM j

g QM j
g

1 − skg
= 1

1 − skg

G∑

i=1

X j
i �

j
ig

1 + T j
ig

. (31)

The left-hand side of Eq. (31) subtracts the value ofmaterials to provide just the amount
of expenditure in intermediate goods satisfied by final goods producers. The subsidy skg
is in the equation because the expenditure on inputs, x j

g , equals the market revenues—
given by the terms affected by the sum operator—plus the subsidies received by the
industry.

Note that consumers’ expenditure on sector- j products in region-i is a fixed fraction
α
j
i of their income. Hence,

X j
i = α

j
i yi Ni ; (32)

where income per capita yi , given by Eq. (10), is a function of tariff revenues. We can
now express tariff revenues, Fg , using the notation introduced previously as:

Fg =
J∑

j=1

G∑

i=1

⎛

⎝τ
j
gi

x j
gπ

j
gi

1 + τ
j
gi

+ T j
gi

X j
g�

j
gi

1 + T j
gi

⎞

⎠ . (33)

Moving next to the determination of the trade balance, we consider that the regional
trade deficit D̃g is given by the sum of the sectoral deficits, D̃ j

g . The sectoral deficit D̃
j
g

equals the value of the region g’s imports of industry- j goods from all other locations
minus the value of exports of sector- j products from location g to all other locations.
This is equivalent to imposing that the deficit is given by the difference between total
expenditure by region g on sector- j intermediate and final products net of tariffs and
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the total value of production of industry- j intermediate and final goods in location g.
More specifically,

D̃ j
g =

G∑

i=1

⎛

⎝ x j
gπ

j
gi

1 + τ
j
gi

+ X j
g�

j
gi

1 + T j
gi

⎞

⎠−
G∑

i=1

⎛

⎝ x j
i π

j
ig

1 + τ
j
ig

+ X j
i �

j
ig

1 + T j
ig

⎞

⎠ . (34)

The second parenthesis gives the value of production by adding across locations the
amount spent on products from the sector region pair ( j, g) net of tariffs.

Therefore, trade balance in location g implies the sum of the sectoral trade deficits
must equal the regional one, which implies

D̃g =
J∑

j=1

D̃ j
g . (35)

It can be shown that the trade balance condition, equation (35), implies that the labor
market clears, that is, equation (29).

Finally, we allow for the possibility that the regional budget deficit, denoted by D̄g ,
is not zero. Therefore, the following condition must hold:

D̄g =
J∑

j=1

G∑

i=1

⎛

⎝ s jg

1 − s jg

x j
i π

j
ig

1 + τ
j
ig

+ s
j
g

1 − s
j
g

X j
i �

j
ig

1 + T j
ig

⎞

⎠+
J∑

j=1

s
j
g

1 − s
j
g

PM j
g QM j

g − τgNg .

(36)

That is, if the expenditure in subsidies is larger than the taxes collected to finance
them, there will be a positive budget deficit.

4.1.9 Equilibrium system in relative changes

As in Caliendo and Parro (2015), we solve the model in changes.9 Let us denote a
proportional change in a variable with a hat (ˆ) and the value of the variable next
period with a prime (′). Then, for example, τ̂ j

gi = τ
j ′
gi /τ

j
gi . The exogenous shocks that

we will consider correspond to new tariffs, τ
j ′
gi and T j ′

gi , new subsidies to firms, s j ′g
and s j ′g , supply-chain disruptions proxied by changes in the trade costs, d̂ j

gi and d̂
j
gi for

g �= i , local production restrictions proxied by d̂ j
gg and d̂

j
gg , and confinement policies

captured by new stocks of available labor in the region, L ′
g .

Equations (13) and (19) imply that the gross growth rate in the cost of the
intermediate goods input bundle equals

b̂ j
g =

(
1 − s j ′g
1 − s jg

)
ŵ

γ
j
g

g

J∏

k=1

(
B̂k
g

)γ
k j
g

. (37)

9 Costinot and Rodríguez-Clare (2014) named this approach exact hat-algebra.
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In turn, combining expressions (24) and (26) obtains the change in the cost of the final
goods input bundle and the export shares of intermediate products as

B̂ j
g =

(
1 − s

j ′
g

1 − s
j
g

)[
G∑

i=1

π
j
gi

(
b̂ j
i κ̂

j
gi

)−θ j
]−1/θ j

(38)

and

π̂
j
gi =

⎛

⎝ b̂ j
i κ̂

j
gi

B̂ j
g

⎞

⎠
−θ j

, (39)

respectively, where κ̂
j
gi =

(
1 + τ

j ′
gi

)
d̂ j
gi/
(
1 + τ

j
gi

)
.The gross growth rate in the sec-

toral price index and the final good export shares are obtained from Eqs. (25) and (27)
as

P̂ j
g =

[
G∑

i=1

�
j
gi

(
B̂ j
i K̂

j
gi

)−� j
]−1/� j

(40)

and

�̂
j
gi =

⎛

⎝ B̂ j
i K̂

j
gi

P̂ j
g

⎞

⎠
−� j

, (41)

respectively, where K̂ j
gi =

(
1 + T j ′

gi

)
d̂
j
gi/
(
1 + T j

gi

)
.

Market clearing conditions can be employed to obtain the future values of the
expenditure variables as a function of the above changes. In particular, market clearing
for final goods, equations (30) and (31), implies that region g’s next-period expenditure
in intermediate goods from sector j is given by:

x j ′
g = 1

1 − s
j ′
g

⎛

⎝
J∑

k=1

G∑

i=1

γ
jk
g

1 − s j ′g

xk′i πk′
ig

1 + τ k′ig
+

G∑

i=1

X j ′
i

�
j ′
ig

1 + T j ′
ig

⎞

⎠ . (42)

Notice that πk′
ig and �

j ′
ig can be written as πk

igπ̂
k
ig and �

j
ig�̂

j
ig , respectively.

From Eqs. (10), (30), (32), (33), and (36), next-period’s expenditure in final goods
from sector j is given by

X j ′
g = α

j
g

[
L ′
gw

′
g +

J∑

k=1

G∑

i=1

(
τ k′gi

xk′g πk′
gi

1 + τ k′gi
+ T k′

gi

Xk′
g �k′

gi

1 + T k′
gi

)
+ D̃′

g − τ ′
gNg

]
; (43)
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where

D̃′
g =

J∑

j=1

G∑

i=1

⎛

⎝ x j ′
g π

j ′
gi

1 + τ
j ′
gi

+ X j ′
g �

j ′
gi

1 + T j ′
gi

⎞

⎠−
J∑

j=1

G∑

i=1

⎛

⎝ x j ′
i π

j ′
ig

1 + τ
j ′
ig

+ X j ′
i �

j ′
ig

1 + T j ′
ig

⎞

⎠ . (44)

Again, we can write w′
g as wgŵg so that it becomes a function of the changes

determined by previous equations in the system.
The system formed by Eqs. (37)–(44) is underdetermined because the number of

unknowns is equal to the number of equations plus one. In order to solve it, Caliendo
and Parro (2015) assume that the economy’s trade deficit in each location g is exoge-
nous. We, on the other hand, allow for the trade deficit to be determined by the model
and, instead, required that thewage rate does not vary. This looks to usmore appropriate
for the problem that we analyze.

Equations (37)–(44) imply that we do not need to calibrate fundamental produc-
tivities and trade costs to solve the system. We simply start from a baseline scenario
that consists of initial data on regional wages, labor, and trade and budget deficits
{wg, Lg, D̃g, D̄g}Gg=1, pairwise regional expenditure shares and tariffs in every sec-

tor {π j
gi ,�

j
gi , τ

j
gi , T

j
gi }G,G,J

g=1,i=1, j=1, and the assumption of no subsidies for firms,

s jg = s
j
g = 0. We also need to assign values to the labor share in gross output (γ j

g ),
the share of intermediate goods from sector k employed in the production of sector
j (γ jk

g ), the share of consumption expenditure on sector- j goods (α j
g ), and the shape

parameters θ j and� j of the Fréchet distributions.With that information on our hands,
we consider shocks on the values τ ′

gi , T
′
gi , s

j ′
g , s

j ′
g , d̂

j
gi , d̂

j
gi and/or L

′
g , and solve the

system going through the following steps.

1. Assume ŵg = 0 for all g.

2. From Eqs. (37) and (38), obtain {b̂ j
g, B̂

j
g }G,J

g=1, j=1.
3. Oncewe know the cost of the unitary input bundles, we can recover fromEqs. (40)–

(41) the values of {P̂ j
g , π̂

j
gi , �̂

j
gi }G,G,J

g=1,i=1, j=1.

4. Obtain {x j ′
g , X j ′

g }G,J
g=1, j=1 using (42) and (43).

The above implies that in this economy, an equilibrium in relative changes can be
defined as follows. Given the new value of the regional labor supply {Lg}Gg=1, regional

deficits {D̃′
g, D̄

′
g}Gg=1, and pairwise regional government tariffs on intermediate goods

{τ j ′
gi }G,J

g=1, j=1 and on final goods {T j ′
gi }G,J

g=1, j=1, a competitive equilibrium is a set of
changes in intermediate good and final product price indices in for each sector loca-
tion pair {B̂ j

g , P̂ j
g }G,J

g=1, j=1, and pairwise regional expenditure shares in every sector

{π̂ j
gi , �̂

j
gi }G,G,J

g=1,i=1, j=1, in addition to new values of the total sector location expendi-

ture volumes {x j ′
g , X j ′

g }G,J
g=1, j=1, such that the optimizing conditions for households,

intermediate product manufacturers, final good firms and material producers—which
are reflected in Eqs. (13), (19), (24) to (27), and (32)—hold, and market clearing in
all markets is achieved through conditions (30), (31) and (34).
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4.2 Phase 2: infection dynamics

The infection dynamics take place at the local level but we allow for possible con-
tagions across locations depending on effective distance. Typically, epidemiology
models characterize the transitions from one state to another with exogenously given
probabilities that refer to the characteristics of the particular infection. Here, instead,
we assume that transition probabilities depend on two factors, one exogenous that cap-
tures the characteristics of the infection, and an endogenous geographic component
that captures how more economically active locations can be more prone to infections
since they have more connections with the rest of locations.

People that work face-to-face, people that work telematically, and people that do
not work have different probabilities of catching the disease due to their different
number of encounters with other people. Additionally, individuals that have recovered
from the disease or have been vaccinated can have a lower probability of becoming
infected. We assume that all the infected, regardless of whether they are in hospital or
not, are able to pass the disease to workers.

We consider two scenarios where people can become infected. Firstly, infection
transmission can occur locally, between residents of a given region, through non-
work-related social interactions, (e.g., visiting relatives, walking in public spaces,
or when final consumers purchase goods). Secondly, the virus can be transmitted
through work-related activities, which we refer to as the geographic component.
This includes interactions such as workers in a factory producing output, interactions
between workers from different firms or locations, and interactions between work-
ers and final consumers. Within this second component, consistent with the evidence
reviewed in Sect. 2, the movement of goods and services within and between regions
represents an important vector for the transmission of the disease because some degree
of human interaction always occurs during those transactions. For example, this can
happen when infected tourists come into contact with service providers or via infected
truck drivers who transport goods.10

Hence, the dynamics for infected people can be written as:

I ′
g = (1 − ϕ)Ig︸ ︷︷ ︸

Infected not becoming resolving

+ Sg�g; (45)

where the term �g is given by

�g = (1 − κ)ρg
Ig
Ng︸ ︷︷ ︸

Social Component

+ κ

(
G∑

i=1

ρi
Ii
Ni

�i X̃ig

)

︸ ︷︷ ︸
Geographic Component

; (46)

10 We assume that the geographic component only operates while working. This can be seen as a restrictive
assumption, as tourists, for example, can also spread the disease while walking in the streets. For simplic-
ity, we abstract from these considerations. As a result, the contribution of the trade component may be
underestimated.
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the coefficient ϕ gives the fraction of infected that become resolving every period; κ

captures the proportion of infections that arise in work-related contexts and is time-
invariant. The time-varying probability ρg provides the likelihood that a susceptible
individual contract the disease upon encountering an infected person. We allow this
parameter to be affected by local policies and local behaviors. Parameter �i controls
for the degree of telematic work in region i , which reduces contact among people at the
workplace. Finally, X̃ig represents the relative level of bilateral transactions between
i and g.

We assume that this relative level of bilateral transactions between two regions is
given by:

X̃ig =
∑J

j=1

(
x j
ig + x j

gi + X j
ig + X j

gi

)

∑G
h=1

∑J
k=1

(
xkhg + xkgh + Xk

hg + Xk
gh

) (47)

Equation (47) aims to capture the level of market-related human interactions between
two economies i and g as a function of bilateral imports and exports when two different
locations trade, or as a function of the local expenditure volumes if market activity is
fully local.11

Therefore, according to motion Eq. (45), the number of infected people tomor-
row depends on infected people today net of those that become resolving cases.
The equation also considers that the susceptible can catch the disease. As expres-
sion (46) specifies, this can occur through the social and the geographic components.
The strength of the social component in region g depends on the weight of non-work-
related interactions (1 − κ), the relative prevalence of the disease (Ig/Ng), and the
contagion probability (ρg), all of them referred to region g. However, the strength of
the geographic component depends on variables related to the trade partner i . Here, we
are assuming that the probability of disease transmission is primarily determined by
the policies that affect the infected individual and her habits. Specifically, the strength
of the geographic component depends on the proportion of work-related infections,
disease prevalence, the contagion probability, the degree of telematic work (�i ) in
region i , and on the relative level of bilateral transactions between i and g (X̃ig).12

The following equations, along with Eq. (45), describe the full epidemiological
model:

S′
g = (1 − λg − �g)Sg + αV Vg + αCCg (48a)

V ′
g = (1 − αV )Vg + λgSg (48b)

R′
g = ϕ Ig + (1 − ξ)Rg (48c)

C ′
g = (1 − αC )Cg + (1 − δ)ξ Rg (48d)

11 It can be shown that the basic reproduction number of the disease, R0, increases in our setup with the
level of trade integration between two regions, represented by X̃ig ; see Appendix A for the details. The
basic reproduction numberR0 represents the average number of secondary infections produced by a typical
case of infection in a population where everyone is susceptible.
12 To better realize that κ and X̃ig serve as weighting factors, notice that if, for example, ρi = ρ, Ii /Ni =
I/N and �i = 1 for all i , then Eq. (46) implies that �g = ρ I/N .
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F ′
g = Fg + δξ Rg (48e)

N ′
g = Ng − δξ Rg (48f)

Parameter λg provides the fraction of the susceptible that are vaccinated during the
period in location g; αc and αv are the fractions of the recovered and the vaccinated
that fully lose immunity, respectively; the parameter ξ reflects the fraction of cases
that resolve in a given period, and therefore, its inverse pins down the average number
of periods it takes for a case to resolve; and ϕ relates to the average number of days
(given by 1/ϕ) a person is infectious.

Equation (48a) says that the size of the susceptible population decreases with the
fraction λg that receives the vaccine and the fraction �g that gets infected by the
COVID-19 virus, but rises with the recovered and vaccinated that lose their immunity.
The vaccinated population, equation (48b), increases with the fraction of the suscep-
tible that receive the vaccine and decreases with the vaccinated individuals that lose
immunity. In Eq. (48c), in turn, a fraction ϕ of infected individuals become resolving,
and a fraction ξ of cases is resolved. The number of recovered individuals, as given
by Eq. (48d), evolves in a similar way to that of the vaccinated. A fraction αc loses
their immunity and some of the resolving, among the fraction δ that survive, recover
during the period. Regarding the evolution of the stock of fatalities (Fg), according
to Eq. (48e), the new deaths come from the fraction (δξ) of resolving that resolve
and die. Finally, the evolution of the region’s population is given by Eq. (48f), which
implies that a fraction (δξ) of the resolving cases die.

5 Calibration

The main source for the calibration of the economic part of the model is Thiessen
(2020), which offers the Rhomolo-MRIO Tables for 2013 published by the European
commission. The dataset provides input–output tables for a set of 268 regions that
include 267 EU28 NUTS2-2010 areas plus the rest of the world (ROW). Nevertheless,
due to the lack of sufficiently disaggregated data for the disease variables, we need to
aggregate some locations to the NUTS1 and country levels. After doing so, we are left
with 230 regions (see Table 1). The numbers are disaggregated into ten main sectors
of activity belonging to the NACE Rev2 classification (see Table 4). A summary
of the data sources employed for the calibration of both the economic and disease
parameters—and in some cases their values—are provided in Table 5.

From Thiessen (2020), we compute α
j
g , that is, the shares of the different sectors

in total consumption expenditure in each location. The same dataset allows deriving
estimates of the share of value added on gross output, γ j

g , and the expenditure share
of each material employed in the input composite of the intermediate good produced
by other industries, γ k j

g .13 Table 6 provides a summary of the calibrated parameters.
The sector-specific shape parameters θ j and � j of the Fréchet distributions related

to the productivity variables z jg and Z j
g , respectively, are obtained as follows. Consider

13 Due to the large number of observations, these and other parameter and variable values are not reported
in the paper. They are available from the authors upon request.
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Table 5 Death and infection data sources by country

Country Country code Number of regions Indicator* Source

Austria AT 9 Deaths AGES

Belgium BE 3 Deaths Sciensano

Bulgaria BG 1 Deaths Our World In Data

Croatia HR 1 Deaths Our World In Data

Cyprus CY 1 Deaths Our World In Data

Czech Republic CZ 8 Deaths Ministry of Health

Denmark DK 5 Infections Statens Serum Institut

Estonia EE 1 Deaths Our World In Data

Finland FI 5 Deaths Helsing Sanomat

France FR 22 Deaths Government Statistical Office

Germany DE 38 Deaths Robert Koch Institute

Greece EL 13 Infections Ministry of Health

Hungary HU 1 Deaths Our World In Data

Ireland IE 1 Deaths Our World In Data

Italy IT 21 Deaths Dipartimento della Protezion Civile

Latvia LV 1 Deaths Our World In Data

Lithuania LT 1 Deaths Our World In Data

Luxembourg LU 1 Deaths Our World In Data

Malta MT 1 Deaths Our World In Data

Netherlands NL 1 Deaths Our World In Data

Poland PL 16 Deaths Government of Poland

Portugal PT 7 Deaths Ministry of Health

Rest of the World ROW 1 Infections Our World In Data

Romania RO 2 Deaths Our World In Data

Slovakia SK 4 Infections Radovan Ondas**

Slovenia SI 2 Deaths COVID-19 Sledilnik

Spain ES 19 Deaths Narrativa Tracking

Sweden SE 8 Deaths Public Health Agency of Sweden

United Kingdom UK 37 Infections National Health Service

*Population numbers at the time when the pandemic started come from the same sources
**Radovan Ondas independently compiled a machine readable dataset from the reports published by the
National Health Information Centre. The data are accessible in his GitHub Repository: https://github.com/
radoondas/covid-19-slovakia/

two regions, i and g, and the bilateral trade expenditures between them, x j
gi , x

j
ig , X

j
gi ,

and X j
ig . Recall that expenditure shares π

j
gi = x j

gi/x
j
g and �

j
gi = X j

gi/X
j
g are given

in equilibrium by Eqs. (26) and (27), respectively. These expressions imply that we
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Table 6 Calibration summary

Parameter Source Value | Description

α
j
g Thissen et al. (2019) Share of sector j in total

consumption expenditure in
location g

γ
j
g Thissen et al. (2019) Share of value added in gross

output

γ
k j
g Thissen et al. (2019) Input–output coefficients

θ j , � j Thissen et al. (2019) and Persyn et al. (2020) Gravity equation estimation

�g Dingel and Neiman (2020) Estimated using data on who can
work from home and trade
shares

κ Eichenbaum et al. (2021) 0.17 | Average infection rate
related to work

φ Fernández-Villaverde and Jones (2022) 0.125 | Average infections per
period. Then 1/φ = 8 days

ξ Fernández-Villaverde and Jones (2022) 0.143 | Average number of days
to resolve. Then, 1/ξ = 7 days

δ Fernández-Villaverde and Jones (2022) 0.01 | Average fatality rate

λg Direct data on vaccinations Estimated by regions

αV Several sources 0.159 | Evidence on vaccine
effectiveness

αC Several sources 0.168 | Evidence on reinfection
rates

ρg Fernández-Villaverde and Jones (2022) Time varying infection rate
calibrated as a residual using
the model

can write:

x j
gi x

j
ig

x j
gg x j

ii

=
⎛

⎝κ
j
giκ

j
ig

κ
j
ggκ

j
i i

⎞

⎠
−θ j

(49)

and

X j
gi X

j
ig

X j
gg X j

ii

=
⎛

⎝K j
gi K

j
ig

K j
ggK

j
ii

⎞

⎠
−θ j

. (50)

Equations (49) and (50) provide gravity equations for intermediate and final prod-
ucts, respectively. They present bilateral trade expenditures as a function of bilateral
trade costs. Equations (20) and (21) indicate that trade costs are composed of tariffs
and iceberg costs. We assume, only for the purpose of estimating the trade shares,

that d j
gi = d

j
gi = vgi e

μ
j
g+η

j
i +ε

j
gi , where vgi = vig represents symmetric bilateral
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trade costs like distance (geographical, language, etc.) or belonging to a certain trade
agreement;μ j

g and η
j
i capture sector-specific fixed effects in the importer and exporter

regions, respectively, and ε
j
gi is a random disturbance. Substituting those expressions

for trade costs into (49) and (50), equalizing tariffs to zero and taking logs, we obtain:

ln

⎛

⎝ x j
gi x

j
ig

x j
gg x j

ii

⎞

⎠ = −θ j ln

(
vgivig

vggvi i

)
+ ε̃

j
gi (51)

and

ln

⎛

⎝ X j
gi X

j
ig

X j
gg X j

ii

⎞

⎠ = −� j ln

(
vgivig

vggvi i

)
+ ε̃

j
gi ; (52)

where ε̃
j
gi = ε

j
gi + ε

j
ig − ε

j
gg − ε

j
i i . Hence, all asymmetric components of the iceberg

costs (μ j
g , μ

j
i , η

j
g and η

j
i ) have cancelled out. Additionally, we have equalized tariffs

to zero because, in the estimation, we use data on export spending for the EU28 in
2013 from Thiessen (2020) but exclude the flows from and to the rest of the world.
Since trade among EU members is not subject to tariffs or other trade restrictions, we
can get rid of tariffs.

As a proxy for the symmetric component of the bilateral trade costs, we employ
distance between regions obtained from Persyn et al. (2020). This dataset gives esti-
mates of different distance measures between EU regions at the NUTS2 level. We
choose the distance measure that provides arithmetic averages over the geodesic dis-
tance between many centroids for each region pair. Each region has more than one
centroid and then vgg > 1. In the estimation, we use data on expenditure variables

(x j
gi and X j

gi ) from the original 267 European regions considered in Thiessen (2020)
to maximize the amount of information.

To obtain the trade elasticities (−θ j and −� j ), we estimate (51) and (52) for each
sector j separately. The results of their OLS estimation are presented in Table 7, which
provides the estimated coefficients along with their robust standard errors. We observe
similar estimates for intermediate and final products, ranging from 1.99 to 3.09 for
intermediate goods and from 1.94 to 3.09 for final products. Although small, the
difference between coefficients of different sectors are often statistically significant.
The smallest elasticity corresponds to construction (sector C), and the largest to public
administration, defense, education, human health and social work activities (sectors
O_Q). These estimates are smaller than the ones found by Caliendo and Parro (2015),
who obtain values between 0.37 and 51.08, with an aggregate trade elasticity of 4.55.

We now turn to the parameters that govern the disease dynamics. We calibrate
�g using the estimates from Dingel and Neiman (2020). In particular, we estimate
the percentage of workers in each sector who can work from home � j , and then we
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Table 7 Sector-specific shape
parameters of the Fréchet
distributions

Sectors Intermediates Finals

A 2.778 2.775

(0.005) (0.005)

B_E 2.813 2.804

(0.004) (0.004)

C 1.993 1.943

(0.003) (0.003)

F 3.082 3.082

(0.004) (0.004)

G_I 2.718 2.742

(0.004) (0.004)

J 2.724 2.660

(0.004) (0.004)

K_L 2.944 2.944

(0.004) (0.004)

M_N 2.815 2.830

(0.004) (0.004)

O_Q 3.090 3.090

(0.004) (0.004)

R_U 3.026 3.023

(0.004) (0.004)

Robust standard errors in parentheses

compute �g for each region as

�g = 1 −
∑

j∈J

� j
x j
g + X j

g∑
k∈J x

k
g + Xk

g

which is a weighted average where the weights are sectoral expenditure shares. This
takes into account the sectoral composition of each region.

Parameter κ is obtained from Eichenbaum et al. (2021), where it is estimated that
17%of infections are related towork environments.We takeϕ, ξ and δ fromFernández-
Villaverde and Jones (2022). Specifically, the parameter ϕ is set to 0.125, implying
that an individual is infectious for 8 days. We assign ξ a value of 0.143 so that the
average case takes 15 days to fully resolve (8 days infectious plus 7 of resolving). The
mortality rate δ is fixed at 1%.

Next, since we focus on the first wave, we equalize to zero the vaccination rate
λg and the immunization loss for vaccinated, αV . The evidence on reinfection rates
for COVID-19 is still unclear. Regarding reinfection among those not vaccinated,
Sheehan et al. (2021) estimate that the protection from getting infected ranges from
81.8–84.5%. Taking into account this evidence, we fix αC = 0.168 which implies a
protection from the infection of 83.15%.
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We recover the time-variant ρg , representing the probability that a susceptible indi-
vidual contracts the disease.14 Because some regions lack data on COVID-19 daily
deaths (see Table 5 for details), we must divide our sample in two groups. The first
group consists of areas that report daily deaths, while the second group comprises
regions that only report confirmed cases. In all cases, we eliminate the geographical
component by setting κ = 0 to be able to calibrate ρg in isolation. The main reason to
do this is that our methodology recovers current ρg based on information from future
deaths. However, the start of the pandemic across regions varies substantially in the
data. Then, if the geographic component were active in the calibration and, conse-
quently, the {ρg}Gg=1 were determined jointly, we would many times encounter a large

number of zero deaths, which would render the equation system indeterminate.15 As
will be shown later, assuming κ = 0 during calibration leads to an underestimation of
the number of daily deaths.

For those regions that report deaths, we extend the approach suggested by
Fernández-Villaverde and Jones (2022), which essentially boils down to obtaining
ρg as a residual using data on deaths only. Specifically, from the death data and
Eq. (48e), we can recover the resolving cases. Subsequently, the evolution of the
resolving (Eq. 48c) allows obtaining the infected. Finally, the motion equation for the
infected (Eq. 45) delivers ρg . This method is explained in detail in Appendix B.

However, sometimes in a region, we encounter three consecutive days with zero
reported deaths and then the method breaks down. When this occurs, we estimate a
constant infection rate ρ̄g , and assign it (i.e., ρg = ρ̄g) to the region and periods in
which it is not possible to recover it due to the consecutive zeros problem. The method
to compute ρ̄g is the following. Once we make κ = 0, ρ̄g can be obtained in isolation
from other regions. Then, we estimate ρ̄g by NLLS so as to minimize the distance of
the predicted deaths from the actual death observations.

For the regions that do not report daily deaths, we assign daily values to ρg based on
the reported number of daily infections. Initially, using Eqs. (45) and (46), we recover
a preliminary ρg for each day and region from the infection data. This preliminary ρg

serves to generate the necessary time series of predicted fatalities Fg from the systemof
Eqs. (45) to (48e). Once we have the estimated deaths, we follow themethod described
in Appendix B to obtain the final ρg values to be used during the simulations.

To initiate the simulations, we need initial values. Tables 8 and 9 provides some
of these initial values for different economic- and disease-related variables, respec-
tively. The population size Ng at the begining of the pandemic in each region comes
from the same sources as deaths (see Table 5). However, for consistency with the
input–output data, the rest of numbers are extracted from the year 2013. We pick the
expenditure shares of intermediate goods (π j

gi ) and final products (� j
gi ) by sector,

origin and destination from Thiessen (2020). The number of workers, Lg , is obtained
from different sources. In particular, for the EU28, we take employment by NUTS2

14 For the calibration of the disease parameters and initial values, ROW was assumed to be composed by
China, the USA, and Switzerland. This means that for both the EU27 and the UK, we consider at least 70%
of the trade volumes with other areas.
15 This problem could be partially solved through singular value decomposition and applying a least-
squares method. However, the gap between predicted and actual deaths was always significantly worse
when using this alternative procedure.
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Fig. 1 Population density across regions

regions from regional labor statistics by Eurostat. For ROW, we extract the number of
persons engaged from Penn World Tables, 10.0 (Feenstra et al. 2015). To get a better
idea of the differences in population size and employment levels, Figs. 1 and 2 show
population density and the employment-to-population ratio, respectively, across the
regions considered.

Wages, wg , are calculated as total compensation of employees divided by the
employment figures. Total compensation of employees for the EU27 group (EU28
minus the United Kingdom) comes from the Eurostat regional accounts data, whereas
for the UK, we get them from the gross annual pay for all employee jobs reported
by Annual Survey of Hours and Earnings. For ROW, compensation of employees
are directly taken from Thiessen (2020). Lump-sum taxes τg are calibrated so as to

reproduce the observed total expenditures on final products by region and sector (X j
g)

provided by Thiessen (2020). Figures3 and 4 show the distribution of wages and the
share of non-telematic workers, respectively, across the regions considered.

Subsidies for intermediate goods (s jg ) and final good products/materials (s jg) are
equalized to zero. Bilateral ad valorem tariffs for intermediate and final goods, denoted
by τ

j
gi and T j

gi , respectively, are zero among EU members. The only tariffs different
from zero are those related to ROW. We assign values to the different industries using
information from Eurostat (2017) on average import tariffs imposed by the EU28 to
other countries in 2013 and WITS - UNCTAD TRAINS information.

Finally, since the mechanism we emphasize involves trade through the transporta-
tion of goods and tourism, it is essential to account for the anti-COVID-19 policies
that restricted the movement of people (i.e., mobility restrictions). As we show in
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Fig. 2 Employment to population ratio

Fig. 3 Wages
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Fig. 4 Share of non-telematic workers

Sect. 6.1, the parameter ρg already reflects the impact of anti-COVID policies. How-
ever, we calibrate ρg excluding the geographic component. As a result, ρg primarily
captures the effect of anti-COVID policies on the social component. To more com-
prehensively account for the influence of mobility restrictions via the geographic
component, we consider their impact on the amount of labor available for production,
sectoral consumption expenditure shares, and trade costs.

Figures 5 and 6 plot the internal and international restrictions to the movement of
people, respectively, imposed by the countries in our sample during the first wave
of the COVID-19 pandemic. These data are sourced from Hale et al. (2021)—the
Oxford COVID-19 Government Response Tracker (OxCGRT). Hale et al. (2021)
classifies the restrictions on internal movement within countries in three categories:
(a1) no measures; (a2) recommended not to travel between regions; and (a3) internal
movement restrictions in place. In our analysis, we consider internal movement of
people to be restricted in a certain location on a particular day if its national government
implemented either (a2) or (a3).

Importantly, internal mobility restrictions were closely linked to productive lock-
downs because the affected economic activities were those that heavily relied on
physical presence and the transportation of goods and people. Consequently, we will
use these two terms interchangeably. Moreover, we will assume that when internal
mobility restrictions are in place, the sectors impacted by productive lockdown are
shut down and cannot sell their products.

In turn, Hale et al. (2021) classifies restrictions on international movement into five
categories: (b1) no restrictions; (b2) screening arrivals; (b3) quarantine arrivals from
some/all origins; (b4) ban arrivals from some regions; and (b5) ban on all regions or
total border closure. We consider international movement restrictions to be in effect
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Fig. 5 Internal movement restrictions

Fig. 6 International movement restrictions
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for a country on a particular day when either (b3), (b4) or (b5) is implemented. Under
these conditions, consumers and firms from foreign countries are unable to purchase
domestic products from sectors disrupted by productive lockdowns.

Figures 5 and 6 indicate that the strength of the restrictions and their duration sig-
nificantly vary across nations. For example, regarding internal movement, Denmark
(DNK), Latvia (LVA), the Netherlands (NLD), and Sweden (SWE) never imposed
strong restrictions, while Italy (ITA) imposed severe restrictions most of the time.
Likewise, Greece (GRC), the Netherlands, Portugal (PRT), Slovenia (SVN), and Swe-
den imposed a total border closure during long periods of time, whereas Great Britain
(GBR) never imposed any ban on international arrivals.

In several countries, industries that were fully closed for significant portions of
the pandemic include hotels, restaurants, and accommodation; estate and travel agen-
cies; and leisure and recreation services. Therefore, given the level of aggregation
in our dataset, we consider that, within our industry classification, the sectors most
affected by the mobility restrictions correspond to category G_I—wholesale and retail
trade, transport, accommodation and food service activities—and category R_U—
arts, entertainment and recreation; other service activities; activities of household;
and extra-territorial organizations and bodies. These two categories represent sectors
5 and 10, respectively, in our simulations.

While sectors 5 and 10 encompass the industries most impacted by the produc-
tive lockdown, they contain as well other sectors that were less severely affected.16

Nevertheless, the fraction of workers employed by categories G_I and R_U com-
bined ranges from 0.23 to 0.37 in our sample of regions, aligning closely with the
lower and upper bounds found by Fana et al. (2020) for the share of workers most
affected by lockdown policies—in particular, those employed in mostly non-essential
and closed activities—in a set of EU and UK economies. This provides confidence
that our approach reasonably captures the proportion of the economy affected by
anti-COVID policies.

Consequently, we assume that when the internal movement of people is restricted,
labor availability, consumption expenditure shares, and trade costs are impacted.
Specifically, we set the consumption expenditure shares of sectors 5 and 10 to zero
(i.e., α5

g = α10
g = 0), reflecting consumers’ inability to purchase goods from these sec-

tors. Simultaneously, we proportionally increase the consumption expenditure shares
of other sectors so that

∑10
j=1 α

j
g = 1 continues to hold. In turn, the total labor force

available in the region on that day (Lg) is reduced by the amount allocated in our
model to sectors 5 and 10 based on intermediate goods expenditures derived from the
Rhomolo-MRIOTables for 2013, as theseworkers are sent homedue to the restrictions.

Additionally, the rich trade structure of our model allows us to account for the
effect of mobility restrictions by adjusting the bilateral trade cost parameters. When
internal movement restrictions are imposed in region g, sales from the affected sectors
in region g to all regions are not possible. To model this, we multiply parameters d j

ig

16 The impact of the productive lockdown during the pandemic varies substantially across industries and
locations. As Fana et al. (2020) argues, countries primarily regulated these lockdowns by distinguishing
between essential and not essential activities. Activities identified as essential, such as health, food, security,
education, and administrative services, generally continued to operate. In contrast, non-essential activities
faced varying degrees of closure during lockdown periods.
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Table 10 Density and initial ρg

(1) (2) (3)

Log of density 0.018*** 0.018*** 0.016***

(0.004) (0.005) (0.005)

Initial deaths 0.000 0.000

(0.000) (0.000)

Share of non-telematic workers −0.004

(0.003)

Num.Obs 210 210 210

R2 0.210 0.212 0.219

*p < 0.1, **p < 0.05, ***p < 0.01. Robust standard errors in parentheses. All regressions control for
latitude and longitude. The dependent variable is the initial ρg across regions

and d
j
ig , for j = 5, 10 and i = 1, ...,G, by a large factor of 1010 relative to their

benchmark values to sufficiently reduce trade from these two sectors in region g to
every destination i .

Similarly, to incorporate international movement restrictions into the geographic
component, we assume that when such restrictions are implemented in location g on a
particular day, the iceberg cost parameters d j

gi and d
j
gi , for j = 5, 10 and i = 1, ...,G,

are multiplied by a factor of 1010 relative to their benchmark values. This adjustement
sufficiently reduces trade from every origin i to sectors 5 and 10 in region g.

6 Results

We focus on the first wave of the COVID-19 pandemic, and more specifically, in
the period that goes from February 25 to July 15, 2020. We start by performing an
external validation exercise for the calibrated values of the parameterρg . Subsequently,
we compare the fatalities caused by the pandemic in the UK and the European Union,
and assess how well the model reproduces them. Finally, we present results from the
policy counterfactual simulations.

6.1 External validity

Parameter ρg is one of the crucial elements for our results. We argue that its variations
proxy the evolution of the anti-COVID policy. However, there are aspects that the
model does not consider and ρg might also be capturing. To understand better what
ρg is capturing, we first correlate the initial value of ρg with a potential determinant
such as differences in population density. The first column in Table 10 shows the
estimates of regressing the initial ρg with the log of the population density of the
regions after controlling for latitude and longitude. We find that the coefficient is
positive and statistically significant, which suggests that denser regions tend to have a
larger initial ρg . If we control for initial deaths (column (2) in Table 10) and the share
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Table 11 Stringency index and ρg,t

(1) (2) (3)

Containment and Health Index −0.035***

(0.011)

Average Stringency Index −0.006

(0.009)

Government Response Index −0.031**

(0.012)

Num.Obs 32518 32518 32518

R2 0.433 0.432 0.433

FE: Region X X X

FE: Country X X X

FE: Date X X X

*p < 0.1, **p < 0.05, ***p < 0.01. Newey–West standard errors in parentheses. All regressions include
region, country, and date fixed effects. The dependent variable is the calibrated ρg for each region over time.
Average Stringency Index, Containment and Health Index, and Government Response Index are obtained
from The Oxford Covid-19 Government Response Tracker (OxCGRT). The regressions use daily variation
across countries

of non-telematic workers (column (3)), the coefficient for the log of the density still
remains positive, statistically significant, and very similar in magnitude.

Secondly, we need to showwhether our calibrated ρg in fact reflects features of anti-
COVID policy differences across European regions. To do so, we regress the values of
ρg for each region and time period on three different indices that reflect anti-COVID-
19 responses. These indices are obtained from the Oxford COVID-19 Government
Response Tracker Database (Hale et al. 2021). Since policy decisions were primar-
ily made at the country level, the Oxford COVID-19 Government Response Tracker
Database only provides indicators at the national level. Thus, we regress the cali-
brated ρg for each region over time on each index, adding region, country and date
fixed effects. These fixed effects absorb unobserved constant characteristics at the
region and country level, and control for common time trends.

The three indices we consider are the containment and health index, the average
stringency index, and the government response index. The three of them capture poli-
cies that tried to prevent the spread of COVID-19, but each index captures different
aspects. The containment and health index measures policies related to containment
and closure policies and health system policies. The average stringency index contains
all measures related to containment and closure policies as well as public information
campaigns. Finally, the government response index is a composite of all aggregates
(containment and closure policies, economic policies, health system policies, and
vaccination policies).

Table 11 provides the results. The estimated coefficients are negative and statisti-
cally significant for the containment and health index, as well as for the government
response index. The average stringency index again shows the expected negative coef-
ficient, but it is not statistically significant. This could be because during the first wave
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Fig. 7 Total daily deaths in the EU27 and the UK

of the pandemic, most of the policies implemented were related to containment and
closure, which receive less weight in an average index that includes multiple other
policies.

Taken together, these results suggest that ρg indeed reflects anti-COVID policy
responses across European regions. In the following subsection, we will assess how
well the calibrated ρg reproduces the fatality data.

6.2 The COVID-19 fatalities

Figure 7 provides the total daily number of deaths in the European Union (EU27) and
in the UK. This number, in our smoothed time series, reached a maximum value of
2,867 in the EU27 on April 4, and 887 in the UK on April 11. That is, the pandemic
in the UK evolved with a one-week lag compared to the European Union.

Nevertheless, even if the level of death events were larger in continental Europe,
the incidence of the disease was actually larger in the UK. We can observe this fact
in Fig. 8, which reports the number of deaths per 100,000 inhabitants. In the UK, this
ratio reached 1.25, whereas in the EU27, its maximum was a bit less than half that
number; in particular, it was 0.61. The map in Fig. 9 shows the cumulative deaths
per 100,000 inhabitants up to July 15 by regions. This map shows that most of the
regions in the UK were in the fourth or fifth quintiles of the death distribution, similar
to northern Italy, and northern Spain.

Figure 10 presents the average value of the parameter ρg across NUTS2 regions.
It is important to remember that this parameter is calibrated as a residual, meaning
that its values reflect both the disease ecology and the impact of pandemic-fighting
policies. From Fig. 10, we can observe that the probability of infection reached higher
values in the UK than in the European Union. The maximum, in particular, was 0.20
on March 21 for the former economy and 0.14 on March 22 for the latter. However,
we can also see that the reduction was faster and deeper in the UK than in the EU27.
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Fig. 8 Daily deaths per 100,000 inhabitants in the EU27 and the UK

Fig. 9 Cumulative deaths per 100,000 inhabitants across regions (July 15, 2020)

Consequently, policies seem to have been more successful in the UK, maintaining
after April 16 a gap in favor of the UK of about 2 percentage points.

Let us now have amore disaggregated view of theUKdeath data. Figure11 plots the
number of deaths in each of the 37 NUTS2 regions in the UK. The largest number of
daily cases was achieved in Inner London-East (UKI2), Greater Manchester (UKD3)
and West Midlands (UKG3) with 118, 64 and 57 deaths in one day, respectively.
The lowest daily numbers, on the other hand, took place in North Eastern Scotland
(UKM5), Highlands and Islands (UKM6) and Northern Ireland (UKN0) with 3, 3 and
4 cases, respectively.
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Fig. 10 Average daily ρg in the EU27 and the UK

Even though the number of deaths and their relative magnitude per 100,000 inhab-
itants show a high correlation of 0.561, they do not correlate perfectly. In the second
column of results in Table 12, we see that the largest volumes of deaths per 100,000
inhabitants are found in Greater Manchester (UKD3), Cheshire (UKD6), Trees Val-
ley and Durham (UKC1) and West Midlands (UKG3), with rates equal to 93, 90, 87
and 87, respectively. Conversely, the lowest rates are observed in Northern Ireland
(UKNO), Dorset and Somerset (UKK2) and Devon (UKK4), where these rates were
6, 19 and 22, respectively.

Finally in this subsection, we analyze how well the model matches the fatality data.
Figure12 shows that the model predictions in the benchmark scenario follow well
the aggregate trend and its changes in the UK and the European Union. Nevertheless,
they tend to underestimate the number of deaths. Comparing columns one and three
in Table 12, we can see that this results in an error in the predicted total number of
deaths of 20.9% and 23.4% for the European Union and the UK, respectively. This
is partly due to the method followed to calibrate the parameter ρg , which does not
consider the geographic component of the infection (see Appendix B for details).

Looking now across regions, Fig. 13 shows the distribution of predicted deaths,
which can be compared to the actual distribution shown in Fig. 9. Overall, the model
fit is good.

6.3 Policy counterfactuals

Our next task is assessing how anti-COVID policy has influenced the number of
lives saved. Firstly, we ask: what would have been the cost for the economy in terms
of deaths if no policy had been implemented? Secondly, we assess the importance
of the geographic component, and the policy cross-effects between the UK and the
European Union that it generates. Thirdly, we ask: how many lives could have been
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Fig. 11 Total daily deaths in the UK NUTS2 regions
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Fig. 12 Daily deaths: data versus predictions

Fig. 13 Predicted deaths

saved if all regions had enjoyed the disease ecology and policies implemented in the
most successful areas?

6.3.1 No-policy scenario

In our model, the implemented policy measures are represented by the evolution of
the parameter ρg and the adjustments to α

j
g , Lg , d

j
ig and d

j
ig in response to mobility

restrictions. Unlike α
j
g , Lg , d

j
ig and d

j
ig , determining the value of ρg in the absence of
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policy measures is not immediate. At the regional level, the parameter ρg reaches it
largest values at the beginning of the infection in the corresponding area, and then goes
down due to the policy actions implemented.17 However, in general, governments did
not react immediately to the first COVID-19 infection cases. The average reaction time
varied from a few days to a couple of weeks. Therefore, in order to assess how many
additional deaths would have occurred if no policy had been implemented, we keep
the parameter ρg constant at its average over the first ten days during which region g
reports fatalities. This approach should provide a value of ρg not significantly affected
by anti-COVID policy. Additionally, averaging over 10 days reduces concerns about
measurement error.

We assess the impact of changes in ρg and the adjustments due to the mobility
restrictions through two separate exercises. Table 12 in the columns labeled as “Pre-
dicted deaths, no restrictions” presents the results of eliminating the adjustments to
α
j
g , Lg , d

j
ig and d

j
ig , while maintaining the calibrated evolution of ρg . We see that, in

this scenario, due to changes in trade patterns, deaths in the EU would have totaled
107,111 instead of the predicted 105,801, and 30,571 instead of 30,571 in the UK, rep-
resenting an increase of 1.2% and 0.2%, respectively. These figures translate to lives
saved of 0.06 and 0.07 per 100,000 inhabitants in the EU27 and the UK, respectively,
which are relatively low numbers.

In turn, the columns labeled “Predicted deaths with ρ constant” in Table 12 present
the results when ρg remains unchanged, while α

j
g , Lg , d

j
ig and d

j
ig are adjusted to

account for mobility restrictions. Without the policy response of ρg , deaths would
have totaled 4,519,392 in the EU and 1,244,497 in the UK, representing an increase
of 4,172% and 3,978%, respectively, compared to their benchmark values. In terms of
the lives saved per 100,000 inhabitants, the average for the EU27 and the UK equals
202 and 1718, respectively. The impact is now substantial and notably stronger for the
UK.

These findings suggest that the primary effect of policy operated through the social
component. The impact of mobility restriction onworkplace infection, captured by the
geographic component, seems to be relatively minor.18 Therefore, in the remaining
policy counterfactuals, we will focus exclusively on the effects of changes in ρ.

Figure 14 shows the distribution of predicted deaths across NUTS2 regions when
ρg remains constant, which can be compared to Fig. 13. We see that the effect is not
homogeneous across Europe. For example, some regions in southern Italy and near
Madrid in Spain move to upper quintiles of the distribution, whereas most regions
surrounding Paris and in southern Sweden move to lower quintiles. This highlights
that if anti-COVID policies had not been implemented, the distribution of disease
incidence across European regions would have been very different.

Going back to Table 12, there is a relatively high correlation of 0.667 between the
number of deaths in the data and the lives saved by policies across NUTS2 regions. For
example, focusing on theUK, the largest effect is found inBerkshire, Buckinghamshire

17 Recall that Fig. 10 depicts average values of the parameter ρg across NUTS2 regions. Its continuous rise
over the first month is a consequence of a sequence of additional regions being affected by the pandemic.
18 While its impact on policy seems limited, Sect. 6.3.2 demonstrates that the geographic component made
a substantial contribution to the overall spread of the pandemic.
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Fig. 14 Predicted deaths with ρg constant

and Oxfordshire (UKJ1) where 2652 lives per 100,000 inhabitants were saved by the
policymeasures. Other areas wheremore than 2000 lives per 100,000 inhabitants were
saved include Cheshire (UKD6), Derbyshire and Nottinghamshire (UKF1), Greater
Manchester (UKD3), Inner London-East (UKI2), West Midlands (UKG3) and Essex
(UKH3). The smallest impact, in turn, is found in Lincolnshire (UKF3), North Eastern
Scotland (UKM5) and Dorset and Somerset (UKK2), where the lives saved are 836,
845 and 892 per 100,000 inhabitants, respectively.

6.3.2 Trade and policy cross-effects

In this paper, we are particularly interested in measuring the impact of economic links
on the pandemic. Let us start by examining the weight of trade with different locations
in each of theUK regions. Table 13 indicates that the largest share in trade is UK based,
with intra-region and cross-UK-region trade accounting for between 83.0% and 96.2%
of total trade. The dominance of either intra-region or inter-region trade varies widely
across regions. For example, Cheshire (UKD6) shows the largest reliance on domestic
trade, with 59.6% occurring within the region and 25.4%with flows to other UK areas.
In contrast, Lincolnshire (UKF3) relies less on intra-region flows, with only 28.7%,
while its inter-regional trade with the rest of the UK accounts for 66.1% of total trade.

Trade flows with the European Union also vary significantly across UK regions.
Inner London-East and West (UKI1 and UKI2) show the largest shares of 7.6% and
7.9%, respectively, while Eastern Scotland (UKM2) has the lowest share at 3.2%.

These results suggest that trade across regions may have had an important effect on
the spread of the disease. A first assessment of this hypothesis is provided by the fourth
column of results in Table 12. It gives the percentage contribution of the Geographic

123



SERIEs

Ta
bl
e
13

In
tr
a-

an
d
in
te
r-
re
gi
on

al
tr
ad
e
fo
r
th
e
U
K
N
U
T
S2

re
gi
on

s

R
eg
io
n
co
de

R
eg
io
n
na
m
e

D
om

es
tic

R
es
to

f
U
K

E
U
27

R
O
W

U
K
C
1

Te
es

V
al
le
y
an
d
D
ur
ha
m

0.
30

8
0.
60

5
0.
06

8
0.
01

9

U
K
C
2

N
or
th
um

be
rl
an
d
an
d
Ty

ne
an
d
W
ea
r

0.
37

6
0.
53

4
0.
07

7
0.
01

4

U
K
D
1

C
um

br
ia

0.
35

6
0.
57

9
0.
06

0
0.
00

5

U
K
D
3

G
re
at
er

M
an
ch
es
te
r

0.
40
8

0.
53
5

0.
04
4

0.
01
3

U
K
D
4

L
an
ca
sh
ir
e

0.
30

5
0.
63

8
0.
05

0
0.
00

7

U
K
D
6

C
he
sh
ir
e

0.
59

6
0.
25

4
0.
04

3
0.
10

7

U
K
D
7

M
er
se
ys
id
e

0.
56

2
0.
33

9
0.
06

1
0.
03

8

U
K
E
1

E
as
tY

or
ks
hi
re

an
d
N
or
th
er
n
L
in
co
ln
sh
ir
e

0.
38

0
0.
56

5
0.
04

9
0.
00

6

U
K
E
2

N
or
th

Y
or
ks
hi
re

0.
34

7
0.
60

4
0.
04

2
0.
00

6

U
K
E
3

So
ut
h
Y
or
ks
hi
re

0.
30

8
0.
61

7
0.
07

1
0.
00

4

U
K
E
4

W
es
tY

or
ks
hi
re

0.
38

2
0.
55

9
0.
05

1
0.
00

7

U
K
F1

D
er
by

sh
ir
e
an
d
N
ot
tin

gh
am

sh
ir
e

0.
33

3
0.
61

3
0.
04

4
0.
01

1

U
K
F2

L
ei
ce
st
er
sh
ir
e,
R
ut
la
nd

an
d
N
or
th
am

pt
on

sh
ir
e

0.
39

2
0.
55

2
0.
04

7
0.
01

0

U
K
F3

L
in
co
ln
sh
ir
e

0.
28

7
0.
66

0
0.
04

7
0.
00

5

U
K
G
1

H
er
ef
or
ds
hi
re
,W

or
ce
st
er
sh
ir
e
an
d
W
ar
w
ic
ks
hi
re

0.
35
8

0.
58
8

0.
04
4

0.
01
0

U
K
G
2

Sh
ro
ps
hi
re

an
d
St
af
fo
rd
sh
ir
e

0.
34

0
0.
62

2
0.
03

4
0.
00

4

U
K
G
3

W
es
tM

id
la
nd

s
0.
38

5
0.
52

9
0.
06

1
0.
02

4

U
K
H
1

E
as
tA

ng
lia

0.
41
3

0.
50
6

0.
04
7

0.
03
4

U
K
H
2

B
ed
fo
rd
sh
ir
e
an
d
H
er
tf
or
ds
hi
re

0.
35

4
0.
54

5
0.
07

1
0.
02

9

U
K
H
3

E
ss
ex

0.
31
0

0.
59
3

0.
07
1

0.
02
6

123



SERIEs

Ta
bl
e
13

co
nt
in
ue
d

R
eg
io
n
co
de

R
eg
io
n
na
m
e

D
om

es
tic

R
es
to

f
U
K

E
U
27

R
O
W

U
K
I1

In
ne
r
L
on

do
n-
W
es
t

0.
45

2
0.
38

8
0.
07

9
0.
08

1

U
K
I2

In
ne
r
L
on

do
n-
E
as
t

0.
33

4
0.
49

7
0.
07

5
0.
09

4

U
K
J1

B
er
ks
hi
re
,B

uc
ki
ng

ha
m
sh
ir
e
an
d
O
xf
or
ds
hi
re

0.
45

1
0.
44

9
0.
06

2
0.
03

8

U
K
J2

Su
rr
ey
,E

as
ta
nd

W
es
tS

us
se
x

0.
35
7

0.
50
4

0.
07
0

0.
06
9

U
K
J3

H
am

ps
hi
re

an
d
Is
le
of

W
ig
ht

0.
42

9
0.
50

3
0.
04

0
0.
02

7

U
K
J4

K
en
t

0.
34

5
0.
56

6
0.
05

6
0.
03

3

U
K
K
1

G
lo
uc
es
te
rs
hi
re
,W

ilt
sh
ir
e
an
d
B
ri
st
ol
/B
at
h
ar
ea

0.
39
6

0.
52
9

0.
04
1

0.
03
3

U
K
K
2

D
or
se
ta
nd

So
m
er
se
t

0.
30
4

0.
63
5

0.
03
9

0.
02
2

U
K
K
3

C
or
nw

al
la
nd

Is
le
s
of

Sc
ill
y

0.
35

9
0.
58

6
0.
04

5
0.
01

0

U
K
K
4

D
ev
on

0.
34

6
0.
59

4
0.
03

8
0.
02

2

U
K
L
1

W
es
tW

al
es

an
d
T
he

V
al
le
ys

0.
30

3
0.
62

1
0.
04

6
0.
02

9

U
K
L
2

E
as
tW

al
es

0.
33

1
0.
62

7
0.
03

5
0.
00

7

U
K
M
2

E
as
te
rn

Sc
ot
la
nd

0.
40

1
0.
53

3
0.
03

2
0.
03

4

U
K
M
3

So
ut
h
W
es
te
rn

Sc
ot
la
nd

0.
43

0
0.
50

7
0.
03

2
0.
03

0

U
K
M
5

N
or
th

E
as
te
rn

Sc
ot
la
nd

0.
61

6
0.
34

3
0.
03

5
0.
00

6

U
K
M
6

H
ig
hl
an
ds

an
d
Is
la
nd

s
0.
39

8
0.
54

5
0.
04

7
0.
01

0

U
K
N
0

N
or
th
er
n
Ir
el
an
d
(U

K
)

0.
42

6
0.
49

3
0.
04

8
0.
03

3

123



SERIEs

Fig. 15 Geographic component

component in equation (46) to the generation of infected individuals, and therefore,
to the number of fatalities. Recall that the geographic component collects the impact
of all economic activity. Its weight in total deaths averages 10.0% in the European
Union and 9.6% in the UK. Across UK regions, it reaches the highest values of 19.5%
in Inner London-East (UKI2), 16.9% for Eastern Scotland (UKM2) and 16.7% for
Devon (UKK4). The smallest values are found in Kent (UKJ4) and North Eastern
Scotland (UKM5) both with 7.8%.

The distribution of the geographic component across all regions that compose our
sample can be seen in Fig. 15. The regions that seem most affected by the geographic
component are in Denmark, northern Germany, southern Italy, and southern Spain.
While these areas are not the most heavily affected by the pandemic, it is important to
note that the geographic component depends not only on trade flows, but also on the
disease-transmission probability in other areas.

One type of effect that runs fully through the geographic component is the impact
of a policy implemented in one region on the prevalence of the disease in a different
region. In the next set of experiments, we examine the policy cross-effects between
the EU27 and the UK. We first consider the impact of maintaining ρg constant in
the EU27 but allowing it to vary in the UK. As before, this constant value equals
the region-specific average over the first ten days of virus incidence. This will give
us an idea of the impact of the applied European Union anti-COVID policies on UK
prevalence. The first three columns in Table 14 provide the results of this exercise,
and Fig. 16 plots the distribution across regions.

Without the policies implemented in the EU27, Table 14 indicates that the number
of deaths in the UK would have been 83% larger. The lives saved in the UK by these
policies amount to 25,398, or 36 per 100,000 inhabitants.
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Fig. 16 Counterfactual—predicted deaths with ρg constant (EU27)

By region, Highlands and Islands (UKM6) benefited the most, with lived saved
per 100,000 inhabitants equal to 79. Following closely, Cornwall and Isles of
Scilly (UKK3), Cumbria (UKD1), Northern Ireland (UKN0), North Eastern Scot-
land (UKM5) and Lincolnshire (UKF3) each saved more than 50 lives. The areas
that benefited the least were Greater Manchester (UKD3), West Yorkshire (UKE4),
Gloucestershire,Wiltshire and Bristol/Bath area (UKK1) andWestMidlands (UKG3),
where the EU27 policies saved fewer than 25 lives. Nevertheless, as Fig. 16 shows,
the UK regions would have suffered much less compared to the EU, since most of
the regions would remain in the first or second quintiles of the distribution. However,
areas of Inner London would still remain in the third quintile of the distribution.

In our second cross-effects exercise, we focus on the opposite scenario: we assume
that ρg changes in EU27 regions but remains constant in UK regions. The last three
columns in Table 14 provides the results, and Fig. 17 plots the distribution across
regions. They imply that UK anti-COVIDmeasures saved 51,706 lives in the European
Union, which represents 2 lives per 100,000 inhabitants. As expected, the disease
would have put all regions in the UK in the upper quintiles of the distribution. Note,
however, that European capitals and highly connected regions would still fall in the
upper quintiles.

Using predictions from this last exercise, we can also analyze the impact of
the UK anti-COVID policy on UK regions. This impact is much larger than for
the EU27. Specifically, they saved a total of 1,200,188 lives or 1,694 per 100,000
inhabitants. Berkshire, Buckinghamshire and Oxfordshire (UKJ1) were the most ben-
efitted, with 2,647 lives saved per 100,000 inhabitants. It was followed by Cheshire
(UKD6), Greater Manchester (UKD3), Derbyshire and Nottinghamshire (UKF1),

123



SERIEs

Fig. 17 Counterfactual—predicted deaths with ρg constant (UK)

Inner London-East (UKI2), West Midlands (UKG3) and Essex (UKH3). All of them
with more than 2,000 lives saved by the fight against COVID-19 in the UK during
the first wave. At the bottom of this ranking, we have Lincolnshire (UKF3), North
Eastern Scotland (UKM5) and Dorset and Somerset (UKK2) with 793, 800 and 850
lives saved per 100,000 inhabitants, respectively.

Interestingly, comparing results from the last two experiments, we find that the
correlation across UK regions between the lives saved by EU27 and by UK policies
is significantly positive, equal to 0.66. The same correlation across EU27 regions is
also substantial, equal to 0.38. These positive correlations underscore the importance
of considering trade links for the effective design of infectious disease containment
policies.

6.3.3 Best performing regions

In our last counterfactual, we consider how the pandemic might have evolved if all
regions had followed the policies of the best performing regions. However, there is no
single clear metric for determining the “best performer.”One possibility is the region
that most effectively reduces the disease-transmission probability, ρg . Another is the
region that achieves the greatest reduction in the number of deaths. We will combine
these two metrics to find the best performer and impose the evolution of ρg implied
by the best performing region on all European regions. Since anti-COVID policy
measures were adjusted based on the reported number of daily deaths, with some
places removing restrictions earlier than others, we will identify the best performers
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in both the first two months of the analyzed period (days 1 to 61) and the second part
(days 62 to 142).19

We start by searching for the areas that most rapidly reduced the disease-
transmission probability, ρg , following its first maximum, which typically occurs on
the first day with reported deaths. To compute the implied decrease, we use the ratio of
the average ρg for the first 5 days of the 2-month period to the average ρg for the last
5 days, in order to decrease potential measurement errors. After that, we simulate the
model using the implied daily reductions in ρg from each of the top 10 areas identified
by this ratio. We apply the same daily rate of decline in ρg to all regions, starting from
their calibrated region-specific value in the day when deaths from COVID-19 were
first reported. Thus, the initial levels of ρg remain unchanged, and only the speed of
the decrease is altered. Finally, we calculate which reduction in ρg results in the most
lives saved.

When we focus on the first two months, Northumberland and Tyne and Wear
(UKC2), a fourth-quintile-density UK region (see Fig. 1), ranks first according to
this ratio, reducing ρg in 61 days to 11.5% of its initial value. It is followed by the
Netherlands (NL), which reduced it to 12.9% of the initial value. Within the ten best
performers, we find five UK regions, further emphasizing that the UKwas more effec-
tive in the fight against COVID that other European countries. However, within the top
10 regions, we find Oberbayern (DE21), a fourth-quintile-density region in Germany.
The evolution of ρg in Oberbayern, which decreased to 18.0% of the initial value, is
actually the one that results in the most lives saved in Europe in our simulations, thus
representing our chosen most effective region in the fight against COVID-19.

When we focus on the period from day 62 to 142, interestingly, the ten areas that
performed better in the first 61 days no longer appear among the top 10 performers.
Additionally, we find now only three UK regions in this top 10, suggesting that the
UK may have lifted restrictions too early. Nevertheless, South Yorkshire (UKE3), a
top-quintile-density UK region, is the best performer, with ρg on day 142 at 35.9%
of its value on day 62 after its peak. It is followed by Toscana (ITI1) in Italy, with a
reduction to 36.1%. South Yorkshire (UKE3) performs the best in terms of the ratio
and also the implied prevented deaths.

Therefore, we apply the daily reduction ratio implied by Oberbayern (DE21) from
day 1 to day 61 of reported deaths, and the daily reduction ratio implied by South
Yorkshire (UKE3) from day 62 to the end of the first wave, to the ρg of each European
region in our sample. Results are contained in Table 15 and Fig. 18. Table 15 indicates
that the European Union implemented the policies followed by the best performers,
and 37% of deaths could have been saved, which amount to a total of 38,883 saved
lives.20 For the UK, the percentage reduction of deaths would have been slightly
higher, a 42%, due to the larger incidence of the disease, and the total number of lives
saved would equal 12,752.

19 142 is the total number of days in our sample.
20 Under the policies implemented by the best performer, the three European regions that would have saved
the most lives are all Polish. Lódzkie (PL11), Lubelskie (PL31), and Podlaskie (PL34) would have achieved
life-saving rates exceeding 86% of the lives lost to COVID-19. These numbers, however, are not displayed
in Table 15.
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Fig. 18 Counterfactual—predicted deaths with best regions

Across UK regions, Northern Ireland (UKN0), East Yorkshire and Northern Lin-
colnshire (UKE1) and North Eastern Scotland (UKM5) would have experienced
the most lives saved, with 63%, 63% and 60% fewer deaths, respectively. In con-
trast, Northumberland and Tyne and Wear (UKC2), Merseyside (UKD7) and Inner
London-East (UKI2), with reductions to 30%, 27% and 27%, respectively, would
have experienced the smallest percentage of lives saved.

7 Conclusion

Wehave built a spatial model of tradewith supply-chain links acrossNUTS2European
regions to try to understand the effect of economic links and policies in the spread of
the COVID-19 pandemic during the first wave, which goes from February 25 to July
15, 2020. We have primarily focused on this effect within the UK in comparison with
the rest of NUTS2 regions in the EU.

During that period, the incidence of the disease was larger in the UK than in the
European Union. However, we find that the efforts to reduce infection rates were more
successful in theUK than in the EuropeanUnion.More importantly, without the policy
reaction in Europe, the number of deaths during the first wave of the pandemic would
have been about 4,410,000 larger in the European Union and about 1,210,000 higher
in the UK.

In terms of the lives saved per 100,000 inhabitants, the average for the EU27 and
the UK equals 201 and 1,713, respectively. On average, the largest gains were in
areas where the volume of deaths was higher, like Berkshire, Buckinghamshire and
Oxfordshire, Cheshire, Greater Manchester, Inner London-East, West Midlands and
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Essex. However, these regions still remain in the upper quintiles of the distribution of
deaths.

Our analysis reveals that, on average, the percentage contribution of the geographic
component, which reflects the impact of economic activity, accounts for 10% of
COVID-19 fatalities. Hence, while social interaction represents the primary chan-
nel through which policy impacted disease transmission, the importance of economic
activity on the deaths caused by the pandemic is also significant. This channel is partic-
ularly important for regions with substantial economic interactions with other regions,
even if they do not have high internal infection rates.

Another interesting finding we report is that the number of deaths in the UK in the
absence of anti-COVID-19 measures in the European Union would have been 83%
larger; specifically, they saved about 36 lives per 100,000 inhabitants in the UK. In
turn, UK anti-COVID-19 measures saved 51,706 lives in the European Union, which
represents 2 lives per 100,000 inhabitants. This asymmetric difference is in part due
to the asymmetric trade intensity across regions.

Finally, we have identified Oberbayern in Germany as the single most effective
region in the fight against COVID-19 during the first two months after deaths due to
COVID were reported. However, due to policy adjustments that occurred throughout
the pandemic, South Yorkshire in the UK was the most effective region at keeping
the disease-transmission probability low and further reducing it after these initial two
months. Furthermore, if all European regions had applied the anti-COVID policies
implemented by these two best performers, 37% of deaths could have been prevented
in the European Union and 42% in the UK, amounting to a total of 51,635 fewer deaths
in Europe.

A The basic reproduction number in our SVIRCFmodel

Following Heffernan et al. (2005), we can write the equation for infected individuals
in matrix form as:

I′ = (I + F − D) I; (53)

where I is the identity matrix, I′ is the vector of infections in each location at time
t + 1, and F and D are defined as

F =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

(1−κ)ρ1
S1
N1

+κ�1ρ1 X̃11
S1
N1

··· κ�gρg X̃g1
S1
Ng

··· κ�GρG X̃G1
S1
NG

...
. . . ··· ···

...

κ�1ρ1 X̃1g
Sg
N1

··· (1−κ)ρg
Sg
Ng

+κ�gρg X̃gg
Sg
Ng

··· κ�GρG X̃Gg
Sg
NG

... ··· ··· . . .
...

κ�1ρ1 X̃1G
SG
N1

··· κ�gρg X̃gG
SG
Ng

··· (1−κ)ρG
SG
NG

+κ�GρG X̃GG
SG
NG

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
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D =

⎛

⎜⎜⎜⎜⎜⎜⎝

ϕ · · · 0 · · · 0
...

. . . · · · . . .
...

0 · · · ϕ · · · 0
...

. . . · · · . . .
...

0 · · · 0 · · · ϕ

⎞

⎟⎟⎟⎟⎟⎟⎠

For the two region case, these matrices are given by

F =
(

(1−κ)ρ1
S1
N1

+κ�1ρ1 X̃11
S1
N1

κ�2ρ2 X̃21
S1
N2

κ�1ρ1 X̃12
S2
N1

(1−κ)ρ2
S2
N2

+κ�2ρ2 X̃22
S2
N2

)

D =
(

ϕ 0
0 ϕ

)

Let us focus on the simplest case of two regions for which the components of X̃gi

do not change over time, neither the parameters regarding the disease ecology. In
addition, assume that Sm,t = Nm,t , and there is no vaccine available. Then, we have
that the basic reproduction number R0 is given by the largest eigenvalue of matrix
B = FD−1. Matrix B is given by

B =

⎛

⎜⎜⎝

X̃11κρ1�1 + ρ1 (1 − κ)

ϕ

X̃21κρ2�2

ϕ

X̃12κρ1�1

ϕ

X̃22κρ2�2 + ρ2 (1 − κ)

ϕ
.

⎞

⎟⎟⎠

Furthermore, let us assume that ρ1 = ρ2 = ρ and �1 = �2 = �,21 then the basic
reproduction number is given by

R0 =
κρ�

√
X̃2
11 − 2X̃11 X̃22 + 4X̃12 X̃21 + X̃2

22

2ϕ
+

ρ
(
X̃11κ� + X̃22κ� − 2κ + 2

)

2ϕ

which increases with trade integration, since the partial derivatives are increasing in
the trade share with the opposite region.

∂R0

∂ X̃12
= κρ�X̃21

ϕ

√
X̃2
11 − 2X̃11 X̃22 + 4X̃12 X̃21 + X̃2

22

> 0

∂R0

∂ X̃21
= κρ�X̃12

ϕ

√
X̃2
11 − 2X̃11 X̃22 + 4X̃12 X̃21 + X̃2

22

> 0

21 Allowing for different ρ and � across regions does not change the result of ∂R0/∂ X̃12 and ∂R0/∂ X̃21
are positive. However, the expression for the basic reproduction number is substantially more involved.
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B Parameters for the evolution of the disease

In order to calibrate {ρgt }Gg=1, we follow the method in Fernández-Villaverde and
Jones (2022) and recover the parameter from deaths numbers. In addition, to ame-
liorate possible mismeasurement problems, like for example underreporting during
weekends, we first smooth those daily deaths series using a moving average of seven
days and then a Hodrick–Prescott filter with smoothing parameter 850.

This calibration method is applied to our case as follows. Let us add a time index (t)
to the different variables for mathematical convenience. Additionally, let us take the
convention that Zt provides the value of an arbitrary variable Z at the end of period t ,
and that �Zt+1 = Zt+1 − Zt .22 Define also fgt+1 ≡ �Fgt+1, that is, the (smoothed)
number of people that died on day t + 1 in region g. For the initial waves of the
pandemic, in which there was no vaccine available, we assume λg = 0 for all regions.

From Eq. (48e), we can solve for Rgt in terms of daily deaths as

Rgt = fgt+1

δξ
, (54)

which then implies

�Rgt+1 = � fgt+2

δξ
. (55)

Combining Eqs. (48c) and (55), we can express infected individuals today as a
function of future daily fatalities:

Igt = 1

δϕ

(
� fgt+2

ξ
+ fgt+1

)
(56)

which implies

�Igt+1 = 1

δϕ

(
� fgt+3 − � fgt+2

ξ
+ � fgt+2

)
. (57)

Using the ratio of (57)–(56), the growth rate of the infected cases can be obtained
as:

�Igt+1

Igt
= 1/ξ(� fgt+3 − � fgt+2) + � fgt+2

1/ξ� fgt+2 + fgt+1
. (58)

22 Notice that the timing convention does not have any important implication for our previous discussion.
It would simply mean, for example, that when the susceptible is infected by the virus or vaccinated during
period t , it does not develop the disease or gets immunity until period t + 1; and that, since Lgt is then the
number of workers available at the end of period t , all the economic activity takes place at the end of each
period.
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Next, equation (45), letting Ggt (Ii t ) denote the geographic component in equation
(46), delivers

(1 − κ)ρgt + κGgt (Ii t )Ngt

Igt
= Ngt

Sgt

(
�Igt+1

Igt
+ ϕ

)
.

We can substitute (56) and (58) in previous expression to get

(1 − κ)ρgt + κGgt (Ii t )
δϕNgt(

� fgt+2
ξ

+ fgt+1

)

= Ngt

Sgt

(
1/ξ(� fgt+3 − � fgt+2) + � fgt+2

1/ξ� fgt+2 + fgt+1
+ ϕ

)
. (59)

To get an expression for the evolution of the susceptible as a function of the fatalities,
we can use (48a), (46), and (56) to obtain the law of motion for this variable as:

Sgt+1 = Sgt

{
1 − λgt − (1 − κ)

ρgt

δϕNgt

(
� fgt+2

ξ
+ fgt+1

)

+κ

(
∑

i∈G
X̃ig�iρi t

1

δϕNit

(
� fi t+2

ξ
+ fi t+1

))}
+ αCCgt + αV Vgt . (60)

Notewe also need to include the lawofmotion for vaccinated and recovered individuals
which from (48b) and substituting equation (54) into (48d) yields

Vgt+1 = (1 − αV )Vgt + λgt Sgt (61)

Cgt+1 = (1 − αC )Cgt + 1 − δ

δ
fgt+1 (62)

Finally, we need initial values for {Ig0, Sg0, Ng0}Gg=1. For the stock of fatalities,
recovered and vaccinated, this value is zero, that is, Fg0 = Cg0 = Vg0 = 0. Knowing
the number of fatalities in the next two periods, we then obtain Ig0 and Rg0 from (56)
and (54); and the number of susceptible is directly obtained from (2) taking Ngt = Ng0
for all t from the sources reported in Table 5.

In principle, knowing those numbers, and taking the daily deaths and fraction of
vaccinated { fgt , λgt }G,T

g=1,t=1 from the data, we could end up with a system of 4 × G

equations, given by (59) to (62), and 4×G unknowns, {ρgt , Sgt+1,Cgt+1, Vgt+1}Gg=1.
However, the large number of zero deaths encountered in many periods make the
system indeterminate many times when the geographical component is considered.
The solution that we have adopted to solve this problem is assuming in the calibration
of ρg that κ = 0. In this way, the system for each region simplifies and becomes
independent of other areas. Hence, for each period t ∈ [1,T] and region g ∈ [1,G],
we first recover ρgt from (59) and then {Sgt+1,Cgt+1, Vgt+1}Gg=1 from the other three
equations.
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