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José Ignacio Chacón, MD, PhD4,24; Santiago González-Santiago, MD4,25; César A. Rodrı́guez, MD4,26; Sonia Servitja, MD, PhD4,14,27 ;
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Rosaĺıa Caballero, PhD4; Ángel Guerrero-Zotano, MD, PhD4,29 ; Charles M. Perou, PhD1,3 ; and Miguel Martı́n, MD, PhD4,30

DOI https://doi.org/10.1200/PO-24-00937

ABSTRACT

PURPOSE For hormone receptor–positive/human epidermal growth factor receptor 2–
negative (HR1/HER2–) metastatic breast cancer (MBC), first-line cyclin-
dependent kinase 4/6 inhibitors (CDK4/6i) 1 endocrine therapy (ET) is the
standard of care. They are also used after progression on first-line aromatase
inhibitors (AIs), but some patients may respond better to chemotherapy-based
options. We examined tumor features associated with survival from GEICAM/
2013-02 PEARL, a phase III trial of palbociclib 1 ET versus capecitabine in AI-
resistant HR1/HER2– MBC.

METHODS For 158 and 155 patients from each arm, 878 previously published gene ex-
pression signatures were derived using RNA sequencing on pretreatment tumor
specimens, both primary and metastatic. Multivariable Cox models for
progression-free survival (PFS) and overall survival (OS) were constructed with
16 preselected signatures related to proliferation, loss of retinoblastoma, and
immune infiltration, and via Elastic Net using all signatures.

RESULTS Significant PFS difference by PAM50 intrinsic subtype was observed with
palbociclib1 ET. Comparing treatment arms, luminal A subtype trended toward
longer PFS with palbociclib 1 ET, and luminal B and nonluminal subtypes had
significantly longer PFS with capecitabine. Three B-cell (B-lymphocyte)–as-
sociated signatures correlated with shorter OS with palbociclib 1 ET. The
immune-activated Immune1 TCGA breast cancer signature had significant
treatment arm interaction for OS. Elastic Net iteratively selected B-cell–
associated signatures independently associated with shorter OS with palboci-
clib 1 ET.

CONCLUSION PAM50 intrinsic subtype predicted PFS differences between palbociclib 1 ET
and capecitabine. Lower B-cell–associated gene expression predicted longer OS
with palbociclib 1 ET versus capecitabine. These features may help identify
HR1/HER2– tumors resistant to further ET-based treatment with CDK4/6i.

INTRODUCTION

Hormone receptor–positive/human epidermal growth fac-
tor receptor 2–negative (HR1/HER2–) breast cancer com-
prises 70% of female breast cancer cases.1 It is driven
through pathways downstream of hormone receptor and is
treated primarily with a backbone of endocrine therapy (ET),

which targets signaling through hormone receptor. Selective
estrogen receptor (ER) modulators2 and degraders3,4 act
directly on the estrogen receptor, and aromatase inhibitors
(AIs)5,6 suppress estrogen production itself.

ET resistance can arise through ER loss of expression7 or
mutation,8-12 aberrant expression of downstream cell cycle
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regulators,13-18 or alternative proliferation pathways.19-21

Inhibiting cyclin-dependent kinases 4 and 6 (CDK4/6),
which regulate the G1/S transition by complexing with cyclin
D, phosphorylating retinoblastoma (Rb), and inducing re-
lease of E2F transcription factors,22 can overcome ET re-
sistance. The CDK4/6 inhibitor (CDK4/6i) palbociclib
demonstrated efficacy with ET in the first-line setting for
HR1/HER2– metastatic breast cancer (MBC) in PALOMA-1
and PALOMA-2,23-25 and in the second-line setting in
PALOMA-326,27 and SONIA.28 After progression, strategies to
continue to subvert ET resistance include switching CDK4/6i
or ET, as studied in postMONARCH29 and MAINTAIN,30 or
replacing the CDK4/6i with another adjunct such as cap-
ivasertib.31 The treatment paradigm for HR1/HER2– MBC
favors using ET-based therapy until no further ET-based
options remain, upon which the tumor is considered ET-
insensitive and chemotherapy-based treatments are
used.32,33

Not all patients benefit equally from CDK4/6i 1 ET, but
clinical variables have not correlated with response, and
molecular biomarkers are lacking.34-36 Acquired ESR1
mutation is the only established ET resistance biomarker,
but there are no predictive biomarkers for CDK4/6i. In
PALOMA-1, cyclin D1 amplification and p16 loss of het-
erozygosity failed to identify patients who benefitted most
from adding palbociclib to ET. Candidate biomarkers in-
clude intrinsic subtypes37-40; alterations to RB1,41-44 cyclin
E,37,38,43,44 CDK2,45 and CDK646; and expression of PD-139

and of genes corresponding to a T-cell–inflamed tumor
microenvironment.47

The GEICAM Spanish Breast Cancer Group conducted the
phase III PEARL clinical trial comparing palbociclib 1 ET to

single-agent capecitabine in postmenopausal women with
AI-resistant HR1/HER2– MBC.48 The primary objectives
were to compare PFS between capecitabine and palbociclib1

fulvestrant regardless of ESR1 status, and between capeci-
tabine and palbociclib 1 ET (exemestane or fulvestrant) for
patients with wild-type ESR1 on the basis of circulating
tumor DNA. Although PEARL failed to meet its primary
objectives, it demonstrated superior patient-reported out-
comes and fewer serious adverse events with palbociclib 1

ET.49,50 This trial is ideal for examining pretreatment tran-
scriptomic markers of resistance to CDK4/6i 1 ET after AI
resistance.

We herein present an analysis of tumor RNA sequencing
(RNAseq) features predictive of PFS and OS with palbociclib
1 ET versus capecitabine from the GEICAM/2013-02 PEARL
phase III trial.

METHODS

PEARL Study Design

The GEICAM/2013-02 PEARL phase III trial design (Clin-
icalTrials.gov identifier: NCT02028507) has been previously
described.37,49 601 postmenopausal womenwith AI-resistant
HR1/HER2– MBC were randomly assigned to palbociclib 1

ET (exemestane in cohort 1, fulvestrant in cohort 2) or
capecitabine. AI resistance was defined as disease recurrence
while on or within 12 months of completing adjuvant AI, or
progression while on or within 1 month of completing AI
treatment for advanced disease.

Enrollment required measurable disease per RECIST v1.1 or
at least one lytic/mixed bone lesion, Eastern Cooperative

CONTEXT

Key Objective
For metastatic hormone receptor–positive/human epidermal growth factor receptor 2–negative (HR1/HER2–) breast
cancer demonstrating endocrine therapy (ET) resistance in postmenopausal women, can tumor gene expression features
differentiate survival outcomes with subsequent treatment using a cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) 1 ET
versus cytotoxic chemotherapy?

Knowledge Generated
In a post hoc transcriptomics analysis of the GEICAM/2013-02 PEARL phase III trial, PAM50 intrinsic subtype predicted
progression-free survival differences between palbociclib 1 ET and capecitabine. Lower expression of the Immune1 TCGA
breast cancer signature—an immune-activated B-cell–associated gene expression signature—predicted longer overall
survival with palbociclib 1 ET versus capecitabine.

Relevance
For ET-resistant HR1/HER2– metastatic breast cancer, our analysis supports PAM50 intrinsic subtype and B-cell immune
microenvironment activity as predictivemarkers of response to palbociclib1 ET compared with chemotherapy, highlighting
these features as promising candidates for validation in larger studies of CDK4/6i 1 ET after ET resistance.
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Oncology Group performance status 0-1, life expectancy
of ≥12 weeks, adequate organ function, and zero to one
previous lines of chemotherapy for MBC. Patients were
excluded for previous CDK4/6i, mammalian target of
rapamycin or phosphoinositide 3-kinase inhibitor, or
capecitabine exposure; visceral crisis; or a corrected QT
(QTc) interval ≥480ms, a personal or family history of long
or short QT syndrome, Brugada syndrome, torsade de
pointes, or known QTc prolongation history.

Primary objectives were to compare PFS between treatment
arms for all patients who received palbociclib 1 fulvestrant
versus capecitabine, and for patients with wild-type ESR1
who received palbociclib 1 ET (exemestane or fulvestrant)
versus capecitabine.

The research protocol was approved by each site’s respective
institutional review board and each country’s regulatory
agency, and was conducted in accordance with Good Clinical
Practice guidelines and the Declaration of Helsinki. Patients
signed written informed consents including permission to
submit formalin-fixed paraffin-embedded (FFPE) tumor
samples for biomarker research. Samples were collected
before entry in PEARL if available, either from a metastatic
disease site or from an archival primary sample, and sources
were documented.

Gene Expression Analysis

Three hundred sixty-four FFPE tissue samples from 360
patients were sent to the UNC Lineberger Comprehensive
Cancer Center Translational Genomics Lab for DNA and RNA
isolation using the KingFisher Flex automated extraction
instrument (Thermo Fisher Scientific, Waltham, MA,
5400630) and the Applied Biosystems MagMAX FFPE
DNA/RNA Ultra Kit (Thermo Fisher Scientific A31881) fol-
lowing manufacturer protocol (Thermo Fisher Scientific
MAN0015877), allowing for sequential isolation of DNA and
RNA from the same FFPE slides using a magnetic bead–
based technology. DNA and RNA quality was analyzed using a
TapeStation 4200 (Agilent, Santa Clara, CA, G2991AA) and
quantified using a Qubit 3.0 fluorometer (Life Technologies,
Waltham, MA, Q33216). Total RNA from 361 samples was
converted to RNAseq libraries using the TruSeq Stranded
Total RNA Library Prep Kit with Ribo-Zero Gold (Illumina,
San Diego, CA), and gene expression profiles from 334 li-
braries that met sequencing criteria were generated via
RNAseq on Illumina NovaSeq 6000 S4 flow cells with 2 3

50 bp paired-end reads, with an average sequencing depth of
approximately 115 million clusters per library.

Six samples—four duplicates and two collected after
completion of study treatment—were excluded. For the
remaining 328 samples, uniquely corresponding to 328
patients, intrinsic subtypes were derived via the PAM50 pre-
dictor51 after HER2/ER subgroup-specific normalization.52,53

Single-gene expression and gene expression signatures,

derived from 108 publications54-56 and the Molecular
Signature Database57 and representing multiple biologic
pathways and cell types, were calculated from tumor
RNAseq features. Fifteen normal-like tumors were ex-
cluded, and the remaining 313—158 from the palbociclib 1

ET arm and 155 from the capecitabine arm—were included
in the final analysis (Appendix Fig A1).

Statistical Analysis

Median PFS and OS were calculated for PAM50 intrinsic
subtypes in each treatment arm using the Kaplan-Meier
method.

For gene expression signatures, univariable and multivari-
able Cox proportional hazards regression models were
constructed for PFS and OS in each treatment arm. Multi-
variable models were adjusted for site of disease, previous
sensitivity to ET (defined as disease relapse after 24 months
of adjuvant ET, or disease control—complete response,
partial response, or stable disease for at least 24weeks on the
most recent ET for advanced disease), previous chemo-
therapy for MBC, number of involved sites of disease, and—
with the exception of models for PAM50 luminal status—
were adjusted for PAM50 luminal status as well. Hazard
ratios (HRs) and 95% CIs were calculated for each model.
Association between gene expression signature and PAM50
luminal status was assessed using analysis of variance.
Significancewas defined by an adjusted P< .05 on the basis of
the Bonferroni method.

High-dimensional modeling for PFS and OS for each
treatment arm was performed with Elastic Net58 (R package
glmnet). Models were built with 10-fold cross-validation for
each survival end point using the training sets over a grid of
alpha values (0.1-0.8 by 0.1 increments) with lambda values
recommended by glmnet. The most accurate model for each
treatment and survival end point was selected using the
Harrell C-index.59

Study Approval

The research protocol for the GEICAM/2013-02 PEARL
clinical trial was approved by each site’s respective insti-
tutional review board and each country’s regulatory agency.
This study was determined not to constitute human subjects
research as defined under federal regulations (45 CFR 46.102
(e or l) and 21 CFR 56.102(c)(e)(l)) by the University of North
Carolina institutional review board (24-2632).

RESULTS

Patient Characteristics

Patient characteristics are displayed in Table 1. Of 601 pa-
tients in PEARL, 328 (54.6%) received on-study treatment
and had RNAseq derived from pretreatment tumor samples,
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and 313 (52%) were included in the final analysis (Appendix
Fig A1). Age, presence of visceral disease, metastatic stage at
the time of diagnosis (M0 or M1), previous chemotherapy
for MBC, previous ET sensitivity, and ER status were similar
to the original patient cohort and between treatment arms.
Within our patient population, 18% had de novo metastatic
disease. Seventy-six percent had previous ET sensitivity, and
26% had previous chemotherapy for MBC. More patients
receiving capecitabine had ≥two disease sites (73%) com-
pared with patients receiving palbociclib 1 ET (56%).
Seventy-six percent of tumor samples were from the pri-
mary tumor. PAM50 intrinsic subtype distribution was
similar between treatment arms and to the original study,
which derived intrinsic subtype with the Absolute Intrinsic
Molecular Subtyping classifier.49

Cox Proportional Hazards Analysis: Intrinsic Subtype

With palbociclib 1 ET, median PFS for luminal A, luminal B,
and nonluminal tumors was 11.2, 5.6, and 4.3 months, re-
spectively. Onmultivariable Cox analysis, luminal B (HR, 1.90
[95% CI, 1.28 to 2.82]; P5 .001) and nonluminal tumors (HR,
3.19 [95% CI, 1.65 to 6.16]; P < .001) were associated with
significantly worse PFS compared with luminal A tumors
(Fig 1A). With capecitabine, median PFS with luminal A,
luminal B, and nonluminal tumors was 7.9, 10.6, and
13.0 months, respectively, although these differences were
not statistically significant on multivariable Cox analysis
(Fig 1B). Intrinsic subtypewas not associatedwith significant
differences in OS for either treatment (Figs 1C and 1D). A
statistically significant treatment arm interaction for PAM50

TABLE 1. Clinical Characteristics of Patients From the GEICAM/2013-02 PEARL Trial Included in the Biomarker Analysis

Characteristic ITT (N 5 601) RNAseq Analysis (n 5 313) P Palbociclib 1 ET (n 5 158) Capecitabine (n 5 155) P

Age, years, median (IQR) — 61 (53-68) 61 (56-69) 61 (52-68) .35

Site of disease, No. (%) .57 .73

Nonvisceral 204 (34) 113 (36) 59 (37) 54 (35)

Visceral 396 (66) 200 (64) 99 (63) 101 (65)

Number of involved sites, No. (%) .05 .009

1 170 (28) 111 (35) 69 (44) 42 (27)

2 229 (38) 117 (37) 52 (33) 65 (42)

≥3 201 (34) 85 (27) 37 (23) 48 (31)

Initial M stage, No. (%) .21 .41

M0 471 (78) 257 (82) 133 (84) 124 (80)

M1 130 (22) 56 (18) 25 (16) 31 (20)

Treatment line, No. (%) .35 .77

First 139 (23) 86 (27) 41 (26) 45 (29)

Second 266 (44) 135 (43) 71 (45) 64 (41)

≥Third line 193 (32) 92 (29) 46 (29) 46 (30)

Previous chemotherapy for MBC, No. (%) .45 .68

Yes 171 (28) 81 (26) 43 (27) 38 (25)

No 430 (72) 232 (74) 115 (73) 117 (75)

Previous sensitivity to ET, No. (%) .84 .53

Yes 452 (75) 238 (76) 123 (78) 115 (74)

No 149 (25) 75 (24) 35 (22) 40 (26)

ER status,a No. (%) .04 1

Positive 589 (98) 312 (100) 157 (99) 155 (100)

Negative 12 (2.0) 1 (0.3) 1 (0.6) 0 (0)

Sample type, No. (%) — .76

Primary — 239 (76) 119 (75) 120 (77)

Metastatic — 74 (24) 39 (25) 35 (23)

Intrinsic subtype, No. (%) AIMS (n 5 455) PAM50 (n 5 313) .55 PAM50 PAM50 .52

Luminal A 232 (51) 172 (55) 86 (54) 86 (55)

Luminal B 192 (42) 122 (39) 60 (38) 62 (40)

Nonluminal 31 (6.8) 19 (6.1) 12 (7.6) 7 (4.5)

Abbreviations: AIMS, Absolute Intrinsic Molecular Subtyping; ER, estrogen receptor; ET, endocrine therapy; ITT, intention-to-treat; M stage,
metastasis stage; MBC, metastatic breast cancer; RNAseq, RNA sequencing.
aBased on local laboratory determination, ER-positive defined as ≥1% positive cells by immunohistochemistry for ER.
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FIG 1. PAM50 intrinsic subtype correlations with PFS and OS for each treatment arm. (A) Kaplan-Meier plot of PFS with
palbociclib 1 ET by PAM50 luminal status. (B) Kaplan-Meier plot of PFS with capecitabine by PAM50 luminal status. (C)
Kaplan-Meier plot of OS with palbociclib 1 ET by PAM50 luminal status. (D) Kaplan-Meier plot of OS with capecitabine by
PAM50 luminal status. (E) Forest plot of PAM50 intrinsic subtype correlation with PFS between treatment arms. HRs
compare PFS between treatment arms by PAM50 intrinsic subtype. Luminal B and nonluminal subtypes were significantly
associated with longer PFS with capecitabine than with palbociclib 1 ET. ET, endocrine therapy; HR, hazard ratio; LumA,
Luminal A; LumB, Luminal B; mOS, median overall survival; mPFS, median progression-free survival; Nonlum, Nonluminal; OS,
overall survival; PFS, progression-free survival.
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luminal status was observed for PFS (P5 .004) but not for OS
(P 5 .33).

Comparing treatment arms, luminal A tumors had longer
PFS with palbociclib 1 ET (HR, 0.76 [95% CI, 0.52 to 1.11];
P 5 .16). Luminal B tumors (HR, 1.53 [95% CI, 1.01 to 2.32];
P 5 .04) and nonluminal tumors (HR, 13.3 [95% CI, 1.69 to
107]; P5 .002) had significantly longer PFSwith capecitabine
(Fig 1E). The analysis notably had a limited number of
nonluminal samples.

Luminal A centroid correlation was associated with longer
PFS and OS with both treatments, which was significant for
OS in the capecitabine arm (HR, 0.47 [95% CI, 0.31 to 0.73];
adjusted P 5 .01). Basal-like centroid correlation was as-
sociated with shorter PFS and OS with both treatments (Figs
2 and 3).

Cox Proportional Hazards Analysis: Gene
Expression Features

Sixteen gene expression features were preselected on the
basis of existing knowledge: PAM50 proliferation score and
correlations to the luminal A, luminal B, basal-like, and
HER2-enriched centroids51; CCNE138 and CD27460 expression;
and gene expression signatures corresponding to Rb loss of
heterozygosity,61 FGFR4-induced and FGFR4-repressed
signatures,56 a Fos-Jun signature,54 and immune signa-
tures associated with B-cell and T-cell activity.54,56,60,62

Multivariable Cox models for PFS (Fig 2) and OS (Fig 3) in
each treatment arm were constructed for each signature.

Three B-cell (B-lymphocyte)–associated signatures sig-
nificantly correlatedwith shorter OS for palbociclib1 ET: the
Immune1 TCGA breast cancer signature (TCGA_BR-
CA_1198_Immune156; HR, 1.52 [95% CI, 1.20 to 1.92]; ad-
justed P 5 .009), IgG_Cluster signature54 (HR, 1.43 [95% CI,
1.13 to 1.80]; adjusted P 5 .05), and B-cell/T-cell coopera-
tivity signature (Bcell_Tcell_Cooperation60; HR, 1.42 [95%
CI, 1.14 to 1.78]; adjusted P 5 .04; Fig 3A). These signatures
had a nonsignificant correlation with shorter PFS for pal-
bociclib 1 ET and did not correlate with PFS or OS for
capecitabine. A significant interaction was observed between
treatment arm and the immune-activated TCGA_BR-
CA_1198_Immune1 signature for OS (Appendix Table A1).
Low TCGA_BRCA_1198_Immune1 expression was associ-
ated with significantly longer OS with palbociclib 1 ET than
capecitabine, whereas high expression was not associated
with a significant OS difference (Fig 4). The signature’s
expression was independent of intrinsic subtype (P 5 .56).

Exploratory Elastic Net Regression Analysis

To examine the potential of gene expression–based pre-
dictive models, we applied 878 gene expression signatures
to the RNAseq data set (Data Supplement) and, using a Cox
proportional hazards approach with Elastic Net regres-
sion58 (R package glmnet), identified recurrently selected

signatures correlating with survival over 20 rounds of it-
erative modeling with repeated subsampling. This ap-
proach was repeated after excluding nonluminal tumors to
identify signatures in common.

For palbociclib 1 ET, the NKI 70-gene signature (Pcorr_N-
KI70_Good_Correlation) corresponding to MammaPrint63

was consistently selected in PFS and OS models, as was the
IMMUNE_Bindea_Cell_Th17_cells signature,64 which per-
tains to Th17-cell activity. Both corresponded with longer
survival (Figs 5A and 5B). Frequently selected signatures in
OS models including those corresponding to neutrophil
(Charoentong_Neutrophil,65 Neutrophils_MCP66), natural
killer cell (IMMUNE_Bindea_Cell_NK_cells,64 NANO-
STRING_MODULE_NK_CD56bright_cell), macrophage
(NANOSTRING_MODULE_Macrophage_Functions), and
Th2 activity (NANOSTRING_MODULE_Th2_cell) cor-
related with longer OS. Signatures corresponding to T fol-
licular helper cell (IMMUNE_Bindea_TFH_Immunity,64

TCGA_Tfh_cells_Immunity67) and B-cell activity
(Bcells_Plasmablast,68 NANOSTRING_Module_B_cell,
TCGA_BRCA_1198_IMMUNE1) correlated with shorter OS
(Fig 5B).

For capecitabine, the HS_Green18 signature54 correspond-
ing to the luminal B subtype, and the IMMUNE_Bindea_-
Cell_NK_CD56bright_cells signature64 reflecting CD56bright

natural killer cell–related expression were frequently
selected in both PFS and OS models and correlated with
longer survival (Appendix Fig A2). For PFS models, fre-
quently selected signatures corresponding with metabolism
(MM_Green354), p53 status (Duke_Module14_p5369) and
luminal subtype (TCGA_BRCA_1198_Luminal56) were
associated with longer PFS. The LumA-Basal score,56

corresponding with the luminal A subtype, correlated
with shorter PFS (Appendix Fig A2A). For OS models,
signatures associated with T regulatory cells (T_regu-
latory_cell_2gene70) central memory CD8 T-cells
(Charoentong_Central_memory_CD8_T_cell65), immu-
notherapy resistance (Immunoediting_Swarbrick_PO-
SITIVE_MOUSE71), and BCL2 expression correlated with
longer OS; and T follicular helper cell–related signatures
(IMMUNE_Bindea_TFH_Immunity,64 TCGA_Tfh_-
cells_Immunity67), a Th17-cell related signature
(Charoentong_Type_17_T_helper_cell65), an invasive-
ness signature (Pcorr_IGS_Correlation72), CD3D expres-
sion, HRAS expression, and a PTEN pathway signature
(GSEA_BIOCARTA_PTEN_PATHWAY) correlated with
shorter OS (Appendix Fig A2B).

DISCUSSION

Our analysis sheds light on transcriptomic features associ-
ated with survival with palbociclib 1 ET versus capecitabine
in the setting of AI resistance. We demonstrate that PAM50
intrinsic subtype and low B-cell–associated tumor expres-
sion may identify patients who would benefit from con-
tinuing ET-based therapy with palbociclib.
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Although international guidelines recommend switching to
chemotherapy after ET resistance, this has not been sys-
tematically studied, and usually the timing of this switch is
primarily guided by clinical gestalt. The GEICAM/2013-02
PEARL study compared second-line palbociclib 1 ET versus
capecitabine monotherapy in postmenopausal women with
AI-resistant HR1/HER2– breast cancer and found no dif-
ference in efficacy but did demonstrate lower toxicity with
palbociclib1 ET. Given themolecular heterogeneity of HR1/
HER2– breast cancer,25,26,37-41,47,73,74 identifying molecular

features that could affect response to CDK4/6i 1 ET versus
chemotherapy could help with choosing between these two
treatment avenues.

In our analysis, luminal A tumors were associated with a
significant PFS advantage with palbociclib 1 ET compared
with luminal B tumors. The magnitude of difference is
comparable with other studies of palbociclib 1 ET. In the
first-line setting, palbociclib1 letrozole was associatedwith
amedian PFS of 30.4 versus 19.6months for luminal A versus
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FIG 2. Forest plots for HRs for PFS for each treatment arm for 16 selected biomarker signatures. (A) Adjusted HRs for PFS for
patients treated with palbociclib 1 ET. (B) Adjusted HRs for PFS for patients treated with capecitabine. ET, endocrine therapy; HR,
hazard ratio; PFS, progression-free survival; TCGA, The Cancer Genome Atlas.
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luminal B tumors in PALOMA-2,25 and in the second-line in
PALOMA-3, luminal A versus luminal B tumors had amedian
PFS of 16.6 versus 9.2 months.26

Although luminal A tumors were associated with longer PFS
with palbociclib 1 ET compared with capecitabine, patients
with luminal B and nonluminal tumors had statistically
longer PFS with capecitabine as opposed to palbociclib 1 ET.
Although previous trials of palbociclib 1 ET demonstrate a
similar magnitude of survival benefit with palbociclib 1 ET
versus ET for both luminal A and B tumors,25,26 our findings

suggest that PAM50 intrinsic subtype is not only prognostic
but may serve a predictive role in this setting by identifying
patients who may benefit even more from switching to a
chemotherapy-based approach.

Of the intrinsic subtype centroid correlations, only basal-like
centroid correlation had a trend toward shorter survival
along with the immune-related signatures, suggesting that
for palbociclib 1 ET, specifically having low basal-like
features may be an important biological determinant of
improved survival. For capecitabine, tumors with greater
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FIG 3. Forest plots for HRs for OS for each treatment arm for 16 selected biomarker signatures. (A) Adjusted HRs for OS for patients
treated with palbociclib1 ET. (B) Adjusted HRs for OS for patients treated with capecitabine. ET, endocrine therapy; HR, hazard ratio;
OS, overall survival; TCGA, The Cancer Genome Atlas.
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luminal A centroid correlation trended toward longer sur-
vival, recapitulating known PAM50 prognostic survival
associations75,76 and suggesting that specifically luminal A
alignment, rather than solely low basal-like correlation, is
most relevant biologically for survival with cytotoxic therapy
in ET-resistant HR1/HER2– breast cancer.

Higher expression of multiple B-cell–associated signatures
correlated with worse survival associated with palbociclib 1

ET and was significant for OS. B-cell–associated signatures
were also selected frequently in Cox models constructed via
Elastic Net regression for OS with palbociclib1 ET, implying
a potential immune biological signal that may be associated
with a worse prognosis in this setting. Furthermore, inde-
pendent of intrinsic subtype, low expression of the immune-
activated TCGA_BRCA_1198_Immune1 signature had sig-
nificant treatment arm interaction and was associated with
longer OS with palbociclib 1 ET versus capecitabine. This
finding suggests that B-cell–associated gene expression
may not just be prognostic but predictive for survival out-
comes for palbociclib1 ET versus capecitabine in the setting
of ET resistance. Analyses of PALOMA-2 and PALOMA-3
found that high expression of PD-1 and a T-cell–inflamed
tumor microenvironment signature predicted shorter PFS
with palbociclib1 ET,39,47 and a recently presented data from
the phase II RIGHT Choice trial demonstrated that lower
T-cell expression correlated with longer PFS with ribociclib

1 ET.77 Notably, one analysis of B-cell–associated gene
expression also showed a correlation with worse survival
with ET in ER1 breast cancer.74 It is possible that adding a
CDK4/6i may reverse this association through tumor im-
mune microenvironment remodeling, as shown in in vivo
models demonstrating an increase in type III interferons and
decreasedT regulatory cell proliferationwith CDK4/6i.73 This
pattern of lower tumor microenvironment immune activity
correlating with improved survival with CDK4/6i 1 ET in
HR1/HER2– breast cancer contrasts with improved survival
outcomes seen with higher tumor microenvironment im-
mune activity in triple-negative78-82 andHER2153,83-85 breast
cancer.

Our analysis has some limitations. Sampling bias may be
present, as only 54% of samples from the original PEARL
study were sequenced. However, most clinical variables were
not significantly different between the original study pop-
ulation and our patient subset or between treatment arms,
and our analysis adjusted for these variables. A research
version of PAM50 used in this study may produce different
results than the commercial nCounter-based PAM50 assay.
Confounding effects are inherently present in a retrospective
exploratory study, although we attempted to limit their
impact in our multivariable Cox regression analysis. A
smaller sample size affects the power of our analysis, and a
larger study would help to detect other expression signature
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FIG 4. Kaplan-Meier plot of OS for patients treated with palbociclib 1 ET versus capecitabine by Immune1
TCGA breast cancer (TCGA_BRCA_1198_Immune1) signature expression. Survival curves are separated by low
or high tumor expression (with respect to the median; solid or dotted) of the Immune1 TCGA breast cancer
signature, and by treatment with palbociclib 1 ET or capecitabine (blue or red). ET, endocrine therapy; OS,
overall survival; TCGA, The Cancer Genome Atlas.
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patterns and construct more robust Cox models with Elastic
Net regression.

In conclusion, our analysis highlights both PAM50 intrinsic
subtype and B-cell–related tumor gene expression sig-
natures as potential predictors of response to CDK4/6i1 ET

versus chemotherapy for postmenopausal women with
AI-resistant HR1/HER2– breast cancer. These gene ex-
pression features should be explored further in larger
studies of ET with palbociclib and other CDK4/6i, par-
ticularly compared with chemotherapy in the setting of ET
resistance.
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FIG 5. Most frequently selected gene expression signatures in multivariable Cox models for survival with
palbociclib1 ET.Models based on gene expression signatures were iteratively constructed for all patients
treated with palbociclib 1 ET, as well as patients with luminal A or B tumors only, via high-dimensional
modeling using Elastic Net regression. Bar length represents frequency with which each signature was
included in a constructed model. Signatures whose values positively correlated with survival are high-
lighted in green, and thosewhose values negatively correlatedwith survival are highlighted in red. (A)Most
frequently selected signatures for models for PFS with palbociclib 1 ET. (B) Most frequently selected
signatures in models for OS with palbociclib 1 ET. ET, endocrine therapy; HCI, Harrell C-index; OS, overall
survival; PFS, progression-free survival; TCGA, The Cancer Genome Atlas.
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José Ignacio Chacón
Consulting or Advisory Role: Roche, Novartis, Pfizer, Merck, Eisai,
AstraZeneca Spain, Lilly, Daiichi Sankyo/AstraZeneca

Santiago González-Santiago
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APPENDIX

TABLE A1. Biomarker Signature Interaction With Treatment

Signature (2-tile)

PFS OS

P Bonferroni P Bonferroni

Basal-like correlation .68 1.00 .94 1.00

HER2-E correlation .10 1.00 .85 1.00

Luminal A correlation .13 1.00 .95 1.00

Luminal B correlation .13 1.00 .40 1.00

PAM50_Proliferation_Score .03 0.48 .37 1.00

CCNE1 .76 1.00 .17 1.00

IGG_Cluster .07 1.00 .006 0.10

TCGA_BRCA_1198_IMMUNE1 .04 0.63 <.001 0.01

Bcell_Tcell_Cooperation .68 1.00 .40 1.00

IMMUNE_Bindea_
Cell_T_helper_cells

.13 1.00 .59 1.00

CD8_cluster_Iglesia .87 1.00 .56 1.00

CD274 .72 1.00 .65 1.00

RB_LOH .07 1.00 .36 1.00

FOS_JUN .02 0.38 .26 1.00

FGFR4_Repressed .85 1.00 .87 1.00

FGFR4_Induced .32 1.00 1.00 1.00

NOTE. P values (unadjusted and adjusted via Bonferroni method) for treatment interaction are reported for the 16 selected biomarker signatures
with respect to PFS and OS end points. Signatures are treated as binary variables with respect to median expression.
Abbreviations: OS, overall survival; PFS, progression-free survival; TCGA, The Cancer Genome Atlas.
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Randomly assigned
(N = 601)

Palbociclib + ET
(n = 166)

n = 158

Normal-like tumors
(n = 8)

Capecitabine
(n = 162)

n = 155

Normal-like tumors
(n = 7)

No RNAseq
(n = 260)

No treatment
(n = 13)

FIG A1. CONSORT diagram of the study. ET, endocrine therapy.
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FIG A2. Most frequently selected gene expression signatures in multivariable Cox models for survival
with capecitabine. Models based on gene expression signatures were iteratively constructed for all
patients treated with capecitabine, as well as patients with luminal A or B tumors only, via high-
dimensional modeling using Elastic Net regression. Bar length represents frequency with which each
signature was included in a constructed model. Signatures whose values positively correlated with
survival are highlighted in green, and those whose values negatively correlated with survival are
highlighted in red. (A) Most frequently selected signatures for models for PFS with capecitabine. (B)
Most frequently selected signatures in models for OS with capecitabine. corr, correlation; HCI, Harrell
C-index; OS, overall survival; PFS, progression-free survival; TCGA, The Cancer Genome Atlas.
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