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Abstract The genetic basis of severe COVID-19 has been thoroughly studied, and many genetic 
risk factors shared between populations have been identified. However, reduced sample sizes from 
non-European groups have limited the discovery of population-specific common risk loci. In this 
second study nested in the SCOURGE consortium, we conducted a genome-wide association study 
(GWAS) for COVID-19 hospitalization in admixed Americans, comprising a total of 4702 hospitalized 
cases recruited by SCOURGE and seven other participating studies in the COVID-19 Host Genetic 
Initiative. We identified four genome-wide significant associations, two of which constitute novel 
loci and were first discovered in Latin American populations (BAZ2B and DDIAS). A trans-ethnic 
meta-analysis revealed another novel cross-population risk locus in CREBBP. Finally, we assessed the 
performance of a cross-ancestry polygenic risk score in the SCOURGE admixed American cohort. 
This study constitutes the largest GWAS for COVID-19 hospitalization in admixed Latin Americans 
conducted to date. This allowed to reveal novel risk loci and emphasize the need of considering the 
diversity of populations in genomic research.

eLife assessment
The authors conducted a valuable GWAS meta-analysis for COVID-19 hospitalization in admixed 
American populations and prioritized risk variants and genes. The evidence supporting the claims 
of the authors is solid. The work will be of interest to scientists studying the genetic basis of COVID 
pathogenesis.

Introduction
To date, more than 50 loci associated with COVID-19 susceptibility, hospitalization, and severity have 
been identified using genome-wide association studies (GWAS) (Kanai et al., 2023; Pairo-Castineira 
et al., 2023). The COVID-19 Host Genetics Initiative (HGI) has made significant efforts (Niemi et al., 
2021) to augment the power to identify disease loci by recruiting individuals from diverse popula-
tions and conducting a trans-ancestry meta-analysis. Despite this, the lack of genetic diversity and 
a focus on cases of European ancestries still predominate in the studies (Popejoy and Fullerton, 
2016; Sirugo et al., 2019). In addition, while trans-ancestry meta-analyses are a powerful approach 
for discovering shared genetic risk variants with similar effects across populations (Li and Keating, 
2014), they may fail to identify risk variants that have larger effects on particular underrepresented 
populations. Genetic disease risk has been shaped by the particular evolutionary history of popula-
tions and environmental exposures (Rosenberg et al., 2010). Their action is particularly important for 
infectious diseases due to the selective constraints that are imposed by host‒pathogen interactions 
(Karlsson et al., 2014; Kwok et al., 2021). Literature examples of this in COVID-19 severity include 
a DOCK2 gene variant in East Asians (Namkoong et al., 2022) and frequent loss-of-function variants 
in IFNAR1 and IFNAR2 genes in Polynesian and Inuit populations, respectively (Bastard et al., 2022; 
Duncan et al., 2022).

Including diverse populations in case‒control GWAS with unrelated participants usually requires 
a prior classification of individuals in genetically homogeneous groups, which are typically analyzed 
separately to control the population stratification effects (Peterson et al., 2019). Populations with 
recent admixture impose an additional challenge to GWASs due to their complex genetic diversity 
and linkage disequilibrium (LD) patterns, requiring the development of alternative approaches and a 
careful inspection of results to reduce false positives due to population structure (Rosenberg et al., 
2010). In fact, there are benefits in study power from modeling the admixed ancestries either locally, 
at the regional scale in the chromosomes, or globally, across the genome, depending on factors 
such as the heterogeneity of the risk variant in frequencies or the effects among the ancestry strata 
(Mester et al., 2023). Despite the development of novel methods specifically tailored for the analysis 
of admixed populations (Atkinson et al., 2021), the lack of a standardized analysis framework and 
the difficulties in confidently clustering admixed individuals into particular genetic groups often lead 
to their exclusion from GWAS.

The Spanish Coalition to Unlock Research on Host Genetics on COVID-19 (SCOURGE) recruited 
COVID-19 patients between March and December 2020 from hospitals across Spain and from March 
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2020 to July 2021 in Latin America (https://www.scourge-covid.org). A first GWAS of COVID-19 
severity among Spanish patients of European descent revealed novel disease loci and explored age- 
and sex-varying effects of genetic factors (Cruz et  al., 2022). Here, we present the findings of a 
GWAS meta-analysis in admixed Latin American (AMR) populations, comprising individuals from the 
SCOURGE Latin American cohort and the HGI studies, which allowed us to identify two novel severe 
COVID-19 loci, BAZ2B and DDIAS. Further analyses modeling the admixture from three genetic 
ancestral components and performing a trans-ethnic meta-analysis led to the identification of an addi-
tional risk locus near CREBBP. We finally assessed a cross-ancestry polygenic risk score (PGS) model 
with variants associated with critical COVID-19.

Results
Meta-analysis of COVID-19 hospitalization in admixed Americans
Study cohorts
Within the SCOURGE consortium, we included 1608 hospitalized cases and 1887 controls (not hospi-
talized COVID-19 patients) from Latin American countries and from recruitments of individuals of Latin 
American descent conducted in Spain (Supplementary file 1). Quality control details and estimation 
of global genetic inferred ancestry (GIA) (Figure 1—figure supplement 1) are described in ‘Materials 
and methods’, whereas clinical and demographic characteristics of patients included in the analysis 
are shown in Table 1. Summary statistics from the SCOURGE cohort were obtained under a logistic 
mixed model with the SAIGE model (‘Materials and methods’). Another seven studies participating 
in the COVID-19 HGI consortium were included in the meta-analysis of COVID-19 hospitalization in 
admixed Americans (Figure 1).

GWAS meta-analysis
We performed a fixed-effects GWAS meta-analysis using the inverse of the variance as weights for the 
overlapping markers. The combined GWAS sample size consisted of 4702 admixed AMR hospitalized 
cases and 68,573 controls.

This GWAS meta-analysis revealed genome-wide significant associations at four risk loci (Table 2, 
Figure 2; a quantile‒quantile plot is shown in Figure 2—figure supplement 1), two of which (BAZ2B 
and DDIAS) were novel discoveries. A Meta-Analysis Model-based Assessment of replicability 

Table 1. Demographic characteristics of the SCOURGE Latin American cohort.

Variable
Non-hospitalized  
(N = 1887)

Hospitalized
(N = 1625)

Age, mean years ±SD 39.1 ± 11.9 54.1 ± 14.5

Sex, N (%)

Female (%) 1253 (66.4) 668 (41.1)

Global genetic inferred ancestry, % mean ± SD

European 54.4 ± 16.2 39.4 ± 20.7

African 15.3 ± 12.7 9.1 ± 11.6

Native American 30.3 ± 19.8 51.3 ± 26.5

Comorbidities, N (%)

Vascular/endocrinological 488 (25.9) 888 (64.5)

Cardiac 60 (3.2) 151 (9.3)

Nervous 15 (0.8) 61 (3.8)

Digestive 14 (0.7) 33 (2.0)

Onco-hematological 21 (1.1) 48 (3.00)

Respiratory 76 (4.0) 118 (7.3)
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https://www.scourge-covid.org


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Diz-de Almeida, Cruz et al. eLife 2024;13:RP93666. DOI: https://doi.org/10.7554/eLife.93666 � 7 of 27

(MAMBA) approach to leverage the strength and consistency of associations across the contrib-
uting studies supported >90% likelihood for one of the novel loci to likely replicate in future studies 
(Table 3). Four lead variants were identified, linked to other 310 variants (Supplementary files 2 and 
3). A gene-based association test revealed a significant association in BAZ2B and in previously known 
COVID-19 risk loci: LZTFL1, XCR1, FYCO1, CCR9, and IFNAR2 (Supplementary file 4).

Located within the BAZ2B gene, the sentinel variant rs13003835 (Figure 3) is an intronic variant 
associated with an increased risk of COVID-19 hospitalization (odds ratio [OR]=1.20, 95% confidence 
interval [CI] = 1.12–1.27, p=3.66 × 10–8). This association was not previously reported in any GWAS 
of COVID-19 published to date. Interestingly, rs13003835 did not reach significance (p=0.972) in the 
COVID-19 HGI trans-ancestry meta-analysis including the five population groups (Kanai et al., 2023).

The other novel risk locus is led by the sentinel variant rs77599934 (Figure 3), a rare intronic variant 
located in chromosome 11 within DDIAS and associated with the risk of COVID-19 hospitalization (OR 
= 2.27, 95% CI = 1.70–3.04, p=2.26 × 10–8).

We also observed a suggestive association with rs2601183 in chromosome 15, which is located 
between ZNF774 and IQGAP1 (allele-G OR = 1.20, 95% CI = 1.12–1.29, p=6.11 × 10–8, see Supple-
mentary file 2), which has not yet been reported in any other GWAS of COVID-19 to date.

Figure 1. Flow chart of this study. Stage I of the study involved a meta-analysis of the Latin American genome-wide association studies (GWAS) from 
SCOURGE and the COVID-19 Host Genetics Initiative. The resulting meta-analysis was leveraged to prioritize genes by using a transcriptome-wide 
association study (TWAS), Bayesian fine-mapping and functional annotations, and to assess the generalizability of polygenic risk score (PGS) cross-
population models in Latin Americans. Stage II involved two additional cross-population GWAS meta-analyses to further investigate the replicability of 
findings.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Global genetic inferred ancestry (GIA) composition in the SCOURGE Latin American cohort.

Table 2. Lead independent variants in the admixed AMR genome-wide association studies (GWAS) meta-analysis.

SNP rsID chr:pos EA NEA OR (95% CI) p-Value EAF cases EAF controls Nearest gene Mamba PPR

rs13003835 2:159407982 T C 1.20 (1.12–1.27) 3.66E-08 0.563 0.429 BAZ2B 0.30

rs35731912 3:45848457 T C 1.65 (1.47–1.85) 6.30E-17 0.087 0.056 LZTFL1 0.95

rs2477820 6:41535254 A T 0.84 (0.79–0.89) 1.89E-08 0.453 0.517 FOXP4-AS1 0.18

rs77599934 11:82906875 G A 2.27 (1.7–3.04) 2.26E-08 0.016 0.011 DDIAS 0.95

EA: effect allele. NEA: noneffect allele. EAF: effect allele frequency in the SCOURGE study. PPR: posterior probability of replicability.

https://doi.org/10.7554/eLife.93666
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The GWAS meta-analysis also pinpointed two significant variants at known loci, LZTFL1 and FOXP4. 
The SNP rs35731912 was previously associated with COVID-19 severity in EUR populations (Degen-
hardt et al., 2022), and it was mapped to LZTFL1. While rs2477820 is a novel risk variant within the 
FOXP4 gene, it has a moderate LD (r2 = 0.295) with rs2496644, which has been linked to COVID-19 
hospitalization (Kousathanas et al., 2022). This is consistent with the effects of LD in tag-SNPs when 
conducting GWAS in diverse populations.

None of the lead variants was associated with the comorbidities included in Table 1.

Figure 2. Manhattan plot for the admixed AMR genome-wide association studies (GWAS) meta-analysis. Probability thresholds at p=5 × 10–8 and p=5 
× 10–5 are indicated by the horizontal lines. Genome-wide significant associations with COVID-19 hospitalizations were found on chromosome 2 (within 
BAZ2B), chromosome 3 (within LZTFL1), chromosome 6 (within FOXP4), and chromosome 11 (within DDIAS).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Quantile–quantile plot for the AMR genome-wide association studies (GWAS) meta-analysis.

Table 3. Novel variants in the SC-HGIALL and SC-HGI3POP meta-analyses (with respect to HGIv7).
Independent signals after LD clumping.

SNP rsID chr:pos EA NEA OR (95% CI) p-Value Nearest gene Analysis

rs76564172 16:3892266 T G 1.31 (1.19–1.44) 9.64E-09 CREBBP SC-HGI3POP

rs66833742 19:4063488 T C 0.94 (0.92–0.96) 1.89E-08 ZBTB7A SC-HGI3POP

rs66833742 19:4063488 T C 0.94 (0.92–0.96) 2.50E-08 ZBTB7A SC-HGIALL

rs2876034 20:6492834 A T 0.95 (0.93–0.97) 2.83E-08 CASC20 SC-HGIALL

EA: effect allele. NEA: non-effect allele.

https://doi.org/10.7554/eLife.93666
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Functional mapping of novel risk variants
Variants belonging to the lead loci were prioritized by positional and expression quantitative trait loci 
(eQTL) mapping with FUMA, resulting in 31 mapped genes (Supplementary file 5). Within the region 
surrounding the lead variant in chromosome 2, FUMA prioritized four genes in addition to BAZ2B 
(PLA2R1, LY75, WDSUB1, and CD302). rs13003835 (allele C) is an eQTL of LY75 in the esophagus 
mucosa (NES = 0.27) and of BAZ2B-AS in whole blood (NES = 0.27), while rs2884110 (R2 = 0.85) is an 
eQTL of LY75 in lung (NES = 0.22). As for the chromosome 11, rs77599934 (allele G) is in moderate-
to-strong LD (r2 = 0.776) with rs60606421 (G deletion, allele -), which is an eQTL associated with a 
reduced expression of DDIAS in the lungs (NES = −0.49, allele -). The sentinel variant for the region in 
chromosome 16 is in perfect LD (r2 = 1) with rs601183, an eQTL of ZNF774 in the lung.

Bayesian fine mapping
We performed different approaches to narrow down the prioritized loci to a set of most likely genes 
driving the associations. First, we computed credible sets at the 95% confidence level for causal 
variants and annotated them with VEP and V2G aggregate scoring. The 95% confidence credible set 
from the region of chromosome 2 around rs13003835 included 76 variants, which can be found in 
Supplementary file 6 and a regional plot is shown in Figure 3—figure supplement 1 (VEP and V2G 

Figure 3. New loci associated with COVID-19 hospitalization in Admixed american populations. (A) Regional association plots for rs1003835 at 
chromosome 2 and rs77599934 at chromosome 11. (B) Allele frequency distribution across the 1000 Genomes Project populations for the lead variants 
rs1003835 and rs77599934. Retrieved from The Geography of Genetic Variants Web or GGV.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Regional association plots for the fine mapped loci in chromosomes 2 (A) and 16 (B).

https://doi.org/10.7554/eLife.93666
https://www.ncbi.nlm.nih.gov/snp/rs2884110
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annotations are included in Supplementary files 7 and 8). TheV2G score prioritized BAZ2B as the 
most likely gene driving the association. However, the approach was unable to converge allocating 
variants in a 95% confidence credible set for the region in chromosome 11.

Transcriptome-wide association study (TWAS)
Five novel genes, namely, SLC25A37, SMARCC1, CAMP, TYW3, and S100A12 (Supplementary file 
9), were found to be significantly associated in the cross-tissue TWAS. To our knowledge, these 
genes have not been reported previously in any COVID-19 TWAS or GWAS analyses published to 
date. In the single-tissue analyses, ATP5O and CXCR6 were significantly associated in the lungs, 
CCR9 was significantly associated in whole blood, and IFNAR2 and SLC25A37 were associated in 
lymphocytes.

Likewise, we carried out TWAS analyses using the models trained in the admixed populations. 
However, no significant gene pairs were detected in this case. The top 10 genes with the lowest 
p-values for each of the datasets (Puerto Ricans, Mexicans, African Americans, and pooled cohorts) 
are shown in Supplementary file 10. Although not significant, KCNC3 was repeated in the four anal-
yses, whereas MAPKAPK3, NAPSA, and THAP5 were repeated in three out of four. Both NAPSA and 
KCNC3 are located in the chromosome 19 and were reported in the latest HGI meta-analysis (Kanai 
et al., 2023).

All mapped genes from analyses conducted in AMR populations are shown in Figure 4, and associ-
ations for the two novel variants with expression are shown in Figure 4—figure supplement 1.

Figure 4. Summary of the results from gene prioritization strategies used for genetic associations in AMR populations. Genome-wide association 
studies (GWAS) catalog association for BAZ2B-AS was with FEV/FCV ratio. Literature-based evidence is further explored in ‘Discussion’.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Gene‒tissue pairs for which either rs1003835 or rs60606421 are significant expression quantitative trait loci (eQTL) at false 
discovery rate (FDR) < 0.05 (data retrieved from https://gtexportal.org/home/snp/).

https://doi.org/10.7554/eLife.93666
https://gtexportal.org/home/snp/
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Genetic architecture of COVID-19 hospitalization in AMR populations
Allele frequencies of rs13003835 and rs77599934 across ancestries
Neither rs13003835 (BAZ2B) nor rs77599934 (DDIAS) were significantly associated in the COVID-19 
HGI B2 cross-population or population-specific meta-analyses. Thus, we investigated their allele 
frequencies (AF) across populations and compared their effect sizes.

According to gnomAD v3.1.2, the T allele at rs13003835 (BAZ2B) has an AF of 43% in admixed 
AMR groups, while AF is lower in the EUR populations (16%) and in the global sample (29%). Local 
ancestry inference (LAI) reported by gnomAD shows that within the Native American component, 
the risk allele T is the major allele, whereas it is the minor allele within the African and European LAI 
components. These large differences in AF might be the reason underlying the association found in 
AMR populations. However, when comparing effect sizes between populations, we found that they 
were in opposite directions between SAS-AMR and EUR-AFR-EAS and that there was large heteroge-
neity among them (Figure 5). We queried SNPs within 50 kb windows of the lead variant in each of 
the other populations that had p-value <0.01. The variant with the lowest p-value in the EUR popu-
lation was rs559179177 (p=1.72 × 10–4), which is in perfect LD (r2 = 1) in the 1KGP EUR population 
with our sentinel variant (rs13003835), and in moderate LD r2 = 0.4 in AMR populations. Since this 
variant was absent from the AMR analysis, probably due to its low frequency, it could not be meta-
analyzed. Power calculations revealed that the EUR analysis was underpowered for this variant to 
achieve genome-wide significance (77.6%, assuming an effect size of 0.46, EAF = 0.0027, and number 
of cases/controls as shown in the HGI website for B2-EUR). In the cross-population meta-analysis (B2-
ALL), rs559179177 obtained a p-value of 5.9 × 10–4.

rs77599934 (DDIAS) had an AF of 1.1% for the G allele in the non-hospitalized controls (Table 2), 
in line with the recorded gnomAD AF of 1% in admixed AMR groups. This variant has the potential 

Figure 5. Forest plot showing effect sizes and the corresponding confidence intervals for the sentinel variants identified in the AMR meta-analysis across 
populations. All beta values with their corresponding CIs were retrieved from the B2 population-specific meta-analysis from the HGI v7 release, except 
for AMR, for which the beta value and IC from the HGIAMR-SCOURGE meta-analysis are represented.

https://doi.org/10.7554/eLife.93666
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to be a population-specific variant, given the allele frequencies in other population groups, such as 
EUR (0% in Finnish, 0.025% in non-Finnish), EAS (0%) and SAS (0.042%), and its greater effect size 
over AFR populations (Figure  5). Examining the LAI, the G allele occurs at a 10.8% frequency in 
the African component, while it is almost absent in the Native American and European. Due to its 
low MAF, rs77599934 was not analyzed in the COVID-19 HGI B2 cross-population meta-analysis and 
was only present in the HGI B2 AFR population-specific meta-analysis, precluding the comparison 
(Figure 5). For this reason, we retrieved the variant with the lowest p-value within a 50 kb region 
around rs77599934 in the COVID-19 HGI cross-population analysis to investigate whether it was in 
moderate-to-strong LD with our sentinel variant. The variant with the smallest p-value was rs75684040 
(OR = 1.07, 95% CI = 1.03–1.12, p=1.84 × 10–3). However, LD calculations using the 1KGP phase 3 
dataset indicated that rs77599934 and rs75684040 were poorly correlated (r2 = 0.11). As for AFR 
populations, the variant with the lowest p-value was rs138860115 (p=8.3 × 10–3), but it was not 
correlated with the lead SNP of this locus.

Cross-population meta-analyses
We carried out two cross-ancestry inverse variance-weighted fixed-effects meta-analyses with the 
admixed AMR GWAS meta-analysis results to evaluate whether the discovered risk loci replicated 
when considering other population groups. In doing so, we also identified novel cross-population 
COVID-19 hospitalization risk loci.

First, we combined the SCOURGE Latin American GWAS results with the HGI B2 ALL analysis 
(Supplementary file 11). We refer to this analysis as the SC-HGIALL meta-analysis. Out of the 40 
genome-wide significant loci associated with COVID-19 hospitalization in the last HGI release (Kanai 
et al., 2023), this study replicated 39, and the association was stronger than in the original study in 29 
of those (Supplementary file 12). However, the variant rs13003835 located in BAZ2B did not repli-
cate (OR = 1.00, 95% CI = 0.98–1.03, p=0.644).

In this cross-ancestry meta-analysis, we replicated two associations that were not found in HGIv7, 
albeit they were sentinel variants in the latest GenOMICC meta-analysis (Pairo-Castineira et  al., 
2023). We found an association at the CASC20 locus led by the variant rs2876034 (OR = 0.95, 95% 
CI = 0.93–0.97, p=2.83 × 10–8). This variant is in strong LD with the sentinel variant of that study 
(rs2326788, r2 = 0.92), which was associated with critical COVID-19 (Pairo-Castineira et al., 2023). In 
addition, this meta-analysis identified the variant rs66833742 near ZBTB7A associated with COVID-19 
hospitalization (OR = 0.94, 95% CI = 0.92–0.96, p=2.50 × 10–8). Notably, rs66833742 or its perfect 
proxy rs67602344 (r2 = 1) are also associated with upregulation of ZBTB7A in whole blood and in 
esophageal mucosa. This variant was previously associated with COVID-19 hospitalization (Pairo-
Castineira et al., 2023).

In a second analysis, we also explored the associations across the defined admixed AMR, EUR, 
and AFR ancestral sources by combining through meta-analysis the SCOURGE Latin American GWAS 
results with the HGI studies in EUR, AFR, and admixed AMR and excluding those from EAS and 
SAS (Supplementary file 13). We refer to this as the SC-HGI3POP meta-analysis. The association at 
rs13003835 (BAZ2B, OR = 1.01, 95% CI = 0.98–1.03, p=0.605) was not replicated, and rs77599934 
near DDIAS could not be assessed, although the association at the ZBTB7A locus was confirmed 
(rs66833742, OR = 0.94, 95% CI = 0.92–0.96, p=1.89 × 10–8). The variant rs76564172 located near 
CREBBP also reached statistical significance (OR = 1.31, 95% CI = 1.25–1.38, p=9.64 × 10–9). The 
sentinel variant of the region linked to CREBBP (in the trans-ancestry meta-analysis) was also subjected 
to a Bayesian fine mapping (Supplementary file 6). Eight variants were included in the credible set for 
the region in chromosome 16 (meta-analysis SC-HGI3POP).

Polygenic risk score models
Using the 49 variants associated with disease severity that are shared across populations according to 
the HGIv7, we constructed a PGS model to assess its generalizability in the admixed AMR (Supple-
mentary file 14). First, we calculated the PGS for the SCOURGE Latin Americans and explored the 
association with COVID-19 hospitalization under a logistic regression model. The PGS model was 
associated with a 1.48-fold increase in COVID-19 hospitalization risk per every PGS standard devia-
tion. It also contributed to explaining a slightly larger variance (∆R2 = 1.07%) than the baseline model.

https://doi.org/10.7554/eLife.93666
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Subsequently, we divided the individuals into PGS deciles and percentiles to assess their risk strati-
fication. The median percentile among controls was 40, while in cases, it was 63. Those in the top PGS 
decile exhibited a 2.89-fold (95% CI = 2.37–3.54, p=1.29 × 10–7) greater risk compared to individuals 
in the deciles between 4 and 6 (corresponding to a score of the median distribution).

We also examined the distribution of PGS across a five-level severity scale to further determine if 
there was any correspondence between clinical severity and genetic risk. Median PGS were lower in 
the asymptomatic and mild groups, whereas higher median scores were observed in the moderate, 
severe, and critical patients (Figure 6). We fitted a multinomial model using the asymptomatic class 
as a reference and calculated the OR for each category (Supplementary file 15), observing that the 
disease genetic risk was similar among asymptomatic, mild, and moderate patients. Given that the 
PGS was built with variants associated with critical disease and/or hospitalization and that the cate-
gories severe and critical correspond to hospitalized patients, these results underscore the ability of 
cross-ancestry PGS for risk stratification even in an admixed population.

Discussion
We have conducted the largest GWAS meta-analysis of COVID-19 hospitalization in admixed AMR 
to date. While the genetic risk basis discovered for COVID-19 is largely shared among populations, 
trans-ancestry meta-analyses on this disease have primarily included EUR samples. This dominance of 
GWAS in Europeans and the subsequent bias in sample sizes can mask population-specific genetic 
risks (i.e., variants that are monomorphic in some populations) or be less powered to detect risk 
variants having higher allele frequencies in population groups other than Europeans. In this sense, 
after combining data from admixed AMR patients, we found two risk loci that were first discovered 
in a GWAS of Latin American populations. Interestingly, the sentinel variant rs77599934 in the DDIAS 
gene is a rare coding variant (~1% for allele G) with a large effect on COVID-19 hospitalization that 
is nearly monomorphic in most of the other populations. This has likely led to its exclusion from the 
cross-population meta-analyses conducted to date, remaining undetectable.

Fine mapping of the region harboring DDIAS did not reveal further information about which gene 
could be the more prone to be causal or about the functional consequences of the risk variant, but 
our sentinel variant was in strong LD with an eQTL that associated with reduced gene expression of 
DDIAS in the lung. DDIAS, known as damage-induced apoptosis suppressor gene, is itself a plausible 
candidate gene. It has been linked to DNA damage repair mechanisms: research has shown that 
depletion of DDIAS leads to an increase in ATM phosphorylation and the formation of p53-binding 
protein (53BP1) foci, a known biomarker of DNA double-strand breaks, suggesting a potential role in 
double-strand break repair (Brunette et al., 2019). Interestingly, a study found that infection by SARS-
CoV-2 also triggered the phosphorylation of ATM kinase and inhibited repair mechanisms, causing the 
accumulation of DNA damage (Gioia et al., 2023). This gene has also been proposed as a potential 
biomarker for lung cancer after finding that it interacts with STAT3 in lung cancer cells, regulating IL-6 
(Im et al., 2020; Im et al., 2023) and thus mediating inflammatory processes, while another study 
determined that its blockade inhibited lung cancer cell growth (Won et al., 2014). Another priori-
tized gene from this region was PRCP, an angiotensinase that shares substrate specificity with ACE2 
receptor. It has been positively linked to hypertension and some studies have raised hypotheses on 
its role in COVID-19 progression, particularly in relation to the development of pro-thrombotic events 
(Angeli et al., 2023; Silva-Aguiar et al., 2020).

The risk region found in chromosome 2 harbors more than one gene. The lead variant rs13003835 
is located within BAZ2B, and it increases the expression of the antisense BAZ2B gene in whole blood. 
BAZ2B encodes one of the regulatory subunits of the Imitation switch (ISWI) chromatin remodelers (Li 
et al., 2021) constituting the BRF-1/BRF-5 complexes with SMARCA1 and SMARCA5, respectively. 
Interestingly, it was discovered that lnc-BAZ2B promotes macrophage activation through regulation 
of BAZ2B expression. Its overexpression resulted in pulmonary inflammation and elevated levels of 
MUC5AC in mice with asthma (Xia et al., 2021). This variant was also an eQTL for LY75 (encoding 
lymphocyte antigen 75) in the esophageal mucosa tissue. Lymphocyte antigen 75 is involved in immune 
processes through antigen presentation in dendritic cells and endocytosis (Mahnke et al., 2000) and 
has been associated with inflammatory diseases, representing a compelling candidate for the region. 
Increased expression of LY75 has been detected within hours after infection by SARS-CoV-2 (Mitchell 
et al., 2013; Sims et al., 2013). It is worth noting that differences in AF for this variant suggest that 

https://doi.org/10.7554/eLife.93666
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Figure 6. Polygenic risk distribution for COVID-19 hospitalization. (A) Polygenic risk stratified by polygenic risk score (PGS) deciles comparing each risk 
group against the lowest risk group (OR–95% CI). (B) Distribution of the PGS in each of the severity scale classes. 0, asymptomatic; 1, mild disease; 2, 
moderate disease; 3, severe disease; 4, critical disease.

https://doi.org/10.7554/eLife.93666
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analyses in AMR populations might be more powered to detect the association, supporting the neces-
sity of population-specific studies.

A third novel risk region was observed on chromosome 15 between the IQGAP1 and ZNF774 
genes, although it did not reach genome-wide significance.

Secondary analyses revealed five TWAS-associated genes, some of which have already been linked 
to severe COVID-19. In a comprehensive multitissue gene expression profiling study (Gómez-Carballa 
et  al., 2022), decreased expression of CAMP and S100A8/S100A9 genes in patients with severe 
COVID-19 was observed, while another study detected the upregulation of SCL25A37 among patients 
with severe COVID-19 (Policard et  al., 2021). SMARCC1 is a subunit of the SWI/SNF chromatin 
remodeling complex that has been identified as proviral for SARS-CoV-2 and other coronavirus strains 
through a genome-wide screen (Wei et al., 2021). This complex is crucial for ACE2 expression and 
viral entry into the cell (Wei et al., 2023). However, it should be noted that using eQTL mostly from 
European populations such as those in GTEx could result in reduced power to detect associations.

To explore the genetic architecture of the trait among admixed AMR populations, we performed 
two cross-ancestry meta-analyses including the SCOURGE Latin American cohort GWAS findings. 
We found that the two novel risk variants were not associated with COVID-19 hospitalization outside 
the population-specific meta-analysis, highlighting the importance of complementing trans-ancestry 
meta-analyses with group-specific analyses. Notably, this analysis did not replicate the association 
at the DSTYK locus, which was associated with severe COVID-19 in Brazilian individuals with higher 
European admixture (Pereira et al., 2022). This lack of replication aligns with the initial hypothesis of 
that study suggesting that the risk haplotype was derived from European populations, as we reduced 
the weight of this ancestral contribution in our study by excluding those individuals.

Moreover, these cross-ancestry meta-analyses pointed to three loci that were not genome-wide 
significant in the HGIv7 ALL meta-analysis: a novel locus at CREBBP and two loci at ZBTB7A and 
CASC20 that were reported in another meta-analysis. CREBBP and ZBTB7A achieved a stronger 
significance when considering only the EUR, AFR, and admixed AMR GIA groups. According to a 
recent study, elevated levels of the ZBTB7A gene promote a quasihomeostatic state between corona-
viruses and host cells, preventing cell death by regulating oxidative stress pathways (Zhu et al., 2022). 
This gene is involved in several signaling pathways, such as B- and T-cell differentiation (Gupta et al., 
2020). On a separate note, CREBBP encodes the CREB binding protein (CBP), which is involved in 
transcriptional activation and is known to positively regulate the type I interferon response through 
virus-induced phosphorylation of IRF-3 (Yoneyama et al., 1998). In addition, the CREBP/CBP interac-
tion has been implicated in SARS-CoV-2 infection (Yang et al., 2023) via the cAMP/PKA pathway. In 
fact, cells with suppressed CREBBP gene expression exhibit reduced replication of the so-called Delta 
and Omicron SARS-CoV-2 variants (Yang et al., 2023).

We developed a cross-population PGS model, which effectively stratified individuals based on 
their genetic risk and demonstrated consistency with the clinical severity classification of the patients. 
Only a few polygenic scores were derived from COVID-19 GWAS data. Horowitz et al., 2022 devel-
oped a score using 6 and 12 associated variants (PGS ID: PGP000302) and reported an associated 
OR (top 10% vs rest) of 1.38 for risk of hospitalization in European populations, whereas the OR for 
Latin American populations was 1.56. Since their sample size and the number of variants included in 
the PGS were lower, direct comparisons are not straightforward. Nevertheless, our analysis provides 
the first results for a PRS applied to a relatively large AMR cohort, being of value for future analyses 
regarding PRS transferability.

This study is subject to limitations, mostly concerning sample recruitment and composition. The 
SCOURGE Latino American sample size is small, and the GWAS is likely underpowered. Another 
limitation is the difference in case‒control recruitment across sampling regions that, yet controlled 
for, may reduce the ability to observe significant associations driven by different compositions of the 
populations. In this sense, the identified risk loci might not replicate in a cohort lacking any of the 
parental population sources from the three-way admixture. Likewise, we could not explicitly control 
for socioenvironmental factors that could have affected COVID-19 spread and hospitalization rates, 
although genetic principal components are known to capture nongenetic factors. Finally, we must 
acknowledge the lack of a replication cohort. We used all the available GWAS data for COVID-19 
hospitalization in admixed AMR in this meta-analysis due to the low number of studies conducted. 
Therefore, we had no studies to replicate or validate the results. These concerns may be addressed in 

https://doi.org/10.7554/eLife.93666
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the future by including more AMR GWAS in the meta-analysis, both by involving diverse populations 
in study designs and supporting research from countries in Latin America.

This study provides novel insights into the genetic basis of COVID-19 severity, emphasizing the 
importance of considering host genetic factors by using non-European populations, especially of 
admixed sources. Such complementary efforts can pin down new variants and increase our knowledge 
on the host genetic factors of severe COVID-19.

Materials and methods
Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers

Additional 
information

Commercial assay 
or kit

Chemagic DNA Blood 
100 kit

PerkinElmer Chemagen 
Technologies GmbH

Software, algorithm Axiom Analysis Suite Thermo Fisher Scientific Version 4.0.3.3

Software, algorithm PLINK

Purcell et al., 2007; 
https://www.cog-​
genomics.org/plink/ RRID:SCR_001757 Version 1.9; v2

Software, algorithm
TOPMed Imputation 
Server

https://imputation.​
biodatacatalyst.nhlbi.​
nih.gov/ Version 2

Software, algorithm ADMIXTURE

Alexander et al., 2009; 
https://dalexander.​
github.io/admixture/ RRID:SCR_001263 Version 1.3.0

Software, algorithm SAIGEgds

Zheng and Davis, 
2021; https://www.​
bioconductor.org/​
packages/release/bioc/​
html/SAIGEgds.html Version 1.10.0

Software, algorithm METAL

Willer et al., 2010; 
https://csg.sph.umich.​
edu/abecasis/metal/ RRID:SCR_002013 Version 2011-03-25

Software, algorithm FUMA
Watanabe et al., 2017; 
https://fuma.ctglab.nl/ RRID:SCR_017521 Version 1.5.2

Software, algorithm MAMBA

McGuire et al., 2021; 
https://github.com/​
dan11mcguire/mamba Version 1

Software, algorithm
S-PrediXcan; S-
MultiXcan

Barbeira et al., 2018; 
https://github.com/​
hakyimlab/MetaXcan RRID:SCR_016739 Version 1

Software, algorithm
GTEx v8 mashr 
prediction models

https://predictdb.org/​
post/2021/07/21/gtex-​
v8-models-on-eqtl-and-​
sqtl/

Other GWAS Catalog
https://www.ebi.ac.uk/​
gwas/ RRID:SCR_012745

Section ‘Definition 
of the genetic risk 
loci and putative 
functional impact’

GWAS in Latin Americans from SCOURGE
The SCOURGE Latin American cohort
A total of 3729 COVID-19-positive cases were recruited across five countries from Latin America 
(Mexico, Brazil, Colombia, Paraguay, and Ecuador) by 13 participating centers (Supplementary file 1) 
from March 2020 to July 2021. In addition, we included 1082 COVID-19-positive individuals recruited 
between March and December 2020 in Spain who either had evidence of origin from a Latin Amer-
ican country or showed inferred genetic admixture between AMR, EUR, and AFR (with <0.05% SAS/
EAS). These individuals were excluded from a previous SCOURGE study that focused on participants 
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with European genetic ancestries (Cruz et al., 2022). We used hospitalization as a proxy for disease 
severity and defined COVID-19-positive patients who underwent hospitalization as a consequence of 
the infection as cases and those who did not need hospitalization due to COVID-19 as controls.

Samples and data were collected with informed consent after the approval of the Ethics and Scien-
tific Committees from the participating centers and by the Galician Ethics Committee Ref 2020/197. 
Recruitment of patients from IMSS (in Mexico City) was approved by the National Committee of Clin-
ical Research from Instituto Mexicano del Seguro Social, Mexico (protocol R-2020-785-082).

Samples and data were processed following normalized procedures. The REDCap electronic data 
capture tool (Harris et al., 2009; Harris et al., 2019), hosted at Centro de Investigación Biomédica 
en Red (CIBER) from the Instituto de Salud Carlos III (ISCIII), was used to collect and manage demo-
graphic, epidemiological, and clinical variables. Subjects were diagnosed with COVID-19 based on 
quantitative PCR tests (79.3%) or according to clinical (2.2%) or laboratory procedures (antibody tests: 
16.3%; other microbiological tests: 2.2%).

SNP array genotyping
Genomic DNA was obtained from peripheral blood and isolated using the Chemagic DNA Blood 100 
kit (PerkinElmer Chemagen Technologies GmbH), following the manufacturer’s recommendations.

Samples were genotyped with the Axiom Spain Biobank Array (Thermo Fisher Scientific) following 
the manufacturer’s instructions in the Santiago de Compostela Node of the National Genotyping 
Center (CeGen-ISCIII; http://www.usc.es/cegen). This array contains probes for genotyping a total of 
757,836 SNPs. Clustering and genotype calling were performed using Axiom Analysis Suite v4.0.3.3 
software.

Quality control steps and variant imputation
A quality control (QC) procedure using PLINK 1.9 (Purcell et al., 2007) was applied to both samples 
and the genotyped SNPs. We excluded variants with a minor allele frequency (MAF)  <1%, a call 
rate <98%, and markers strongly deviating from Hardy–Weinberg equilibrium expectations (p<1 × 
10–6) with mid-p adjustment. We also explored the excess of heterozygosity to discard potential cross-
sample contamination. Samples missing >2% of the variants were filtered out. Subsequently, we kept 
the autosomal SNPs, removed high-LD regions, and conducted LD pruning (windows of 1000 SNPs, 
with a step size of 80 and an r2 threshold of 0.1) to assess kinship and estimate the global ancestral 
proportions. Kinship was evaluated based on IBD values, removing one individual from each pair with 
PI_HAT > 0.25 that showed a Z0, Z1, and Z2 coherent pattern (according to the theoretical expected 
values for each relatedness level). Genetic principal components (PCs) were calculated with PLINK 
with the subset of LD pruned variants.

Genotypes were imputed with the TOPMed version r2 reference panel (GRCh38) using the 
TOPMed Imputation Server, and variants with Rsq < 0.3 or with MAF <1% were filtered out. A total of 
4348 individuals and 10,671,028 genetic variants were included in the analyses.

Genetic admixture estimation
Global GIA, referred to the genetic similarity to the used reference individuals, was estimated with 
ADMIXTURE (Alexander et  al., 2009) v1.3 software following a two-step procedure. First, we 
randomly sampled 79 European (EUR) and 79 African (AFR) samples from The 1000 Genomes Project 
(1KGP) (Auton et al., 2015) and merged them with the 79 Native American (AMR) samples from 
Mao et al., 2007 keeping the biallelic SNPs. LD-pruned variants were selected from this merge using 
the same parameters as in the QC. We then ran an unsupervised analysis with K = 3 to redefine and 
homogenize the clusters and to compose a refined reference for the analyses by applying a threshold 
of ≥95% of belonging to a particular cluster. As a result, 20 AFR, 18 EUR, and 38 AMR individuals were 
removed. The same LD-pruned variants data from the remaining individuals were merged with the 
SCOURGE Latin American cohort to perform supervised clustering and estimate admixture propor-
tions. A total of 471 samples from the SCOURGE cohort with >80% estimated European GIA were 
removed to reduce the weight of the European ancestral component, leaving a total of 3512 admixed 
Latin American (AMR) subjects for downstream analyses.

https://doi.org/10.7554/eLife.93666
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Association analysis
The results for the SCOURGE Latin American GWAS were obtained by testing for COVID-19 hospital-
ization as a surrogate of severity. To accommodate the continuum of GIA in the cohort, we opted for 
a joint testing of all the individuals as a single study using a mixed regression model as this approach 
has demonstrated a greater power and sufficient control of population structure (Wojcik et al., 2019). 
The SCOURGE cohort consisted of 3512 COVID-19-positive patients: cases (n = 1625) were defined 
as hospitalized COVID-19 patients, and controls (n = 1887) were defined as non-hospitalized COVID-
19-positive patients.

Logistic mixed regression models were fitted using the SAIGEgds (Zheng and Davis, 2021) 
package in R, which implements the two-step mixed SAIGE (Zhou et al., 2018) model methodology 
and the SPA test. Baseline covariables included sex, age (continuous), and the first 10 PCs. To account 
for potential heterogeneity in the recruitment and hospitalization criteria across the participating 
countries, we adjusted the models by groups of the recruitment areas classified into six categories: 
Brazil, Colombia, Ecuador, Mexico, Paraguay, and Spain. This dataset has not been used in any previ-
ously published GWAS of COVID-19.

Meta-analysis of Latin American populations
The results of the SCOURGE Latin American cohort were meta-analyzed with the AMR HGI-B2 data, 
conforming our primary analysis. Summary results from the HGI freeze 7 B2 analysis corresponding 
to the admixed AMR population were obtained from the public repository (April 8, 2022: https://
www.covid19hg.org/results/r7/), summing up 3077 cases and 66,686 controls from seven contributing 
studies. We selected the B2 phenotype definition because it offered more power, and the presence of 
population controls not ascertained for COVID-19 does not have a drastic impact on the association 
results.

The meta-analysis was performed using an inverse-variance weighting method in METAL (Willer 
et al., 2010). The average allele frequency was calculated, and variants with low imputation quality 
(Rsq < 0.3) were filtered out, leaving 10,121,172 variants for meta-analysis.

Heterogeneity between studies was evaluated with Cochran’s Q-test. The inflation of results was 
assessed based on a genomic control (lambda).

Replicability of associations
The model-based method MAMBA (McGuire et al., 2021) was used to calculate the posterior prob-
abilities of replication for each of the lead variant (PPR; PP that an SNP has a non-zero replicable 
effect). We defined PPR <0.1 as a low posterior probability of replication, following the original paper, 
whereas those with a PPR >90% were considered consistent and likely to replicate in future studies. 
Variants with p<1 × 10–05 were clumped and combined with random pruned variants from the 1KGP 
AMR reference panel. Then, MAMBA was applied to the set of significant and non-significant variants.

Each of the lead variants was also tested for association with the main comorbidities in the SCOURGE 
cohort with logistic regression models (adjusted by the same base covariables as the GWAS).

Definition of the genetic risk loci and putative functional impact
Definition of lead variant and novel loci
To define the lead variants in the loci that were genome-wide significant, LD-clumping was performed 
on the meta-analysis data using a threshold p-value<5 × 10–8, clump distance = 1500 kb, indepen-
dence set at a threshold r2 = 0.1 and the SCOURGE cohort genotype data as the LD reference panel. 
Independent loci were deemed as a novel finding if they met the following criteria: (1) p-value<5 × 
10–8 in the meta-analysis and p-value>5 × 10–8 in the HGI B2 ALL meta-analysis or in the HGI B2 AMR 
and AFR and EUR analyses when considered separately; (2) Cochran’s Q-test for heterogeneity of 
effects is <0.05/Nloci, where Nloci is the number of independent variants with p<5 × 10–8; and (3) the 
nearest gene has not been previously described in the latest HGIv7 update.

Annotation and initial mapping
Functional annotation was performed with FUMA (Watanabe et al., 2017) for those variants with 
a p-value<5 × 10–8 or in moderate-to-strong LD (r2 > 0.6) with the lead variants, where the LD was 
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calculated from the 1KGP AMR panel. Genetic risk loci were defined by collapsing LD blocks within 
250 kb. Then, genes, scaled CADD v1.4 scores, and RegulomeDB v1.1 scores were annotated for the 
resulting variants with ANNOVAR in FUMA (Watanabe et al., 2017). Gene-based analysis was also 
performed using MAGMA (de Leeuw et al., 2015) as implemented in FUMA under the SNP-wide 
mean model using the 1KGP AMR reference panel. Significance was set at a threshold p<2.66 × 10–6 
(which assumes that variants can be mapped to a total of 18,817 genes).

FUMA allowed us to perform initial gene mapping by two approaches: (1) positional mapping, 
which assigns variants to genes by physical distance using 10 kb windows; and (2) eQTL mapping 
based on GTEx v.8 data from whole blood, lungs, lymphocytes, and esophageal mucosa tissues, 
establishing a false discovery rate (FDR) of 0.05 to declare significance for variant–gene pairs.

Subsequently, to assign the variants to the most likely gene driving the association, we refined the 
candidate genes by fine mapping the discovered regions.

Bayesian fine-mapping
To conduct a Bayesian fine mapping, credible sets for the genetic loci considered novel findings were 
calculated on the results from each of the three meta-analyses to identify a subset of variants most 
likely containing the causal variant at the 95% confidence level, assuming that there is a single causal 
variant and that it has been tested. We used corrcoverage (https://cran.rstudio.com/web/packages/​
corrcoverage/index.html) for R to calculate the posterior probabilities of the variant being causal for 
all variants with an r2 > 0.1 with the leading SNP and within 1 Mb except for the novel variant in chro-
mosome 19, for which we used a window of 0.5 Mb. Variants were added to the credible set until the 
sum of the posterior probabilities was ≥0.95.

VEP and V2G annotation
We used the Variant-to-Gene (V2G) score to prioritize the genes that were most likely affected by 
the functional evidence based on eQTL, chromatin interactions, in silico functional predictions, and 
distance between the prioritized variants and transcription start site (TSS), based on data from the 
Open Targets Genetics portal (Ghoussaini et  al., 2021). Details of the data integration and the 
weighting of each of the datasets are described in detail at https://genetics-docs.opentargets.​
org/our-approach/data-pipeline. V2G is a score for ranking the functional genomics evidence that 
supports the connection between variants and genes (the higher the score the more likely the variant 
to be functionally implicated on the assigned gene). We used VEP release 111 (https://www.ensembl.​
org/info/docs/tools/vep/index.html; accessed April 10, 2024; McLaren et al., 2016) to annotate the 
following: gene symbol, function (exonic, intronic, intergenic, non-coding RNA, etc.), impact, feature 
type, feature, and biotype.

We queried the GWAS catalog (date of accession: 1/07/2024) for evidence of association of each 
of the prioritized genes with traits related to lung diseases or phenotypes. Lastly, those which were 
linked to COVID-19, infection, or lung diseases in the revised literature were classified as ‘literature 
evidence’.

Transcription-wide association studies
TWAS were conducted using the pretrained prediction models with MASHR-computed effect sizes 
on GTEx v8 datasets (Barbeira et al., 2019a; Barbeira et al., 2021). The results from the Latin Amer-
ican meta-analysis were harmonized and integrated with the prediction models through S-PrediXcan 
(Barbeira et al., 2018) for lung, whole blood, lymphocyte, and esophageal mucosal tissues. Statis-
tical significance was set at p-value<0.05 divided by the number of genes that were tested for each 
tissue. Subsequently, we leveraged results for all 49 tissues and ran a multitissue TWAS (S-MultiXcan) 
to improve the power for association, as demonstrated recently (Barbeira et al., 2019b). TWAS was 
also performed using recently published gene expression datasets derived from a cohort of African 
Americans, Puerto Ricans, and Mexican Americans (GALA II-SAGE) (Kachuri et al., 2023).

Cross-population meta-analyses
We conducted two additional meta-analyses to investigate the ability of combining populations 
to replicate our discovered risk loci. This methodology enabled the comparison of effects and the 

https://doi.org/10.7554/eLife.93666
https://cran.rstudio.com/web/packages/corrcoverage/index.html
https://cran.rstudio.com/web/packages/corrcoverage/index.html
https://genetics-docs.opentargets.org/our-approach/data-pipeline
https://genetics-docs.opentargets.org/our-approach/data-pipeline
https://www.ensembl.org/info/docs/tools/vep/index.html
https://www.ensembl.org/info/docs/tools/vep/index.html


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Diz-de Almeida, Cruz et al. eLife 2024;13:RP93666. DOI: https://doi.org/10.7554/eLife.93666 � 20 of 27

significance of associations in the novel risk loci between the results from analyses that included or 
excluded other population groups.

The first meta-analysis comprised the five populations analyzed within HGI (B2-ALL). Addition-
ally, to evaluate the three GIA components within the SCOURGE Latin American cohort (Bryc et al., 
2010), we conducted a meta-analysis of the admixed AMR, EUR, and AFR cohorts (B2). All summary 
statistics were retrieved from the HGI repository. We applied the same meta-analysis methodology 
and filters as in the admixed AMR meta-analysis.

Cross-population polygenic risk score
A PGS for critical COVID-19 was derived by combining the variants associated with hospitalization or 
disease severity that have been discovered to date. We curated a list of lead variants that were (1) 
associated with either severe disease or hospitalization in the latest HGIv7 release (Kanai et al., 2023) 
(using the hospitalization weights) or (2) associated with severe disease in the latest GenOMICC meta-
analysis (Pairo-Castineira et al., 2023) that were not reported in the latest HGI release. A total of 48 
markers were used in the PGS model (see Supplementary file 13) since two variants were absent 
from our study.

Scores were calculated and normalized for the SCOURGE Latin American cohort with PLINK 1.9. 
This cross-ancestry PGS was used as a predictor for hospitalization (COVID-19-positive patients who 
were hospitalized vs COVID-19-positive patients who did not necessitate hospital admission) by fitting 
a logistic regression model. Prediction accuracy for the PGS was assessed by performing 500 boot-
strap resamples of the increase in the pseudo-R2. We also divided the sample into deciles and percen-
tiles to assess risk stratification. The models were fit for the dependent variable adjusting for sex, age, 
the first 10 PCs, and the sampling region (in the admixed AMR cohort) with and without the PGS, and 
the partial pseudo-R2 was computed and averaged among the resamples.

A clinical severity scale was used in a multinomial regression model to further evaluate the power 
of this cross-ancestry PGS for risk stratification. These severity strata were defined as follows: (0) 
asymptomatic; (1) mild, that is, with symptoms, but without pulmonary infiltrates or need of oxygen 
therapy; (2) moderate, that is, with pulmonary infiltrates affecting <50% of the lungs or need of supple-
mental oxygen therapy; (3) severe disease, that is, with hospital admission and PaO2 <65 mmHg or 
SaO2 <90%, PaO2/FiO2<300, SaO2/FiO2<440, dyspnea, respiratory frequency ≥22 bpm, and infiltrates 
affecting >50% of the lungs; and (4) critical disease, that is, with an admission to the ICU or need of 
mechanical ventilation (invasive or noninvasive).
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wide significant loci in the SC-HGI_AMR GWAS meta-analysis, with ANNOVAR. NEA: non-effect 
allele; EA: effect allele; r2: maximum r2 of the SNP with one of the independent SNPs; IndSigSNP: 
the independent SNP which has the maximum r2 value with the SNP; dist: distance to the 
nearest gene; func: functional consequence of the SNP on the gene; CADD: CADD score; RDB: 
RegulomeDB score; minChrState: the minimum 15-core chromatin state across 127 tissues/cell 
types; commonChrState: the most common 15-core chromatin state across 127 tissues/cell types; 
posMapFilt: 1 if the SNP was used for positional mapping, 0 otherwise; eqtlMapFilt: 1 if the SNP was 
used for eQTL mapping, 0 otherwise.

•  Supplementary file 4. Results from the MAGMA gene-based analysis in the SC-HGI_AMR GWAS 
meta-analysis (hg37). NSNPS: number of SNPs in the gene; NPARAM: the number of relevant 
parameters used in the model; ZSTAT: z statistics.

•  Supplementary file 5. Prioritized genes by eQTL and positional mapping by FUMA in the SC-
HGI_AMR GWAS meta-analysis results (hg37). HUGO: HGNC gene symbol; pLI: pLI score from 
ExAC database, probability of being intolerant to loss of function (higher the score, higher the 
intolerance); ncRVIS: non-coding residual variation intolerance score (higher the score, higher 
intolerance to non-coding variation); posMapSNPs: number of SNPs mapped by positional 
mapping; posMapMaxCADD: the maximum CADD score of mapped SNPs by positional mapping; 
eqtlMapSNPS: the number of SNPs mapped to the genes based on eQTL mapping; eqtlMapminP: 
the minimum eQTL p-value of mapped SNPs; eqtlMapminQ: the minimum eQTL FDR of mapped 
SNPs; eqtlMapts: tissue of mapped eQTLs; eqtlDirection: consequential direction of mapped 
eQTL SNPs after aligning the risk alleles; minGwasP: minimum GWAS p-value of mapped eQTLs; 
IndSigSNPs: independent SNPs that are in LD with the mapped SNPs.

•  Supplementary file 6. Fine-mapped credible set derived with corrcoverage (95%) for the 
associated region in chromosome 2 (BAZ2B).

•  Supplementary file 7. VEP annotations for the variants included in the fine-mapped credible sets 
for the novel associated loci in chromosome 2 (hg38).

•  Supplementary file 8. V2G scores for the variants included in the fine-mapped credible sets in the 
novel risk loci from chromosomes 2 and 16 (hg38). Shaded in green, the prioritized gene by the V2G 
score.

•  Supplementary file 9. MultiXcan results for the SC-HGI_AMR GWAS meta-analysis. N: number 
of tissues available for the gene; n_indep: number of independent components of variation kept 
among the tissues' predictions; p_i_best: best p-value of single tissue S-prediXcan association; 
t_i_best: name of best single tissue S-prediXcan association; p_i_worst: worst p-value of single tissue 
S-prediXcan association; t_i_worst: name of worst single tissue S-prediXcan association; eigen_max: 
eigenvalue of the top independent component in the SVD decomposition of predicted expression 
correlation; eigen_min: eigenvalue of the last independent component in the SVD decomposition 
of predicted expression correlation; eigen_min_kept: eigenvalue of the smallest independent 
component that was kept in the SVD decomposition of predicted expression correlation; z_min: 
minimum z-score among single-tissue S-prediXcan associations; z_max: maximum z-score among 
single-tissue S-prediXcan associations; z_mean: mean z-score among single tissue S-prediXcan 
associations; z_sd: standard deviation of the mean z-score among single-tissue S-prediXcan 
associations; tmi: trace of T*T', where T is the correlation of predicted expression levels for different 
tissues multiplied by its SVD pseudo-inverse and is an estimate for the number of independent 
components of variation in predicted expression across tissues.

•  Supplementary file 10. Top 10 genes for the TWAS trained with the GALA II-SAGE models in 
admixed Americans. Bonferroni correction thresholds: Pooled p<4.19E-06; PR p<4.99E-06; MX 
p<5.19E-06; AA p<4.67E-06. Var_g: variance of the gene expression; pred_perf_r2: cross-validated 
R2 of tissue model’s correlation to gene’s measured transcriptome; pref_perf_qval: qval of tissue 
model’s correlation to gene’s measured transcriptome; n_snps_used: number of snps from GWAS 
used in S-prediXcan analysis; n_snp_in_cov: number of snps in the covariance matrix; n_snps_in_
model: number of snps in the model; best_gwas_p: the highest p-value from GWAS snps used in this 
model; largest_weight: the largest weight in this model.

•  Supplementary file 11. Independent variants with p-value<1e-05 in the SC-HGI_ALL GWAS meta-
analysis (hg38). EA: effect allele; NEA: non-effect allele; EAF_avg: averaged effect allele frequency; 
FreqSE: standard error of averaged effect allele frequency.

•  Supplementary file 12. Results of the 40 lead variants associated with COVID-19 hospitalization 
in the HGIv7 (hg38). SC-HGI_ALL: meta-analysis SCOURGE-HGI_ALL; SC-HGI_AMR: meta-analysis 
SCOURGE-HGI_AMR; SC-HGI_3POP: meta-analysis SCOURGE-HGI_3POP.
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•  Supplementary file 13. Independent variants with p-value<1e-05 in the SC-HGI_3POP GWAS 
meta-analysis (hg38). EA: effect allele; NEA: non-effect allele; EAF_avg: average effect allele 
frequency; FreqSE: standard error of averaged effect allele frequency.

•  Supplementary file 14. Instruments used in the polygenic risk score model (hg38).

•  Supplementary file 15. Multinomial regression results. Reference class for the multinomial 
regression is ‘asymptomatic’.

•  MDAR checklist 

Data availability
Summary statistics from the SCOURGE Latin American GWAS and the analysis scripts are avail-
able from the public repository https://github.com/CIBERER/Scourge-COVID19 (copy archived at 
CIBERER, 2024).

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Consortium GTEx 2020 GTEx V8 https://www.​
gtexportal.​org/​home/​
downloads/​adult-​
gtex/​qtl

GTEx Portal, Single-Tissue 
cis-QTL

Consortium Genomes 
Project

2016 1000 Genomes Phase 3 https://www.​cog-​
genomics.​org/​plink/​2.​
0/​resources

PLINK 2.0 Resources, 1000 
Genomes phase 3

COVID-19 Host 
Genetics Initiative

2022 COVID19-hg GWAS meta-
analyses round 7

https://www.​
covid19hg.​org/​
results/​r7/

COVID-19 hg repository, r7
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