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 A B S T R A C T

Explainable Artificial Intelligence (xAI) plays a crucial role in enhancing our understanding of decision-making 
processes within black-box Machine Learning models. Our objective is to introduce various xAI methodologies, 
providing risk managers with accessible approaches to model interpretation. To exemplify this, we present a 
case study focused on mitigating surrender risk in insurance savings products. We begin by using real data 
from universal life policies to build logistic regression and tree-based models. Using a range of xAI techniques, 
we gain valuable insight into the inner workings of tree-based models. We then propose a novel supervised 
clustering approach that integrates Shapley values with a Kohonen neural network (KNN). The process involves 
three main steps: computing Shapley values from a supervised tree-based model; clustering individuals into 
homogeneous profiles using an unsupervised KNN; and interpreting these profiles with a supervised decision 
tree model. Finally, we present several key findings derived from the application of xAI techniques, which 
have the potential to enhance surrender risk management practices.
1. Introduction

Universal life insurance products include a surrender option that 
allows policyholders to exchange their existing contracts for the cash 
surrender value at any time during the contract’s term. This flexibility 
makes these products appealing in the insurance market but also intro-
duces surrender risk, i.e., the possibility of policyholders prematurely 
surrendering their policies, leading to financial losses for insurers. This 
risk extends beyond insurance to other financial products, such as 
savings accounts and certificates of deposit. These banking products, 
like insurance policies, are vulnerable to premature withdrawals or 
surrenders, including external or internal transfers, and partial or full 
withdrawals. The reasons for surrendering these products often overlap 
with those for surrendering insurance policies, such as changes in 
financial needs, new investment opportunities, or dissatisfaction with 
product performance.

Surrender risk is recognized as a major challenge in the life in-
surance industry (Burkhart, 2018; Campbell et al., 2014; Kling et al., 
2014) and has therefore received considerable attention in the liter-
ature. Recent studies specifically analyze the risk behavior associated 
with total withdrawals in savings products (Chang & Schmeiser, 2021; 
Huang et al., 2021), while others focus on quantifying the potential 
economic impact of this risk on insurance companies (Chunli & Jing, 
2018; Hwang et al., 2021; Vincenzo et al., 2017).
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In this context, both risk managers and academics have recognized 
the importance of quantifying risks and identifying their determinants, 
leading to a growing reliance on statistical models (Eling & Kochanski, 
2013; Kiermayer, 2022). Statistical models systematically analyze his-
torical data, identify patterns, and predict events, helping organizations 
understand the likelihood and impact of risk for better decision-making 
and resource allocation. For surrender risk, logistic regression has long 
been the most widely used method (Kiesenbauer, 2012; Kim, 2005). 
However, the growing demand for more effective surrender risk man-
agement has recently driven the adoption of Artificial Intelligence (AI) 
and Machine Learning (ML) techniques to more precisely analyze the 
likelihood of surrender events (Jia et al., 2024; Loisel et al., 2021).

In this new context, risk managers face the challenge of under-
standing, trusting, and effectively managing the outcomes produced 
by these advanced techniques. This paper aims to improve surrender 
risk management by introducing risk managers to eXplainable Artifi-
cial Intelligence (xAI) techniques, which offer valuable insights into 
surrender risk behavior. Owens et al. (2022), in a systematic review 
of xAI applications in insurance, highlight that only a small fraction 
of the studies reviewed address the use of xAI techniques in risk 
management (Azzone et al., 2022). These techniques may contribute to 
better decision-making by (1) facilitating critical knowledge extraction 
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and rule identification, and (2) boosting confidence in the predictive 
accuracy of black-box ML models.

More specifically, this paper has a twofold objective: first, to ad-
vance comprehension of existing xAI techniques for analyzing surren-
der risk; and, second, to propose a new methodology (building on 
the approach by Bermúdez et al., 2023) for identifying clusters of 
policyholders with either high or low probability of surrendering their 
policies. Finally, using a real dataset, we discuss ways of integrating 
the insights gained from this analysis into risk management strategies.

As noted in Mensah et al. (2024), while AI and ML offer substantial 
benefits in enhancing risk management within the banking and insur-
ance industries, thus contributing to greater financial stability, they 
also bring significant risks and challenges. These include cybersecurity 
threats, systemic vulnerabilities, the privacy of personal data (Abdul-
baqi et al., 2023) and other regulatory, ethical, and social concerns 
-all of which require attention. Enhancing the transparency and inter-
pretability of ML models enables risk managers to better understand 
their limitations and biases, resulting in improved decision-making and 
better results for organizations and stakeholders.

The remainder of this paper is structured as follows. The ‘‘Data and 
Methods’’ section describes the real dataset, outlines the fundamental 
concepts of ML models and xAI techniques, and provides justification 
for the development of novel xAI approaches, such as the one proposed 
in this paper. The sections ‘‘Results’’ and ‘‘Discussion’’ present the 
findings and explore their implications for risk management, respec-
tively. Finally, the ‘‘Conclusions’’ section summarizes the key points and 
suggests areas for future research.

2. Data and methods

The dataset consists of policies issued by a life and non-life in-
surance company operating in the Spanish market during 2018 and 
2019. It focuses on universal life insurance products, specifically those 
active as of December 31, 2018. In total, the dataset includes 49,810 
policies, with 9.02% (4494 policies) surrendered by December 31, 
2019. Table  1 provides a detailed overview of policy features, including 
the characteristics of the policyholder and the product, and the status 
of the policy.

Our analysis adopts a short-term perspective (one year ahead). 
This approach is intentional, as it enables a focused examination of 
the inherent policy underwriting features, excluding external factors 
such as market interest rates and the broader economic environment. 
Although these external elements may influence the probability of 
surrender risk, analyzing their impact would require additional external 
data sources and the application of dynamic modeling techniques, both 
of which are beyond the scope of the present study.

Although the adoption of a short-term perspective may be ques-
tioned due to the long-term nature of universal life contracts, this 
assumption aligns with the objectives outlined in the Introduction. 
Specifically, the focus on internal factors, which are typically stable 
over time and controllable by the insurer, justifies this approach.

Table  1 includes the variable fee, which indicates that certain life 
insurance products require an initial deposit that serves as a surrender 
fee in cases of early termination. This deposit aims to mitigate the risk 
of surrendering. Essentially, it represents a charge that policyholders 
agree to pay if they cancel the policy within a specified period, typically 
during the early years of the contract (up to 10 years). The table 
also includes the variable res, which represents the fund value for 
the current period. This value corresponds to the surrender value, 
calculated as the cash value minus any applicable surrender fees, which 
policyholders receive if they choose to terminate the policy before its 
maturity. The remaining variables are related to the characteristics of 
the policyholder, such as age and gender of the insured, as well as char-
acteristics of the policy itself, such as the time since inception, annual 
premium, years remaining until the last premium to be paid, additional 
2 
Table 1
Definition of selected variables.
 Variable Definition

 sur Policy status (1: Surrendered, 0: Active)  
 res Current value of the fund (e)  
 prem Total annual premium (e)  
 age Current age of the insured  
 loy Number of years the policy has been in force  
 rem Years remaining until final premium as per contract  
 gen Gender of the insured (1: Female, 0: Male)  
 cap Additional sum insured in case of death (1: High; 0: Low)  
 freq Premium payment frequency (1: Other; 0: Monthly)  
 incr Annual premium increment (1: Variable; 0: Constant)  
 pay Active premium payment (1: Yes, 0: No)  
 unl Unit-linked product (1: Yes, 0: No)  
 tax Product with tax advantages (1: Yes, 0: No)  
 fee Product with active surrender fee (1: Yes, 0: No)  
 rate Product with fixed guaranteed interest rate (1: Yes, 0: No) 

sum insured in case of death, and product-related characteristics such 
as tax advantages or a guaranteed interest rate.

Tables  2 and 3 provide descriptive statistics for numerical and 
categorical explanatory variables, respectively, categorized according 
to whether they belong to the subset of surrendered policies or the 
complementary subset of policies that remain in force at the end of 
the 2018–2019 period. Both subsets exhibit similar behavior, making it 
difficult to discern a clear pattern in the data. However, policies in force 
generally show higher premium and reserve values, a larger proportion 
of high capital amounts, and a slightly greater presence of policies with 
active surrender fees.

2.1. Predictive models

To analyze the likelihood of surrender events, risk managers model 
a conditional Bernoulli random variable, such as the policy status (sur) 
of policy 𝑖 for period 𝑡 + 1, given that the policy is active in period 
𝑡. Within this framework, the state of policy 𝑖 at time 𝑡 is classified 
as 0 (Active or negative case) or 1 (Surrendered or positive case). 
The objective is to predict the state of policy 𝑖 for the next period 
𝑡 + 1, based on its active state in the current period 𝑡. Although the 
probability of surrender, 𝜋(𝑡), is unknown, it is assumed to depend on 
the specific characteristics of each policy 𝑖 at time 𝑡. This modeling 
approach enables an exploration of the dynamics of policy surrender 
and the factors that influence the likelihood of a policy transitioning 
from an active to a surrendered state.

In this study, we evaluate a range of predictive models, includ-
ing logistic regressions (LR) and tree-based models such as decision 
trees (DT), random forests (RF), and extreme gradient boosting (XGB). 
While logistic regression and decision trees offer traditional approaches 
with easily interpretable explanations of feature importance, the other 
ML models employ more advanced methodologies, each with distinct 
strengths and applications. For example, RF models use ensemble learn-
ing by constructing multiple decision trees during training and ag-
gregating their outputs (e.g., by taking the mode for classification 
tasks). XGB models are based on a similar concept, but construct weak 
learners sequentially, optimizing a differentiable loss function through 
gradient descent. These iterative processes often improve predictive 
performance but come at the expense of interpretability, making these 
models commonly referred to as ‘‘black-box’’ ML models. As detailed in 
the following subsections, xAI techniques can help address these inter-
pretability challenges, shedding light on the decision-making processes 
and results of these complex models.

To assess the performance of the classification models and validate 
the results, we use various metrics derived from the confusion matrix 
for each model, including accuracy, sensitivity, and specificity. In 
addition, the receiver operating characteristic (ROC) curve and the area 
under the ROC curve (AUC) were used for further evaluation. For all 
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Table 2
Descriptive statistics for the numerical explanatory variables.
 Surrendered policies
 Variable Mean Min. 25th Pctl. Median 75th Pctl. Max.

 rem 15.94 0 6.00 10.00 21.00 77.00
 res 5,298.95 36.75 1,035.88 2,368.80 5,754.39 298,228.28
 prem 804.20 0 532.70 565.20 1,065.50 10,654.80
 age 46.39 15.00 38.00 45.00 55.00 83.00
 loy 4.66 1.00 2.00 3.00 6.00 29.00

 Active policies
 Variable Mean Min. 25th Pctl. Median 75th Pctl. Max.

 rem 14.36 0 6.00 10.00 19.00 80.00
 res 10,882.20 6.50 1,834.60 4,388.50 10,707.20 2,523,190.80
 prem 881.20 0 532.70 639.30 1,065.50 31,964.40
 age 48.14 16.00 41.00 48.00 56.00 90.00
 loy 6.21 1.00 2.00 5.00 8.00 35.00
Table 3
Descriptive statistics for the categorical explanatory variables.
 Surrendered policies
 Variable Levels

 gen Male (1,939–46.97%); Female (2,555–53.03%)  
 incr Constant (1,712–38.10%); Variable (2,782–61.90%)  
 freq Monthly (289–6.43%); Other (4,205–93.57%)  
 cap Low (2,211–49.20%); High (2,283–50.80%)  
 pay Yes (3,660–81.44%); No (834–18.56%)  
 unl Yes (923–20.54%); No (3,571–79.46%)  
 tax Yes (1,729–38.47%); No (2,765–61.53%)  
 fee Yes (2,204–49.04%); No (2,290–50.96%)  
 rate Yes (85–1.90%); No (4,409–98.11%)  

 Active policies
 Variable Levels

 gen Male (20,444–45.18%); Female (24,872–54.82%)  
 incr Constant (14,024–30.95%); Variable (31,292–69.05%) 
 freq Monthly (4,364–9.63%); Other (40,952–90.37%)  
 cap Low (16,544–36.51%); High (28,772–63.49%)  
 pay Yes (38,954–85.96%); No (6,362–14.04%)  
 unl Yes (7,407–16.35%); No (37,909–83.65%)  
 tax Yes (11,607–25.61%); No (33,709–74.39%)  
 fee Yes (25,595–56.48%); No (19,721–43.52%)  
 rate Yes (2,983–6.58%); No (42,333–93.42%)  

models, 80% of the data is used for training (through 5 repeated 10-
fold cross-validation), with the remaining 20% reserved for testing. The
caret R package is used to fit each of the predictive models.

When it comes to handling data, the number of policies with a 
surrendered state is much smaller than the number of in-force policies, 
leading to an imbalanced dataset. This imbalance arises from limited 
prior exposure or information about the relevant events, often linked 
to rare or previously unobserved occurrences. As a result, building pre-
dictive models for binary classification with such imbalanced datasets 
can lead to unreliable outcomes (Japkowicz & Stephen, 2002). To 
address this issue, we explore resampling techniques (Chawla et al., 
2002) to determine the most suitable method for our data in terms of 
performance, using metrics such as AUC.

2.2. xAI methods

As noted earlier, risk managers can incorporate xAI methods into 
their analyses to gain a more comprehensive understanding of model 
behavior. This deeper insight enables them to translate the model’s 
findings into meaningful policyholder profiles, thereby improving risk 
management strategies.

Here, we focus specifically on model-agnostic xAI methods, which 
are versatile and can be applied to any ML algorithm. These methods 
are generally post-hoc, meaning they are used after the model has 
made its predictions. They can offer either global insight, explaining 
3 
the behavior of the entire model, or local insight, focusing on individual 
predictions (Adadi & Berrada, 2018).

To support risk managers in their decision-making process, we 
begin by introducing the most widely used xAI techniques. For global 
xAI methods, we emphasize feature importance (FI) techniques, which 
identify the most influential features, as well as visualization tools like 
partial dependence plots (PDP) and accumulated local effects (ALE), 
which illustrate how predictions change with variations in specific 
features while others are held constant. For local xAI techniques, we 
focus on Shapley values, which use game theory to assign a value to 
each input feature based on its contribution to prediction (Lundberg 
& Lee, 2017), providing insight into the reasoning behind a model’s 
decision for a specific data point.

Throughout the study, we use the iml (interpretable machine learn-
ing) R package to apply the most common xAI techniques.

2.3. Clustering model’s predictions with xAI techniques

Using the xAI techniques mentioned above, risk managers can pin-
point the most relevant features (e.g., using FI and ALE) that any ML 
model employs to predict the probability of surrender. In addition, they 
can determine the exact contribution of each feature to the surrender 
likelihood prediction for every individual policyholder (e.g., using 
Shapley values).

However, risk managers may also be interested in identifying clus-
ters of policyholders with similar surrender likelihood predictions or 
comparable predictive capabilities. Risks within the same cluster are 
likely to exhibit shared properties, potentially requiring similar risk 
response strategies. This approach enables risk managers to allocate 
resources more effectively, prioritizing the most critical clusters or 
those with greater predictive confidence.

As a key contribution of this paper, we propose adapting the Shapley 
values technique to a global xAI tool. Inspired by Bussmann et al. 
(2020), Gramegna and Giudici (2020) and Cooper et al. (2021), and 
expanding (Bermúdez et al., 2023), our supervised clustering approach 
combines Shapley values with a Kohonen neural network (KNN) to 
group similar policyholders based on their Shapley values, thus clus-
tering them according to shared predictive outputs and characteristics.

In summary, we adopt a three-step process: (1) applying the xAI 
technique (Shapley values) to a supervised ML model; (2) identifying 
homogeneous profiles using an unsupervised model (KNN); and (3) 
using a supervised model (decision tree) to gain a deeper understanding 
of these profiles.

In the first step, after fitting a ML model to the data and obtaining 
surrender likelihood predictions for all policyholders, we calculate the 
Shapley values of the features for all policyholders. Beyond providing 
local interpretations for each policyholder (i.e., indicating the contribu-
tion of each feature to their individual prediction), these Shapley values 
can also serve as a global interpretability tool, as outlined in the second 
step of this approach.



L. Bermúdez et al. European Research on Management and Business Economics 31 (2025) 100286 
Fig. 1. Performance metrics box-plots (ROC, sensitivity, and specificity) of logistic 
regression (LR), random forest (RF), and extreme gradient boosting (XGB) models.

In the second step, we apply a clustering technique to group policy-
holders with similar Shapley values, which reflect similar predictions 
and characteristics. For visualization purposes, we propose using a 
Kohonen neural network (KNN), also known as a self-organizing map 
(SOM), trained with the Shapley values to identify different policy-
holder profiles. The KNN is an unsupervised learning algorithm widely 
used for data visualization, clustering, and pattern recognition (Huys-
mans et al., 2006). This step offers a complementary global perspective 
on the various profiles leveraged by the ML model in its predictions.

Finally, we introduce a third step to gain a deeper understanding 
of these profiles. Using the cluster assigned to each policyholder from 
the SOM map as the response variable, and the original features of 
each policyholder as covariates, we construct a decision tree without 
growth constraints. This approach reveals the rules governing each 
branch and final nodes, providing detailed information about profiles 
with similar Shapley values and the characteristics of the policyholders 
within them. This step serves to approximate the initial ML model 
with an interpretable framework, giving clearer insight into the factors 
driving the predictions and the different levels of confidence associated 
with them.

For this approach, we used the kohonen and caret R packages.

3. Results

3.1. Fitting models

The preparatory phase includes analyzing alternatives to address 
dataset imbalance, normalizing and scaling continuous variables, and 
partitioning the data for cross-validation, with 80% allocated for train-
ing and the remaining 20% reserved for testing.

As previously discussed, the dataset is heavily skewed towards 0 
(Active or negative; 90.98%) compared to 1 (Surrendered or posi-
tive; 9.02%). Without proper data treatment before building predictive 
models, these models would likely underestimate the probability of 
surrender events. To address this, multiple runs of each model were 
conducted and evaluated using the resampling techniques outlined in 
Section 2.1 (e.g., undersampling, oversampling, SMOTE and ROSE). 
Using repeated k-fold cross-validation (with k = 10, repeated five times) 
and standard performance metrics, the undersampling technique was 
identified as the most suitable approach.

After refitting the LR, RF and XGB models using the undersampling 
technique, their predictive accuracies were compared using standard 
performance metrics (see Fig.  1). In this comparison, the black-box 
models (RF and XGB) demonstrated higher predictive accuracy than 
the LR model.

In the next section, we enhance managerial skills by emphasizing 
the usability of global xAI techniques to interpret, understand, and 
build trust in the fitted RF model.
4 
3.2. xAI: interpreting the RF model

Feature importance (FI) techniques identify the factors that most 
significantly influence model predictions. The importance of each ex-
planatory variable is measured by removing it from the model and 
evaluating the resulting reduction in the model performance. As shown 
in Fig.  2, FI scores highlight the key features driving the prediction 
of surrender events in our model. The numerical features, such as res
and prem (indicators of the commitment of the policyholder), emerge 
as critical factors. In contrast, categorical features related to the char-
acteristics of the policyholder and the product, such as freq and gen, 
appear to have minimal impact on the predictions.

However, FI does not offer insight into how the most important 
variables affect the predictions of a model. Accumulated local effects 
(ALE) plots address this by illustrating how features impact the model 
predictions on average, with the most influential features exhibiting 
the highest ALE values. Furthermore, the nature of ALE plots accounts 
for nonlinear effects of individual features and interactions between 
features.

Fig.  3 shows the ALE plots for all the features of the RF model. 
The ALE value can be interpreted as the main effect of the feature at 
a certain value of the feature compared to the average prediction of 
the data (an ALE value of 0 indicates a neutral effect of the feature). 
For example, in the case of the feature rem, the average prediction 
decreases as the number of remaining years to the final premium 
increases. Specifically, rem has a positive effect up to 2–3 years, a 
neutral effect between 3 and 25 years, and a negative effect beyond 
25 years.

Focusing on the most influencing features, we see that premium 
payments of up to 500ereduce the surrender risk, whereas payments 
exceeding this amount increase the risk, with a positive effect on the 
average prediction beyond 1200e. In contrast, the surrender risk grad-
ually decreases as policyholders accumulate higher fund values, except 
for very low fund values (typically associated with recent policies) that 
exhibit a low average prediction.

To a lesser extent, influential categorical features impact the sur-
render risk: policies with tax benefits (tax), constant premium (incr), 
or inactive premium payments (pay) exhibit an increased surrender 
risk while, in contrast, products with an active surrender charge (fee) 
mitigate this risk.

It is worth noting that the FI score for a feature in Fig.  2 considers 
both the main effect (its direct impact in isolation) and the interac-
tion effects (influence arising from interactions with other features) 
on model performance. Second-order ALE plots, which exclude main 
effects, estimate the combined impact of feature pairs on predictions, 
allowing managers to interpret feature interactions more effectively.

We start by identifying the interacting features within this RF model 
using the H-statistic from (Friedman & Popescu, 2008) to measure their 
strength. For purposes of illustration, we focus on the most significant 
interaction observed: between res and prem (see Fig.  4). Specifically, 
for funds below 10,000e, the effect on predictions varies according to 
annual premium payments. When prem is below 300e, the effect on 
surrender prediction is negative, mitigating surrender risk. In contrast, 
for prem above 300e, the effect is neutral or positive, increasing 
surrender risk. For funds exceeding 10,000e, the second-order ALE plot 
does not reveal a clear pattern.

After introducing the most common global xAI techniques, we turn 
our focus to understanding the prediction output for a particular indi-
vidual by considering its specific input values. In this regard, Shapley 
values are a commonly used local xAI method to understand the 
importance of characteristics in individual predictions. Each Shapley 
value quantifies the contribution of a feature to the disparity between 
the model prediction for a single instance and the average prediction 
(approximately 45% in our analysis).

Fig.  5 displays the individual Shapley values for two policyholders 
(one with a low surrender prediction and the other with a high sur-
render prediction). Policy 1, held by a middle-aged policyholder (46) 
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Fig. 2. Feature importance (FI) of the RF model.
Fig. 3. Accumulated local effects (ALE) for all features of the RF model. The res feature is expressed in thousands of e, while the prem feature is expressed in hundreds of e.
Fig. 4. Second-order ALE for prem and res. The res feature is expressed in thousands of e, while the prem feature is expressed in hundreds of e.
for 13 years, features a very high reserve fund and annual premiums. 
The RF model accurately predicts it as an active policy, assigning a 
surrender probability of 0.09. In contrast, Policy 2, owned by a young 
5 
policyholder (25) for just one year, has a very low reserve fund but 
significant annual premiums. The model correctly classifies it as a 
surrendered policy with a surrender probability of 0.98. In both cases, 
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Fig. 5. On the left: Shapley values for a policy with low likelihood of total surrender. On the right: Shapley values for a policy with high likelihood of total surrender. The res
feature is expressed in thousands of e, while the prem feature is expressed in hundreds of e.
Fig. 6. Average Shapley values for all observations in the testing dataset, grouped by each cell of the confusion matrix, alongside the corresponding boxplots of the predicted 
surrender probabilities.
the reserve fund is the most influential feature, exerting a negative 
effect in Policy 1 and a positive effect in Policy 2. Note that the high 
surrender probability assigned to Policy 2 is largely influenced by the 
interaction effect depicted in Fig.  4.

3.3. Clustering model’s predictions with Shapley values

As presented in Section 2.3, we propose adapting the Shapley values 
technique to a global xAI tool by clustering policyholders with similar 
Shapley values, that is, grouping them according to shared predictive 
outputs and features of importance.

Following the methodology outlined in Section 2.3, we start by com-
puting the Shapley values of the features for all policyholders. As a first 
approach to using Shapley values for global analysis, Fig.  6 presents 
the average Shapley values for all 9961 observations in the testing 
dataset, categorized by each cell of the confusion matrix, along with 
the corresponding boxplots of the predicted surrender probabilities.
6 
Fig.  6 illustrates that, as expected, policyholders predicted by the 
model to have Surrendered -both true positives (TP) and false positives 
(FP)- exhibit similar Shapley values, predominantly positive. Likewise, 
policyholders predicted to remain Active -true negatives (TN) and false 
negatives (FN)- demonstrate a comparable degree of similarity, though 
with negative values. Additionally, the boxplots of predicted surrender 
probabilities indicate that FP and FN (i.e., misclassifications) tend to 
occur when the predicted values are closer to the 0.5 threshold. How-
ever, there are no significant differences that enable the identification 
of patterns to better understand which characteristics affect the model’s 
accuracy or errors in predicting whether a policy will remain in force 
within a year.

To address this issue, we proceed to the second step by applying 
a Kohonen neural network (KNN), also known as a self-organizing 
map (SOM). This network is trained using the Shapley values, for all 
observations in the testing dataset, to identify distinct policyholder 
profiles that share similar Shapley values, and consequently exhibit 
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Fig. 7. On the left, the SOM map for all observations in the testing dataset. On the right, the same SOM map, categorized by Active (blue) and Surrendered (red) predicted 
statuses.
Fig. 8. Average Shapley values for all observations within each negative cluster, alongside the corresponding boxplots of the predicted surrender probabilities. The left column 
presents the mean feature values for each cluster. The res feature is expressed in thousands of e, while the prem feature is expressed in hundreds of e.
comparable predictions and feature importance characteristics. The 
inherent properties of the Shapley values, used as input features, allow 
the SOM model to function effectively. After performing several checks, 
we choose a SOM structure with a 6 × 6 hexagonal grid.

Fig.  7 presents the resulting SOM map for this case, which features 
13 distinct clusters of policyholders. These clusters can be grouped 
into two main areas: those shown in blue, where the majority of 
policies are predicted as Active by the RF model, and those in red, 
where the model predominantly predicts Surrendered policies. For the 
clusters in the lower triangle (1–4), the average predicted surrender 
probability is 31%, while for those in the upper triangle (5–13), the 
probability is 62%. This contrast highlights the ability of the SOM maps 
to differentiate between the cases predicted by the model as negative 
and those predicted as positive.

To gain a deeper understanding of each cluster, Figs.  8 and 9 display 
the average Shapley values for all observations within each cluster, 
analogous to the approach used in Fig.  6 for each cell of the confusion 
matrix.
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For illustration purposes, we focus on the cluster with the highest 
number of observations (Cluster 2). As shown in Fig.  8, the model pre-
dicted 3024 of 3302 policies as Active, achieving an overall accuracy 
of 94.4%. According to Shapley values, the most influential feature 
of this cluster is res, followed by tax, age, loy, and fee, all of which 
have a negative impact on prediction, thus reducing surrender risk. 
On average, this cluster comprises middle-aged policyholders (age =
49.37) with substantial fund values (res = 12,750e), holding policies 
without tax benefits (tax = 0.17) and approximately halfway through 
their duration (loy = 8.43, rem = 13).

Finally, after distributing the policies into clusters, we move to the 
third step by constructing a simple decision tree to visually illustrate 
the classification rules for all clusters and gain insight into the behavior 
of this specific RF model. As described in Section 2.3, we train a 
classification tree using the original variables of each policyholder as 
input features and the cluster assigned from the SOM map as the target 
variable. To visually distinguish the rules for the two target variable 
labels (Active and Surrendered), we also incorporate the output pre-
diction of the RF model as an additional input feature. We do not 
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Fig. 9. Average Shapley values for all observations within each positive cluster, alongside the corresponding boxplots of the predicted surrender probabilities. The left column 
presents the mean feature values for each cluster. The res feature is expressed in thousands of e, while the prem feature is expressed in hundreds of e.
 

impose growth constraints since our goal is not prediction, but rather 
visualizing rules, making overfitting irrelevant.

Fig.  10 presents the resulting decision tree, highlighting the branches
and nodes that influence the process. This visualization enhances the 
insights gained from each cluster and, more broadly, enables the identi-
fication of decision rules that explain the model’s behavior. In addition, 
the most relevant terminal nodes include different metrics to evaluate 
predictive performance, providing risk managers with information on 
various confidence levels.

In Fig.  10, once again focusing on Cluster 2 for illustrative purposes, 
we identify three final nodes where the majority of cases belong to 
this cluster. Excluding the node with fewer observations (80 cases), we 
first examine the node containing 2545 cases, of which 2314 belong to 
Cluster 2, with a misclassification rate of only 6% (1–2174/2314). The 
decision rule for this node corresponds to policies with medium fund 
values (between 3823eand 16,000e). In parallel, the final node with 
486 cases, 405 of which belong to Cluster 2, exhibits an even lower 
misclassification rate of 3%. The decision rule for this node applies to 
policies with large fund values (exceeding 16,000e) and a duration of 
less than 12 years.

Finally, it is important to highlight that Fig.  8 (or Fig.  9) and Fig. 
10 provide complementary insights into the decision-making process 
8 
of the RF model. As shown for Cluster 2, both options enable a more 
comprehensive analysis by presenting different perspectives on how the 
model arrives at its predictions.

4. Discussion

The xAI techniques introduced in this paper provide risk managers 
with valuable insights into how ML models generate their predictions, 
allowing them to uncover hidden trends that might not be immediately 
evident from raw data alone. In addition, xAI enhances managerial 
confidence in the predictive accuracy of models. This enhanced un-
derstanding enables managers to make more informed data-driven 
decisions and improve risk assessment strategies.

In this section, our goal is to summarize the key insights extracted 
by the RF model from the previous section, highlighting their relevance 
for risk managers and how these data-driven insights can be used to 
mitigate surrender risk.

To provide context for risk management, we outline some of the 
most commonly used strategies to enhance policyholder retention and 
reduce the likelihood of early withdrawals. The first set of mitigation 
measures focuses on product design, including customized and flexible 
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Fig. 10. Decision tree for classifying clusters of predicted policies, with the most relevant terminal nodes displaying various performance metrics.
policies (with regard to payment premium conditions, term condi-
tions, or financial options), and implementing surrender charges and/or 
loyalty benefits. The second group involves risk control measures, 
such as implementing Key Risk Indicators (KRIs) to identify at-risk 
policyholders and deploying targeted retention strategies through en-
hanced customer engagement efforts. Finally, other strategies follow 
risk-based pricing and underwriting approaches, adjusting them based 
on identified risk profiles while considering financial market trends and 
competitor offerings.

In terms of the level of confidence that a risk manager may have in 
the RF model, Fig.  1 indicates that the model has difficulty recognizing 
enough patterns to accurately classify the two possible states of the 
policy, with sensitivity and specificity rates both around 63%. This 
underscores the inherent complexity of the risk and the difficulty of 
capturing it accurately through predictive models.

However, Fig.  6 reveals a sharp contrast between the proportion 
of correctly classified negative cases among predicted negative cases 
(Negative Predictive Value, NPV) and the corresponding proportion for 
positive cases (Positive Predictive Value, PPV). Specifically, when the 
RF model predicts that a policy remains Active, it is correct 94.4% of 
the time (NPV). Conversely, when it predicts a policy as Surrendered, 
it is incorrect in 85.8% of cases (PPV).

Given that both true and false cases (whether for positive or neg-
ative predicted policies) exhibit similar Shapley values on average, 
the following considerations can be made. On the one hand, the risk 
manager can be highly confident that the policies predicted as Active by 
the RF model (primarily those within the profiles categorized as Active 
in Fig.  7) will indeed remain active. The small error margin, which 
accounts for just 5.6% of the classifications, can likely be attributed to 
unobserved characteristics that the model was unable to capture. On 
the other hand, the risk manager knows that most of the policies pre-
dicted as Surrendered by the RF model (mainly those within the profiles 
categorized as Surrendered in Fig.  7) will actually remain active. The 
risk manager may consider true cases as the proportion of policyholders 
who have exercised the surrender option this year, while the rest, 
sharing the same profile characteristics, can be considered at-risk. 
These at-risk policies may potentially surrender in subsequent years 
and therefore warrant the implementation of appropriate monitoring 
strategies as part of the risk management framework.
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In general, based on insights from global xAI techniques (see Figs. 
2 and 3), the numerical factors that most significantly impact model 
predictions are those related to policyholder commitment, such as fund 
value (res) and annual premium (prem), as well as factors associated 
with policy seniority, including the policy age (loy), remaining years 
of premium payments (rem), and the insured’s age (age). To a lesser 
extent, certain categorical features related to product characteristics, 
such as the presence of a surrender charge (fee), tax benefits (tax), 
incremental premiums (incr), or an active premium payment status 
(pay), also influence the model’s predictions.

However, due to the presence of nonlinear effects and interactions 
between features, the risk manager should be careful when interpreting 
the impact of these influential factors on surrender likelihood predic-
tions. For example, as shown in Fig.  4, for funds below 10,000e, the 
effect on predictions varies depending on annual premium payments. 
Another example, inferred from Fig.  3, is the nonlinear relationship 
between the insured’s age and the model’s predictions.

Given the limited accuracy of the current RF model and the lack 
of granularity in existing global xAI techniques to interpret it, new 
approaches are needed, such as the one proposed in Section 2.3. 
Our approach provides risk managers with profiles of policyholders 
who exhibit similar surrender likelihood predictions and individual 
characteristics, which may require similar risk response strategies. 
In the following paragraphs, based on Figs.  8–10, we analyze the 
characteristics that define each cluster of policyholders.

Starting with the four clusters categorized as Active (or negative),
Cluster 1 comprises policies with low premium and fund values, taken 
out many years ago by relatively young policyholders. Although these 
low values generally indicate a higher likelihood of surrender, reflected 
in the positive average Shapley values, this tendency is mitigated by 
the policyholders’ loyalty. Even after surpassing the surrender charge 
period and suspending premium payments, they continue to maintain 
their policies. In fact, this cluster exemplifies the interaction effect 
between the premium and reserve values, as analyzed in Fig.  4, where 
the low premium and fund values help mitigate surrender risk.

Cluster 2 includes middle-aged policyholders with substantial fund 
values, holding policies without tax benefits, and approximately mid-
way through their duration.
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In Cluster 3, most policies have accumulated significant fund values 
in a relatively short period, with the majority still subject to an active 
surrender fee. However, as shown in Fig.  10, a small subset mirrors the 
low premiums and fund values seen in Cluster 1. This cluster exhibits 
the lowest surrender probabilities and the highest NPV.

The final negative cluster, Cluster 4, consists of very young policies, 
most of which remain subject to an active surrender fee. Despite 
relatively high premiums, policyholders in this group have yet to 
accumulate significant fund values. The ongoing annual payment of in-
cremental premiums helps reduce surrender risk. However, this cluster 
has the highest surrender probability among the negative clusters and 
is predicted with slightly less accuracy.

In summary, we identify four distinct groups of policies that are 
predicted to remain active by the RF model. These clusters demonstrate 
a high level of accuracy, with approximately 95% of these policies 
remaining active. Next, let us examine the distinct groups of policies 
classified as Surrendered.

Cluster 5 consists mainly of female policyholders approaching re-
tirement age, who have accumulated substantial fund values by making 
large annual premium payments over a relatively short period. Their 
clear intention to save for retirement, also reflected in a low sum 
insured in case of death, places them at potential risk of surrender. 
Although this cluster shares similar premium and fund values with 
Cluster 3, the key difference lies in policyholders’ intentions: Cluster 
3 policyholders, who are slightly younger, seek both savings and life 
insurance coverage.

Cluster 6 differs from Clusters 5 and 3, as the premiums and fund 
values are significantly lower. This group exemplifies the interaction 
effect between the premium and reserve values: for fund values below 
10,000e, annual premiums exceeding 800esubstantially increase sur-
render risk. Similarly to Cluster 3, these policies are held by younger 
policyholders and are approximately halfway through their duration.

Cluster 7 has the highest surrender probability and PPV. It rep-
resents policyholders who are still far from retirement, holding older 
policies with tax benefits that are nearing expiration. Having accu-
mulated substantial fund values, they may opt to transfer these funds 
to another insurance company, for instance, through a pension plan 
exchange.

Cluster 8 consists entirely of policies with fixed monthly premiums, 
where payments were suspended long before their expiration. Based on 
the expertise of the risk manager, this cluster represents a clear example 
where, although only a few policies have actually been surrendered 
(true positive cases), the rest (false positive cases) are likely to be at 
risk of surrender in subsequent years.

Cluster 9 differs from Cluster 5 in that policyholders are signifi-
cantly younger and pay much higher annual premiums.

Clusters 10, 11, and 12 are grouped together in Fig.  9 due to 
their similar Shapley values and feature characteristics. In particular, 
Cluster 11 does not appear as a final node in Fig.  10, since most 
cases were reassigned to Clusters 10 and 12. These clusters mainly 
include very young policyholders who recently acquired policies with 
moderate annual premiums of around 600e, resulting in small fund 
values. Once again, this exemplifies the increased surrender risk caused 
by the interaction between the premium and reserve values.

Finally, Cluster 13 is excluded from Fig.  9 because it is not relevant 
for this analysis. The surrender probabilities given by this RF model 
are all around 0.5 and, hence, policies are predicted in almost equal 
proportions to be Active or Surrendered.

The RF model failed to accurately predict surrendered policies, with 
only about 15% of the predicted cases actually resulting in surrender. 
However, risk managers can still leverage insights from xAI techniques 
by considering Surrendered cluster cases as at-risk policies that may 
surrender in the future, thus prompting the implementation of targeted 
monitoring strategies.

In terms of surrender fee policy-making, the company’s typical 
strategy includes a charge that policyholders agree to pay if they cancel 
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their policy within the first 10 years. In general, this strategy has proven 
to be effective in reducing surrender risk across most clusters when 
policies have an active surrender fee.

However, in Clusters 2, 5, and 6, the surrender fee has not suc-
cessfully mitigated the risk, prompting risk managers to reconsider the 
rules governing the fees for these profiles. For example, policyholders 
in Cluster 5, who are basically focused on saving for retirement, may 
choose early retirement and surrender their policies despite the associ-
ated fee. In such cases, offering a product tailored to their new needs 
could help improve retention.

Analyzing Clusters 9 to 12, which consist of very young policies, a 
significant number of policies without the standard surrender fee can 
be identified. Since this condition increases surrender risk, a thorough 
review of the surrender fee guidelines may be warranted.

The downside of any surrender fee strategy is the significant rise in 
policy surrenders once the fees expire, which in this case happens after 
10 years. This pattern is evident in Clusters 7 and 8 and, to a lesser 
extent, in Clusters 1 and 3. In particular, in Cluster 8, where premium 
payments have been suspended, this trend is even more pronounced.

To address this issue, risk managers should consider implementing 
a Key Risk Indicator (KRI) as part of the overall surrender fee strat-
egy. This KRI would signal when the surrender fee expiration date is 
approaching, allowing proactive retention strategies to be applied. For 
example, the policies in Cluster 7, which have accumulated substantial 
fund values and are at risk of being exchanged for a pension plan 
offering better conditions, can be revised with more attractive terms 
(based on financial market trends and competitor offerings) to mitigate 
the risk.

Another useful KRI to implement is related to the premium payment 
status. When this KRI signals that a policyholder has suspended pre-
mium payments, it can serve as an early indicator of potential surrender 
(e.g., Cluster 8). Taking early retention actions, such as offering new 
premium, term, or financial conditions can help mitigate the risk.

5. Conclusions

The study demonstrates the effectiveness of xAI techniques in im-
proving the understanding of ML models used to predict surrender risk 
in life insurance products. These techniques provide valuable insight 
into the decision-making processes of black-box models, enhancing 
trust and interpretability.

The paper introduces a novel approach that combines Shapley val-
ues with Kohonen neural networks (KNN) to cluster policyholders based 
on their surrender risk profiles. This method offers a global perspective 
on policyholder behavior, facilitating the identification of groups with 
similar risk characteristics that can also require similar mitigation risk 
strategies.

We present several key findings, resulting from the effective appli-
cation of the xAI techniques outlined in this manuscript, which should 
improve surrender risk management.

First, while the surrender fee strategy has generally been effective 
in reducing surrender risk, certain groups have not been sufficiently 
deterred by these fees. In such cases, offering tailored products that 
better align with policyholders’ needs can enhance retention. Second, 
a significant number of young policies lack surrender fees, increasing 
surrender risk. Risk managers may consider reviewing the surrender 
fee guidelines to provide better protection against early cancellations. 
Lastly, key risk indicators (KRIs) can help identify policies at higher 
risk of surrender. Implementing KRIs to detect policies nearing their 
surrender fee expiration or those with suspended premium payments 
can enable proactive retention strategies and reduce cancellations.

By implementing these strategies and monitoring KRIs, risk man-
agers can enhance retention efforts and mitigate surrender risk more 
effectively. Nonetheless, there remains significant scope for further 
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research on surrender risk, particularly by relaxing current assump-
tions, such as transitioning to a long-term perspective, incorporat-
ing economic impacts, and considering exogenous factors alongside 
endogenous ones.

Finally, the paper advocates for further research to refine the mod-
eling process, improve Shapley value calculations, and optimize the use 
of Kohonen networks. It also underscores the importance of developing 
more effective visualization techniques to enhance the interpretability 
of xAI results. In addition, conducting a bias and fairness evaluation 
of ML models (such as through disparate impact analysis) can help 
risk managers identify and mitigate potential discrimination against 
protected groups (e.g., based on race or gender), particularly in highly 
regulated sectors like finance and insurance.
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