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Abstract: This study explores the generation of vector beams using a modified Gerchberg-Saxton
(GS) algorithm in the context of computer-generated holography (CGH). The objective is to
reconstruct two orthogonal electric field components with predefined intensity profiles and relative
phase distribution between components. The methodology involves applying the GS algorithm
independently to each component while imposing their relative phase, allowing the global phase to
evolve freely. The vector beams generated are Laguerre-Gaussian beams with varying topological
charges, and the holograms are computed for three different cases. The results show successful
convergence in the central regions of the beams despite the presence of speckle-like noise. The
polarization pattern follows the expected behavior, which means that the relative phase is well
reconstructed. Metrics such as similarity and phase error confirm the algorithm’s convergence.
These results check the viability of the method to be experimentally implemented, as they are
computed according to the laboratory conditions.
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I. INTRODUCTION

Holography is a technique that enables a wavefront
to be recorded and later constructed. Traditionally,
holograms are recordings of an interference pattern that
reproduces a light field using diffraction [1]. However, we
will compute the hologram knowing the mathematical
relation of the light field on two different planes [2].
In our case, we will work with Fraunhofer’s diffraction,
which is achieved by making the distance between the
image and diffraction plane tend to infinity or by being
at a lens’ focal plane. This setup ensures that the
relation between the fields in these two planes is a Fourier
transform.

In 1971, R.W. Gerchberg and W.0O. Saxton proposed
an algorithm for determining the complete wave function
from intensity recordings in the image and diffraction
planes, allowing us to solve the phase problem (problem
based on the loss of information about the phase when
making a physical measurement) and to determine the
phase of the complete wave function whose intensity
(the amplitudes are proportional to the square roots of
the measured intensities), in the imaging and diffraction
planes, is known [3].

Computer-generated holography (CGH) is a technique
that wuses computational algorithms to generate
holograms by generating holographic interference
patterns. A computer calculates a holographic pattern
that is used to set the optical properties of a spatial
light modulator (SLM) that then diffracts the read-out
light wave to yield the desired optical wavefront [2]. A
CGH is a complex wavefront processor. In the CGH are
specified an incoming wavefront description as well as
the desired diffracted wavefront, or part of it, in the near
or far field. Once we have this, the task is to find the

best phase (or amplitude) mapping that will perform
the diffraction job in an acceptable way considering the
requirements imposed [4]. Compared to classical optical
holography, CGH does not require a real object, since
the hologram can be generated by computing the light
field in the far observer plane and transforming it to the
lens plane using the Fourier transform [2].

CGH aims to determine the phase that must
be added to a plane wavefront (from a laser) so
that, upon diffraction, it yields the desired intensity
distribution. This process is essentially the same as the
Gerchberg-Saxton algorithm. The only difference is that
the intensity in the diffraction plane is not measured
but imposed as a target, and the estimated phase is the
computer-generated hologram.

Computer-generated holograms are powerful tools
for digitally encoding phase or amplitude information
to reconstruct optical wavefronts. One of its
implementations is their application to plane wavefronts,
which can be modulated using parallel-aligned liquid
crystal displays (LCD-PA). This devices consist of an
array of liquid crystal (a phase between solid and
liquid) cells with molecules aligned (regularly) in parallel
and, when properly polarized, they can control the
optical path of light waves (spatial light modulators)
and the phase of light passing through each cell
without significantly affecting its amplitude (phase-only
modulators). A CGH can be computed and loaded onto
the LCD-PA. When illuminated by a plane wave (as a
laser beam), the phase modulation introduced by the
CGH produces a diffracted wavefront that reconstructs
the optical field [4], [5], [6].

In this paper, we study vector beams, fully polarized
beams that show different polarization states at different
local positions on the detector plane [7] (i.e.,beams
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with a non-uniform polarization distribution). These
beams offer advantages over scalar beams (uniform
polarization) in the focal region, particularly in
applications such as microscopy or particle trapping
[8], [9]. A non-homogeneous polarization distribution
requires different intensity profiles in two transverse
and orthogonal components.  Moreover, the phase
distribution between these two components plays a
crucial role in the overall polarization distribution.

The aim of this study is to implement two
Gerchberg-Saxton algorithms, one for each electric field
component, connected through the imposed relative
phase. This approach allows for the reconstruction of
two predefined target intensity profiles and the relative
phase between them, leaving the global phase as a degree
of freedom that enables convergence.

The structure of this paper is as follows. First, we
review the foundations of the GS algorithm and the
vector beams used in this work. Then, we introduce
the modified Gerchberg-Saxton algorithm used in our
approach. Finally, we present the results obtained and a
discussion of their physical implications.

II. METHOD
A. The Gerchberg-Saxton algorithm

The Gerchberg-Saxton algorithm [3] is an iterative
algorithm that lets us determine the phase of a wavefront
from the intensity in two planes. Since both planes
are related by the Fourier transform, by only one phase
distribution, we obtain the phase distribution in the other
plane.

The algorithm begins (Figure 1) with the complex
wave function in the entrance pupil plane (EP plane) of
a diffraction system, such as a lens (assigning a random
phase in the interval [—m, 7| that serves as an initial
estimate of the phase). A Fourier transform is applied to
obtain the wavefunction on the diffraction plane. Once
in this plane, we impose the amplitude and perform
an inverse Fourier transform imposing again the known
amplitude on the EP plane. After this, the process is
repeated.

Throughout this procedure, we retain the phase
information and let it evolve with the Fourier transform.
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FIG. 1: Representation of the Gerchberg-Saxton algorithm
where FT stands for Fourier transform.
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B. Laguerre-Gaussian beam

A Gaussian beam is a beam whose amplitude
envelope in the transverse plane is given by a Gaussian
function, which also implies a Gaussian intensity profile.
Gaussian beams are the lowest-order transverse mode
solutions of the Helmholtz equation (if we describe
an electromagnetic wave as a field wu(z,y,2;t) =
Ulz,y,z)e ™!, V2U + k*U = 0 with k = %2 = 2T),
From the Helmholtz equation we get the paraxial wave

equation, by introducing U(x y,2) = u(z,y, z)e”** and
the paraxial assumption 2 5z =0,
0
V2y — m;aﬁ =0. (1)

By solving it in different coordinate systems with
different symmetry assumptions, we can define different
beams (higher-order modes) [10].

In our experimentation, we  will  study
Laguerre-Gaussian (LG) beams that are a family
of orthogonal basis sets with different radial (labeled
with p > 0) and azimuthal (labeled with [ € Z) modal
numbers (LG beams are vortex beams). These functions
are written in cylindrical coordinates using generalized
Laguerre polynomials.
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where w(z) = woy/1 + z/zp is the beam radius, ¥(z) =
(II| + 2p + 1) arctan (i
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) with zr the Rayleigh distance

and C’éG is the normalization constant [11]
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C. Modified GS algorithm

In this work, we are interested in, based on the
algorithm above-mentioned, generating specific vector
beams by imposing a defined amplitude and relative
phase between the components of the field in the
respective planes, allowing the wave functions to evolve
and converge toward a desired polarization.

In the diffraction plane, we impose a field with
the LGo; mode (characterized by its donut shaped
distribution) and z = 0, so we get two components for
the electric field given by

21 2 22
E.(p,¢) = \/;wO (ff) e s sin
Ey(p,¢) = \/>w0 (i)p> Lgei"*b cos(me),
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where each component comes from the inclusion of the
angular dependence of the field (¢ represents the angular
coordinate), where n is the topological charge on the
relative phase distribution and m is the corresponding
topological charge affecting the amplitude. These two
free parameters let us define different beams to be
explored.

The relative phase of the target § is computed from
the complex comparison of both components in Eq. (4).
Then, every Fourier transform step on the GS algorithm
returns a couple of phases , and 6, corresponding to
each component. This results in a phase error expressed
as € = [(0y — 0;) — 6]. This error is equally compensated
for in the retrieved phases to ensure that the relative
phase is now imposed, while the global phase is left as a
freedom degree to allow convergence.

€ €
5x—>5x+§; dy—>6y—§. (5)
In the EP plane, we impose an amplitude distribution
of 0’s and 1’s representing the profile of the entrance
pupil, while the phase is evolving during the iterations.

III. RESULTS

Throughout our experimentation, we have studied
three types of beams, from which different results can
be analyzed. We have imposed different values for the
parameters m and n in Eq. (4). In other words,
the beams have been modified by altering either their
phase or their amplitude to explore the viability and
performance of the method.

A. Conventional azimuthally polarized beam

The first beam under study is the conventional
donut-mode azimuthally polarized beam, corresponding
to a two lobes profile for each component and the relative
phase changing with the cartesian quadrants (m = 1 and
n=0in Eq. (4)). Once we impose these conditions and
execute the algorithm, we obtain Figure 2.
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FIG. 2: Representation of the electric field components
(first two columns), relative phase between the electric field
components (third column) and total intensity of the beam,
along with the polarization ellipses (last column) imposed
in the diffraction plane as our target (first row) and after
executing the Gerchberg-Saxton algorithm (second row).
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By examining both rows, we observe that the
simulation does not give identical patterns. However, in
the central regions of the images, where the intensity is
higher, we obtain good approximations. The regions with
low intensity (peripheral regions) have minimal impact
on the result. Taking this into account, the presence of
noise increases toward the edges of the images.

B. Four lobes azimuthally polarized beam

The second beam under study corresponds to a four
lobes profile for each component and a relative phase in
quadrants just like before (m = 2 and n = 0). Once we
impose these conditions and execute the algorithm, we
obtain Figure 3.
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FIG. 3: Representation of the electric field components
(first two columns), relative phase between the electric field
components (third column) and total intensity of the beam,
along with the polarization ellipses (last column) imposed
in the diffraction plane as our target (first row) and after
executing the Gerchberg-Saxton algorithm (second row).

C. Donut beam with azimuthal relative phase

The last beam under study is generated by imposing
a relative phase corresponding to the angular polar
coordinate with two electric field components defined by
Eq. (4) imposing m = 1 and n = 1. Once we impose
these conditions and execute the algorithm, we obtain
the following.
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FIG. 4: Representation of the electric field components
(first two columns), relative phase between the electric field
components (third column) and total intensity of the beam,
along with the polarization ellipses (last column) imposed
in the diffraction plane as our target (first row) and after
executing the Gerchberg-Saxton algorithm (second row).
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IV. DISCUSSION

Based on the results presented in Section III and,
observing Figures 2, 3, and 4, a consistent behavior is
observed in the reconstructed patterns we have studied.

We can observe that the reconstructed (or simulated)
pattern (second row in our figures) is highly similar to
the initial configuration or our target (first row) despite
the presence of speckle-like noise. This speckle noise is
mainly due to destructive interferences between adjacent
sampling points in the EP plane [12].

Even so, the phase (third column) converges toward
our initial conditions as it has a tendency to the imposed
polarization in each case. In particular, the central region
of the image has the expected behavior, although the
presence of noise must be taken into consideration (the
edges exhibit significant noise but little intensity, and
therefore have minimal impact on the result). Moreover,
in the central region we can observe regions where the
expected relative phase is not achieved. This behavior
can be attributed not only to the noise, but also to
the fact that in regions where one of the electric field
components is zero, the relative phase between them is
undefined (it becomes linear polarization associated with
the non-zero component).

In terms of the polarization ellipses (last column), they
reflect the relative phase introduced between the electric
field components. The ellipse is a horizontal line in
regions where the y-component of the electric field is
zero, and a vertical line where the z-component is zero.
Between these extremes, the ellipses evolve following the
Polarization Ellipse Equation (Eq. (6)) which is the
equation of an ellipse that refers to polarized light (§
is the relative phase between the two components) [13].

Ew(zz, t)? Ey(z27 t)? | 2E;(2,t)Ey(2,1) 086 — sin? 6.
E5, Eg, Eo. Eoy
(6)

In all three cases, the polarization ellipses obtained
tend to follow the expected behavior, but they do not
exactly match the expected patterns, due to the presence
of speckle noise.

To further study the effectiveness of our approach, we
analyze similarity, a metric to measure how similar two
images are [14]. In our case, we compare the electric field
amplitude distributions before and after implementing
the algorithm (i.e., the similarity between the images
in the first and second row for the two first columns).
Regarding the phase, we can study the evolution of the
averaged phase error, €.

For the three cases analyzed, we observe that, as we
anticipated, the presence of noise results in two images
that aren’t (in terms of the similarity) highly similar
(we obtain small values for the similarity, both for the
2 and y-components). However, in terms of convergence,
the similarity stabilizes after the second iteration with
little fluctuations. We observe that the z-component of
the electric field exhibits a greater similarity than the
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FIG. 5: Representation of the first 100 iterations of the phase
error, € = [(0y — 0z) — 0], where § is the imposed relative
phase (first) and the similarity of the electric field components
(z-component, second and y-component, third) for the three
beams we have studied in Section III (blue is m =1, n = 0;
red ism =1, n =1; green is m = 2, n = 0).

y-component in the cases m = 1, n = 1 and m = 2,
n = 0, and a similar trend for both components in the
case m=1,n=0.

Regarding the phase, the evolution of € shows a similar
trend, with values oscillating within a specific range. The
smallest phase error, corresponding to the lowest value of
€|, is observed in the simulation for m = 1, n = 1, where
it approaches zero.

Finally, we introduce the holograms obtained for each
case after the implementation of the Gerchberg-Saxton
algorithm, that is, the resulting phase distribution on
the EP plane (Figure 6).

The necessary parameters have been considered
for implementation in a super-resolution microscope.
However, due to technical issues with the microscope
itself and unrelated to this study, implementation was
not possible. Nevertheless, everything indicates that it is
fully implementable experimentally.

It should be noted that a reduced number of pixels
(128 x 128) was used to verify that the holograms can
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FIG. 6: Holograms obtained for each of the studied cases in
Section III after the implementation of the Gerchberg-Saxton
algorithm.

be implemented on a commercial SLM with modest
resolution, confirming that the pixel number does not
constitute a problem.

V. CONCLUSIONS

In this project, we have investigated the convergence
of a modified Gerchberg-Saxton algorithm applied to
three different Laguerre-Gaussian beams whose electric
field components are defined by Eq. (4) to generate
holograms by imposing the relative phase between the
two components of the electric field in the diffraction
plane and controlling the amplitude (intensity) in both
the EP and the diffraction planes, leaving the global
phase as a degree of freedom.

Throughout the paper, we have determined the
reconstruction of the two predefined intensity profiles
(one for each electric field component) as the imposed
relative phase between them.

After implementing the GS algorithm, we observed
that the obtained patterns reconstruct the profile of the
target beam. However, they do not perfectly match
due to the presence of speckle noise. In terms of the

phase, it converges toward our initial conditions as it
has a tendency to the imposed polarization in each
case. The regions where the intensity is relevant of
the reconstructed images have the expected behavior.
However, there are areas where the relative phase
condition is not achieved. This occurs in regions where
one of the electric field components is near zero and the
relative phase between them becomes undefined.

To further study the effectiveness of our approach,
we have studied both the similarity (for the z and y
components) and the averaged phase error, €. Although
the similarity values remain small, indicating little
similitude between the target and reconstructed images
because of the presence of noise, we obtain convergence
after the second iteration of the algorithm, with values
that oscillate in a small range.
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Resum: Aquest estudi explora la generacié de feixos vectorials utilitzant un algorisme
Gerchberg-Saxton modificat (GS) en el context de I'holografia generada per ordinador (CGH).
L’objectiu és reconstruir dos components de camp eléctric ortogonals amb perfils d’intensitat
predefinits i distribucié de fase relativa entre components. La metodologia consisteix a aplicar
I’algorisme GS de manera independent a cada component, alhora que s’imposa la seva fase relativa,
permetent que la fase global evolucioni lliurement. Els feixos vectorials generats son feixos de
Laguerre-Gauss amb carregues topologiques variables, i els hologrames es calculen per a tres casos
diferents. Els resultats mostren una convergencia exitosa a les regions centrals dels feixos i amb
presencia de soroll tipus “speckle”. El patré de polaritzacié segueix el comportament esperat, el
que significa que la fase relativa esta ben reconstruida. Metriques com la similitud i ’error de fase
confirmen la convergencia de l'algorisme. Aquests resultats comproven la viabilitat del metode a

implementar experimentalment, ja que es calculen segons les condicions del laboratori.

Paraules clau: Algorisme de Gerchberg-Saxton, holografia generada per ordinador, polaritzacio,

recuperacié de la fase.
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