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Abstract: Vegetation patterns appear in a wide range of ecosystems like drylands, salt marshes
or seagrass meadows, forming a large variety of structures like patches of vegetation, fairy circles
or vegetation labyrinths. The mechanisms behind the formation of these structures are still a
matter of discussion. Our focus is to investigate the origin of a pattern formed by arcs of bare
soil in a homogeneous meadow of Posidonia Oceanica observed in the Pollenga bay (Mallorca).
Similar spatial structures emerge from excitable dynamics between vegetation density and sulfide
concentration in the soil, like ring-shaped pulses of vegetation propagating through the seabed, as
reported by Ruiz-Reynés et al. Here we use bifurcation theory and stability analysis to examine
whether these structures could be originated by the same process. The theoretical model used
successfully predicts an alternative excitable regime where vegetation transiently disappears before
returning to the homogeneous state, which should be compatible with the pattern of arcs mentioned.
Keywords: Dynamical systems, bifurcation theory, pattern formation, theoretical ecology
SDGs: 13. Climate action, 14. Life below water

I. INTRODUCTION

area, accumulating large quantities of biomass [4]. Due

Seagrass meadows are found globally, providing a
wide range of ecosystem services that support coastal
communities and contribute to environmental health.
In the face of climate change and growing pressures
on ecosystems, the spatial self-organization of seagrass
vegetation has been shown to be a valuable indicator of
meadow degradation.

In a favorable environment, vegetation tends to prolif-
erate, forming homogeneous meadows. However, when
the mortality rate is high enough, vegetation cannot
survive and only bare soil remains. In between these two
regimes, scale-dependent feedback becomes dominant,
leading to the emergence of spatially heterogeneous
vegetation patterns [1, 2].

These inhomogeneities have proven to be useful in
identifying the drivers of the spatial organization of
vegetation. In this context, heterogeneous patterns have
been shown to be a signature of resilience against the
deterioration of the environment, helping the meadow
cope with challenging conditions by adapting its spatial
distribution. Prominent examples of self-organization
are arid ecosystems, where the main scale-dependent
feedback is the competition for water, which can result
in the well known fairy circles found in the Australian
desert [3].

Recently, a growing interest has been shown in
self-organization of seagrass meadows due to their
extensive coverage of the underwater soil as well as their
role as critical elements of the marine ecosystems.

In the Mediterranean sea, Posidonia Oceanica is consid-
ered the most important seagrass species. It provides
essential services for the environment such as producing
large quantities of oxygen, fixing the values of COs, or
protecting the soil and the many species that inhabit the

to it’s importance, Posidonia Oceanica is commonly
used as a marker to determine the state and health of
marine ecosystems. However, due to climate change and
human activity, it is declining at alarming rates [5].
Posidonia Oceanica can be found in both large ho-
mogeneous meadows and heterogeneous patterns like
fairy circles observed in the Corsican coast or ring-like
pulses of vegetation propagating through bare soil in the
Balearic coast (Fig. 1a) [2, 6].

FIG. 1: Spatial structures of Posidonia Oceanica seagrass
meadows. Panel a shows a high resolution image of an ex-
citable ring with an approximate diameter of 10 meters ob-
served in the Pollenca bay. Adapted from [7] with permission
from the authors. Panel b shows arcs of bare soil, approxi-
mately 55 meters long, in an homogeneous meadow. Satellite
image from Google Maps of the Pollenga bay.
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A recent study by Ruiz-Reynés et al. has shown that
the spatial distribution of these rings can be related to
the excitable dynamics resulting from the negative feed-
back between seagrass growth and sulfide accumulation
in the sediment. Hydrogen sulfides are the main byprod-
uct of bacteria in the seagrass sediment. As vegetation
proliferates, organic matter is produced, resulting in a
higher concentration of sulfides. However, due to their
toxicity, sulfides inhibit growth and increase the mortal-
ity of the plant, which, in turn, introduces oxygen in the
soil to oxidate sulfides as a protection mechanism. Under
the right conditions, mathematical modeling predicts the
appearance of the excitable rings previously mentioned as
a patch of vegetation that starts to decay from it’s cen-
ter as sulfides accumulate. However, at the same time
it spreads outward to the surrounding soil, which is less
rich in hydrogen sulfide, giving the appearance of an ex-
panding ring [7].

Beyond vegetation rings, other spatial structures have
been found underseas, in particular, a pattern of arcs
of bare soil embedded in an otherwise homogeneous
meadow of seagrass, which can be observed close to the
Pollenga bay, in Mallorca (Fig. 1b).

In this work it will be shown that the same dynamics
linked to the rings of seagrass potentially explain said
arcs when considering a larger density-dependent removal
rate of sulfides.

II. THEORETICAL MODEL

A model composed of two coupled partial differential
equations was used to describe the spatio-temporal evo-
lution of the vegetation density, n, and the sulfide con-
centration, S [7]:

o = (wp — wa(n, 8))n + doV>*n + di (nV?n + |Vn|?),
(1)

0:S = cswq(n, S)n 4 Py — 6,8 — 6onS + D, V2S,
(2)

where wy, is the branching rate, wy is the mortality rate as
a function of n and S and dy and d; describe the spread
of clonal plants through space.

Due to organic matter production by the plant, hydro-
gen sulfide accumulates in the sediment proportionally
to dead plants, wq(n,S)n, with ¢, being the factor de-
termining the increase in concentration per unit of shoot
density, Ps represents the external input of sulfides due
to the decomposition of organic matter in the soil and
ds + dgn is the removal rate of sulfides, while D, is the
effective diffusion of sulfides.

The mortality rate is described by

wgoan

wa(n, S) = wao — +bn? +~8, (3)

1+an

where wqo is the intrinsic mortality rate of the plant,

% is a self-saturating term that prompts facilitation:
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it grows linearly with n until it saturates to the value of
wqo for high density values. bn? is a saturation term and
v is the sensibility of the plant to sulfides and measures
the increase in mortality rate due to sulfides.

In order to identify the regime suitable for the formation
of arcs of bare soil, a stability analysis has been done to
determine how the dynamics change with the intrinsic
mortality rate, where spatial terms are not considered.

A. Stability analysis and bifurcation theory

The dynamics of vegetation are strongly influenced by
the existence of fixed points. Stable points lead to steady
solutions with constant density, whereas unstable points
cause perturbations to grow.

The fixed points can be found by solving equations

on* = 0, for which we have wgq(n*,S*) = w) = wy,
and 0;5* = 0 which results in S* = 0552;‘1’712?. Keeping

in mind that the bare soil solution, n* = 0, is always
a fixed point, independent of the parameters, the other
fixed points are given by:

cswpn™ + Py

wao = [ wp — bn* —
do b Sgn* .

) (I14+an*). (4)

From the solution of Eq. 4 the bifurcation diagram
can be plotted parametrizing n* in wge(n*) as shown
in Fig. 2b, where the different regimes are more distin-
guishable.

The stability of the fixed points can be determined
by analyzing the linearized system [8, 9]. We linearize
around the fixed points considering a perturbation of
the type n = n* + én and S = S* + 45, doing a first
order approximation around the fixed point we get the
linear system:

Opon = (wp —wj + % — 2bn*?)dn — yn*85S,
o * * wdoan* B *
0108 = [cs(w) + 2bn A tan)? an*)Q) 5o S*|on+

+(csyn™ — 5 — don™)dS,
(5)
which can be diagonalized to find the eigenvalues of the
system. For n* = 0 we find that the eigenvalues are

Ay = wp —wgo — 'YJP“ and \_ = —{,, so the unpopulated

solution is an unstable point for wgy < wg — 'YTP‘“ as one
of the eigenvalues is positive, whereas it is a stable point
otherwise (both eigenvalues become negative).

The eigenvalues for n* # 0 have been solved nu-
merically due to the complexity of the expression,
being a function of all nine parameters. We depict the
phase diagram in Fig. 2, while the dependence of the
eigenvalues can be seen in the Supplementary Material A.
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From the stability analysis, three types of bifurca-
tion points (thresholds where the system changes its
behaviour) have been identified.

A saddle point marks the disappearance of two merging
fixed points and it can be found where one of the
eigenvalues becomes zero. However, in this case it was
determined by finding the roots of the derivative of
Eq. (4) respect to n*. In a transcritical bifurcation two
fixed points collide and change stability. Although one
of the eigenvalues also becomes zero, in this work it
is found by imposing n* = 0 to Eq. (4), resulting in
wao = wWp — 7%. Notice that this bifurcation marks
the change in stability of the bare soil solution. A
Hopf bifurcation can be found in regimes where the
eigenvalues are complex conjugates, resulting in a system
that evolves in a spiral around the fixed point. If the real
part of the eigenvalues is negative, the spiral converges
into the fixed stable point. However, if the real part
of the eigenvalues is positive, perturbations grow over
time, eventually reaching a limit cycle, so the fixed point
becomes unstable. The transition between these two
regimes is known as a Hopf bifurcation, marking the
onset of an oscillatory regime [8].

III. RESULTS AND DISCUSSION

For a better understanding of the model and how ex-
citability emerges from its dynamics, we will first present
the results we obtained with the realistic parameters used
to model the excitable rings [7]:

As Fig. 2 shows, for a low mortality rate and low sen-
sitivity to sulfides the model predicts a single high-
density stable point and an unstable point for n* = 0.
This means that vegetation will easily appear and evolve
quickly towards the stable point, where it will form an
homogeneous meadow (Fig. 3a). In contrast, for high
values of mortality and sensitivity, plants cannot grow
and n* = 0 becomes the only stable point, resulting in
bare soil as the only possible outcome. For intermedi-
ate values of mortality and sensitivity a Hopf bifurca-
tion appears and the fixed point becomes unstable as a
limit cycle gains stability (Fig. 3b). This would result
in an oscillatory regime driven by the negative feedback
between sulfides and vegetation: density grows increas-
ing sulfide concentration until it is high enough that the
mortality rate becomes larger than the branching rate,
leading to vegetation decline. Then, sulfides dissipate
until the sulfide concentration is low enough for vegeta-
tion to grow again and repeat the cycle. Between the
transcritical bifurcation and the saddle node bifurcation,
for intermediate mortality and low sensitivity, facilita-
tion allows for a bistable regime, introducing a thresh-
old for density to grow defined by an unstable branch
of fixed points (Fig. 2). Vegetation below the unstable
branch will not have enough strength to grow and will
die quickly. However, given an initial condition above
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FIG. 2: Different regimes predicted by the model. Panel a
shows the phase diagram of the system with mortality, wao,
and sensitivity to sulfides, 7, (dimensionless) as control pa-
rameters. The green line represents the transcritical bifur-
cation, the Hopf bifurcations are represented by the red line
and the saddle node bifurcations by the blue line. In the
green shaded area, the only steady solution is an homoge-
neous meadow of vegetation. The red shaded area marks the
oscillatory regime. For large mortality but low sensitivity, in
the blue area, there are two stable solutions: the homoge-
neous meadow and the bare soil solution. In the white area
vegetation can not grow due to the large mortality and sensi-
tivity to sulfides, so bare soil is the only stable solution. The
yellow area marks the excitable regime. Panel b shows the bi-

furcation diagram for 7\/6571; = 0.1, where the fixed points of
wp

the system (stationary values of vegetation density, n*) as a
function of mortality rate, wao are represented. The solid line
accounts for the stable points whilst the dotted line represents
the unstable points, the purple line shows the maximum and
the minimum of the limit cycle and the colored dots mark the
different types of bifurcations identified.

the unstable branch, vegetation will grow to reach the
stable point (low sensitivity) or the limit cycle (interme-
diate sensitivity).

In the region where oscillations and bistability overlap,
and only if the stable orbit of the oscillatory regime
crosses the unstable branch, the cycle is destroyed and
the dynamics become excitable, as shown in Fig. 2b. In
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FIG. 3: Evolution of the system for different values of wqo
with the same initial conditions. We plotted the vegetation
density, n, as a function of the sulfide concentration, S, with
a colored line representing the time scale in years. Panel
a shows an homogeneous regime: the systems evolves in a
quick inward spiral towards the stable point. Panel b shows
an oscillatory regime: the system stabilizes in an orbit around
the now unstable point. Finally, panel ¢ shows an excitable
regime, comparing the decaying trajectory with the large ex-
cursion trajectory.
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this case, given an initial condition above the thresh-
old, the system grows mirroring the destroyed limit cy-
cle, hoping to reach the stable orbit. However, sulfides do
not fade fast enough, so the system crosses the unstable
branch and decays inevitably to zero (Fig. 3c).
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FIG. 4: Different regimes predicted by the model for the new-
found parameters. Panel a shows the phase diagram of the
system. A second saddle node appears which merges with
the transcritical bifurcation as sensitivity decreases. The ex-
citable regime is now before the transcritical bifurcation, be-
tween the new saddle node bifurcation and the Hopf bifur-
cation. The parameters used are: wp = 1.0 y~!, a = 19.0
cm?, b = 1.67 cm?y ™!, ¢s = 90 uMcm?, P, = 0.4 pMy ™!,
5, =0.036 y !, 6o =32cm?y ", y=6.54-10"3 pM~1y~L.
Panel b shows the bifurcation diagram for v—= = 2.0.

A/ wpb

When the removal rate of sulfides due to vegetation,
o, is largely augmented (in this project it was increased
from 0.06 cm?y ! to 3.2 cm?y~!) the bifurcation dia-
gram shows multiple folds for 'y\/% € [1.0,2.1]. As a
result, a second saddle node appears and the Hopf bifur-
cation moves to the lower branch of stable points, with
an oscillatory regime between them for low densities of
vegetation (Fig. 4). This region gathers all requirements
for excitability to emerge due to the destruction of the
limit cycle when it crosses the unstable branch, allowing
vegetation to grow to the high-density solution (Fig. 5).
In this regime, a low-density meadow would decay to
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bare soil due to the high concentration of sulfides, which
we hypothesize would form the arc structures shown in
Fig. 1 if a spatially extended system was considered.
However, as a result of the now faster removal rate of sul-
fides, vegetation would grow again where mortality was
too high for vegetation to proliferate before, forming the
high-density homogeneous meadow that surrounds the
structures. It is also noticeable that the high removal
rate of sulfides allows vegetation to achieve stability at
a much higher density compared to the previous set of
parameters. Moreover, a stable solution corresponding
to a low-density homogeneous meadow is found between
the Hopf bifurcation and the transcritical bifurcation for
initial conditions below the unstable branch (Fig. 4b).
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FIG. 5: Evolution of the system in the new excitable regime
with wgo/wy = 0.585. The coloured line represents the evo-
lution in years followed in the excitable regime, with initial
conditions below the threshold (ng = 0.02 cm™2 and Sy = 18
Cm72), in brown the evolution of the system with initial condi-
tions above the unstable branch (no = 0.05 cm™? and Sp = 18
cm™?). The red dots mark the fixed points.

IV. CONCLUSIONS

The theoretical results obtained in this project suc-
cessfully reproduce the results obtained by Ruiz-Reynés

et al., using linear stability analysis to associate the ex-
citable dynamics that emerge from the mathematical
model with the ring-like pulses observed in the Pollenca
bay. Furthermore, new parameter regimes have been
identified that potentially support the arcs of bare soil
observed in the Mediterranean sea, establishing a con-
nection between these structures and a larger density-
dependent removal rate of sulfides. For further proof of
the compatibility with this pattern, spatio-temporal sim-
ulations are required, which we intend to do in the near
future.

As other structures, the formation of these arches could
be a method of resilience against harsh conditions in the
environment, adapting the spatial distribution to higher
mortalities in order to survive. Excitability in this sys-
tem allows low-density meadows to thrive and reach high-
density stability in a region that otherwise would be re-
stricted to a low-density oscillatory regime. Hence the
importance of tracking these structures and understand-
ing the mechanisms that drive them, as they are key fac-
tors in assessing the ecosystems health conditions.
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Resum: En una gran varietat d’ecosistemes s’ha observat que la vegetacié pot formar una
amplia gamma de patrons heterogenis, com els anomenats cercles de fades observats tant en regions
arides com en praderes de plantes marines, laberints de vegetacid, o regions on les plantes creixen
formant flocs aillats. En aquest treball s’investiga 'origen d’unes estructures en forma d’arcs sense
vegetacié a l'interior d’una pradera de Posidonia Oceanica observades a la badia de Pollenga, a
Mallorca. Recentment s’ha determinat que estructures similars emergeixen de la dinamica excitable
entre la vegetacié i la concentracié de sulfur d’hidrogen al sol mari, com és el cas d’uns polsos de
vegetacié en forma d’anell que es propaguen pel sol en la mateixa badia de Pollenga. Mitjangant
teoria de bifurcacions i analisi d’estabilitat s’estudia si el mateix procés podria resultar en aquestes
estructures en forma d’arc. El model teoric emprat prediu amb éxit un régim excitable en el qual
la vegetacié desapareix durant un cert temps abans de tornar a créixer fins estabilitzar-se en un
estat homogeni, potencialment compatible amb els arcs mencionats.

Paraules clau: Sistemes dinamics, bifurcacions, resolucié numerica
ODSs: Aquest TFG esta relacionat amb els Objectius de Desenvolupament Sostenible (SDGs) 13.
Accié climatica, 14. Vida submarina

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de les desigualtats 10. Reduccié de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i produccié responsables

4. Educacié de qualitat 13. Accié climatica X
5. Igualtat de genere 14. Vida submarina X
6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, justicia i institucions solides

8. Treball digne i creixement economic | [17. Alianga pels objectius

9. Industria, innovacid, infraestructures

El contingut d’aquest TFG, part d’un grau universitari de Fisica, es relaciona amb I’ODS 13, i en particular amb
la fita 13.1, ja que estudia els mecanismes que governen la dinamica de la vegetaci6, coneixement essencial a I’hora
d’evaluar la salut dels ecosistemes i potencials factors de risc. Aquest coneixement permetra buscar solucions davant
la pressié que el canvi climatic exerceix sobre el medi ambient. Pel mateix motiu també es pot relacionar amb I’ODS
14, fites 14.2 i 14.a, ja que s’estudien estructures de posidonia, una de les especies de planta submarina més importants
pels ecosistemes del Mediterrani.
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SUPPLEMENTARY MATERIAL
A. Analysis of the eigenvalues of the system

As additional information, the eigenvalues of the populated solution as functions of the mortality rate are shown
in this section to further discuss the lineal analysis and the determination of the bifurcation points.
The eigenvalues for the populated solution can be found solving the second order expression A\? + BA + C = 0, where

wgpan™

B = —(csyn* — b5 — dgn* 0T opp*?

(csyn . on” + 0+ an")? n*<),

X . wdpan™ 2 *

€= wresyn’ = 005t = (W‘%" )“5”0” %

and we have previously solved Eq. 4 numerically to find n*(wqp).
The numerical solution obtained for the eigenvalues belonging to the fixed points obtained with the realistic parameters

used to describe the excitable rings can be seen in Fig. 7.
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— 4| ~ o0.05-
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FIG. 7: Eigenvalues belonging to the fixed points of the populated solution with realistic parameters corresponding to excitable
rings. Panel a shows the real part of the eigenvalues while panel b shows the imaginary part.

Comparing Fig. 2b and Fig. 7, it is noticeable that while the fixed points are stable, with a low mortality rate, the
eigenvalues are complex conjugates with a negative real part, hence the spiral evolution of the system towards the
stable point (Fig. 3a). As expected, the Hopf bifurcation is found where the real part of the eigenvalues becomes
zero, and in the oscillatory regime the eigenvalues are still complex conjugates, but with a positive real part. At the
end of the oscillatory regime both eigenvalues become real as the imaginary part vanishes. Furthermore, both the
transcritical bifurcation and the saddle node bifurcation align with one of the eigenvalues becoming zero, and in the
lower branch the eigenvalues have opposite sign, making it unstable.

For the parameters in which we found the excitable regime associated with the arcs of bare soil, the numeri-
cal solution of the eigenvalues can be seen in Fig. 8.

Comparing with Fig. 4b, eigenvalues for the low mortality, high-density solution are also complex conjugates with
a negative real part, so the system would evolve in a convergent spiral similar to Fig. 3a toward the stable fixed point.
Then both eigenvalues become real and, after the saddle node bifurcation, one becomes positive, resulting in the
unstable branch, which ends in a second saddle node bifurcation. In the last section, the eigenvalues become complex
conjugates again, with an oscillatory regime (positive real part) for low mortality rate, and a short stable region after

the Hopf bifurcation (negative real part).
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FIG. 8: Eigenvalues belonging to the fixed points of the populated solution with the parameters corresponding to excitable
arcs. Panel a shows the real part of the eigenvalues while panel b shows the imaginary part.

B. Numerical methods

To find the fixed points and bifurcations, the corresponding equations have been solved numerically using methods
like bisection or Newton-Raphson, using Fortran90 as the programming language.
To compute the evolution of the system, a Runge-Kuttad method was used to solve the coupled differential equations
(1) and (2) (without spatial terms). A step of between h = 0.1 year and h = 1 year has been used, depending on the
precision needed for the concrete regime. The initial conditions have been chosen based on streamline diagrams and

the bifurcation diagrams obtained.
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