Research Article

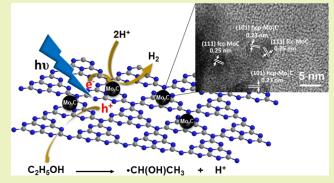
pubs.acs.org/journal/ascecg

Mo_xC Heterostructures as Efficient Cocatalysts in Robust Mo_xC/g-C₃N₄ Nanocomposites for Photocatalytic H₂ Production from Ethanol

Yan Wang, Arturo Pajares, Jarosław Serafin, Xavier Alcobé, Frank Güell, Narcís Homs,* and Pilar Ramírez de la Piscina

Downloaded via 88.29.219.216 on July 18, 2025 at 15:56:11 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Cite This: ACS Sustainable Chem. Eng. 2024, 12, 4365-4374


ACCESS I

III Metrics & More

Article Recommendations

s Supporting Information

ABSTRACT: In this work, we studied new materials free of noble metals that are active in photocatalytic H_2 generation from ethanol aqueous solutions (EtOH_{aq}), which can be obtained from biomass. Mo_xC/g - C_3N_4 photocatalysts containing hexagonal (hcp) Mo_2C and/or cubic (fcc) MoC nanoparticles on g- C_3N_4 nanosheets were prepared, characterized, and evaluated for photocatalytic hydrogen production from $EtOH_{aq}$ (25% v/v). Tailored Mo_xC/g - C_3N_4 nanocomposites with Mo_xC crystallite sizes in the 4–37 nm range were prepared by treatment with ultrasound of dispersions containing Mo_xC and g- C_3N_4 nanosheets, formerly synthesized. The characterization of the resulting nanocomposites, Mo_xC/g - C_3N_4 , by different techniques, including photoelectrochemical measurements, allowed us to relate the photocatalytic performance

of materials with the characteristics of the Mo_x^2C phase integrated onto g- C_3N_4 . The samples containing smaller hcp Mo_2C crystallites showed better photocatalytic performance. The most performant nanocomposite contained nanoparticles of both hcp Mo_2C and fcc MoC and produced 27.9 mmol H_2 g^{-1} Mo; this sample showed the lowest recombination of photogenerated charges, the highest photocurrent response, and the lowest electron transfer resistance, which can be related to the presence of MoC- Mo_2C heterojunctions. Moreover, this material allows for easy reusability. This work provides new insights for future research on noblemetal-free g- C_3N_4 -based photocatalysts.

KEYWORDS: molybdenum carbide, H₂ photoproduction, visible photocatalysis, Mo_xC cocatalyst, g-C₃N₄, bioethanol

1. INTRODUCTION

Nowadays, the large-scale industrial production of H₂ is captive to fossil fuels. Thus, new ways to produce H₂ are of current interest in both the energy and environmental contexts. From this perspective, the development of photocatalytic systems that produce H2 using renewable substrates, such as bioalcohols, is of primary importance. 1-4 Photocatalysts are usually based on inorganic semiconductor materials, and the direct use of solar radiation is highly attractive when the photocatalyst is able to absorb visible light. In this context, one of the most encouraging materials is graphitic carbon nitride $(g-C_3N_4)$. On the other hand, the main concern related to the efficiency of photocatalysts is the usually fast rate of recombination of the photogenerated charges, electrons (e⁻), and holes (h⁺). 12 Although the most common strategy that is used for improving h⁺/e⁻ charge separation is the addition of noble metals to the surface of the semiconductor, other compounds such as transition metal oxides, sulfides, or carbides, have been also proposed as efficient cocatalysts. 13,14 Specifically, the catalytic properties of molybdenum and

tungsten carbides are oftentimes described as Pt-like and they have been used as catalysts in different electrochemical and chemical processes and as cocatalysts in photochemical processes. The use of molybdenum carbides in alternative hydrogen production, has been mainly focused on their use as electrocatalysts. However, an increasing interest exists in the use of molybdenum carbide-based systems as cocatalysts in the photoproduction of H_2 . Different photocatalysts for H_2 evolution containing molybdenum carbides and semiconductors, such as TiO_2 , CdS, and $SrTiO_3$, have been reported. However, a limited number of papers dealing with photocatalysts based on Mo_2C and $g-C_3N_4$ have been published. $Mo-Mo_2C/g-C_3N_4$ and $Mo-Mo_2C/g-C_3N_4$ and $Mo-Mo_2C$

Received: September 27, 2023 Revised: February 15, 2024 Accepted: February 15, 2024 Published: March 7, 2024

Table 1. Several Characteristics of Photocatalysts^a

			002		
sample	Mo content (wt %)	BET $\left(m^2/g\right)$	$g-C_3N_4$ (2 θ deg)	crystallite size (nm)	band gap (eV)
Mo_xC700/g - C_3N_4	3.65	39	27.7	11 (Mo ₂ C) ^b 4 (MoC) ^b	2.79
$Mo_2C800/g-C_3N_4$	3.43	34	27.7	$23 (Mo_2C)$	2.79
$Mo_2C900/g-C_3N_4$	3.35	39	27.6	31 (Mo ₂ C)	2.78
$MoC1100/g-C_3N_4$	2.62	22	27.5	4 (MoC)	2.77
Mo ₂ C-comm/g-C ₃ N ₄	3.33	22	27.5	37 (Mo ₂ C)	2.77
$g-C_3N_4$		31	27.7		2.75

^aMo content from chemical analysis (ICP-AES), BET surface area, position of the 002 XRD peak of g-C₃N₄, Mo_xC phase, crystallite size, and band gap values. ^bCalculated from the full profile analysis of the XRD pattern (Figure S6 ⁴³).

 ${
m Mo_2C/g\text{-}C_3N_4}^{31,35}$ ${
m Mo_2C@C/g\text{-}C_3N_4}$ heterostructures, ${
m ^{32,33}}$ and rod-like g-C₃N₄ decorated with ${
m Mo_2C}$, ${
m ^{34}}$ have been studied as photocatalysts in H₂ generation; in every case, triethanolamine (TEOA) solution was employed as sacrificial electron donor in the photocatalytic test. The presence of Mo, Co and Mo or C enhances the cocatalyst effect of ${
m Mo_2C}$ onto g-C₃N₄. ${
m ^{31-35}}$ On the other hand, it has been reported that the presence of ${
m MoC/Mo_2C}$ heterostructures has a positive effect in the electrocatalytic behavior of molybdenum carbide-based catalysts for the H₂ evolution reaction. ${
m ^{36}}$ Moreover, it has been proposed that, for a given material, there is a relationship between its performance in the electrocatalytic H₂ evolution and its efficiency as a cocatalyst in the photocatalytic H₂ production.

This background and the advantage of using ethanol, which is currently produced and used as a biofuel around the world, led us to an in-depth study of photocatalysts based on Mo_xC/ $g-C_3N_4$ (Mo_xC = Mo₂C and/or MoC) for H₂ production using EtOH_{aq} and visible light. We have recently reported the preparation of molybdenum carbide phases via sol-gel methods using different molybdenum precursors and carbon sources; Mo₂C and/or MoC cubic and/or hexagonal were obtained depending on the preparation method used.^{24,37–39} In this work, we report the preparation and characterization of new tailored Mo_xC/g-C₃N₄ photocatalysts, containing hcp Mo₂C and/or fcc MoC as cocatalysts with different crystallite sizes. Hydrogen production is related to the photoelectrochemical properties of the nanocomposites, which in turn depend on the crystalline phases of molybdenum carbide, including charge recombination, electron transfer resistance, and the photocurrent response of different photocatalysts.

2. EXPERIMENTAL SECTION

2.1. Synthesis of Mo_xC. Different Mo_xC phases were synthesized based on a recently described sol—gel method using $MoCl_5$ (reagent grade, 95%) and 4,5-dicyanoimidazole (DI) (reagent grade, 99%) from Sigma-Aldrich, as Mo and C sources, respectively. 37,38

Specifically, the gel formed by the addition of $MoCl_5$ (5.6 mmol) and DI (2.8 mmol) to 15 mL of ethanol (>99.999% HPLC, Sigma-Aldrich), was treated at different temperatures under an Ar flow (99.999%, Linde) (T=700,800, or $900\,^{\circ}C$) in a tubular furnace. The materials were labeled Mo_xCT , where T is the temperature used in the treatment. The preparation of Mo_xC1100 was accomplished using a similar method, with $MoCl_5$ (5.6 mmol), DI (5.6 mmol), and a thermal treatment of $1100\,^{\circ}C$.

2.2. Preparation of g-C₃N₄ Nanosheets. For the preparation of g-C₃N₄ nanosheets, the thermal polymerization of melamine was accomplished as follows: 40 melamine (>99%, Alfa Aesar) was calcined at 5 °C/min up to 520 °C (4 h); the yellowish material was ground to powder, and the calcination process was repeated.

2.3. Integration of Mo_xCT onto $g-C_3N_4$. For the preparation of $Mo_xCT/g-C_3N_4$, dispersions in ethanol with the appropriate amounts of Mo_xCT and $g-C_3N_4$, to obtain about 3 wt% Mo, were treated under ultrasound (SONICS VCX 500) at 20 °C and 250 W for 1 h; then, ethanol was eliminated by careful evaporation with stirring at 50 °C. Moreover, using a similar procedure, commercial Alfa-Aesar Mo_2C (99.5% metal basis, hcp Mo_2C , average crystallite size $\overline{d}=37$ nm), was used for the preparation of the Mo_2C -comm/ $g-C_3N_4$ photocatalyst. Table 1 lists all of the photocatalysts prepared and studied in this work.

2.4. Characterization of Photocatalysts. Inductively coupled plasma atomic emission spectrometry (ICP-AES) was used to determine the Mo content using a PerkinElmer Optima 3200RL instrument.

A Micromeritics Tristar II 3020 instrument was used to record the $\rm N_2$ adsorption—desorption isotherms, which were determined at $-196~^{\circ}\text{C}$ after degasification at 250 $^{\circ}\text{C}$ under an Ar flow. Multipoint Brunauer–Emmett–Teller (BET) analysis of the isotherms was used to calculate the specific surface area (S_{BET}). The desorption isotherms were used for the determination of the pore size distribution by the method of Barrett–Joyner–Halenda (BJH).

Powder X-ray diffraction (XRD) patterns were recorded using a Bragg–Brentano powder diffractometer (PANalytical X'Pert PRO MPD), with Cu K α radiation (λ = 1.5418 Å) from 2θ = 4 to 100°. Peak indexation and phase identification were performed with the aid of the ICDD Powder Diffraction File (PDF). Accurate peak positions, area intensities, and full width at half-maximum (fwhm) were obtained after full profile analysis. The crystallite sizes were calculated from the fwhm using the Scherrer equation. Exemiquantitative phase analysis, in some binary nanocrystalline samples, was performed from the accurate area intensities and using the reference intensity ratios in the corresponding PDF file.

Fourier-transform infrared spectroscopy (FTIR) analysis was conducted by using pellets of the KBr-diluted samples on a Thermo Nicolet 5700 FTIR apparatus.

Transmission and high-resolution electron microscopy (TEM-HRTEM) and energy-dispersive X-ray (EDX) spectroscopy with elemental mapping analysis were performed using a JEOL JEM-2100 instrument operating at 200 kV.

X-ray photoelectron spectroscopy (XPS) was conducted using a Perkin Elmer PHI-5500 Multitechnique System with Al K α radiation (1486.6 eV). The binding energy (BE) values were determined using the C 1s peak at 284.8 eV, which was previously ascertained using Au as a reference. Multi Pak XPS software was used to deconvolute the XPS signals.

UV-vis diffuse reflectance spectra (UV-vis DRS) were acquired using a PerkinElmer Lambda 950 UV/vis Spectrometer; $BaSO_4$ was used as a reference. The Kubelka-Munk model was used to determine the band gap values.

Photoluminescence (PL) spectroscopy measurements were performed at room temperature by using a Kimmon IK Series He–Cd CW laser (325 nm, 40 mW). Fluorescence was dispersed through a SpectraPro 2750 (focal length of 750 mm) f/9.8 monochromator, detected with a Hamamatsu H8259-02 photomultiplier, and amplified

using a Stanford Research System SR830 DSP Lock-in amplifier. A 360 nm filter was used for the stray light, and the emission spectra were corrected using the optical transfer function of the PL setup.

For photoelectrochemical characterization of samples, electrochemical impedance spectroscopy (EIS) and transient photocurrent determination were performed. The system consisted of a computer-controlled potentiostat (VMP3, BioLogic Science Instruments) with an undivided three-electrode cell; a Pt wire was used as the counter electrode, Ag/AgCl (3 M KCl) as the reference, the photocatalyst (1 cm² geometric area) as the working electrode; and an aqueous solution of Na₂SO₄ (0.5 M) as the electrolyte. A150 W AM 1.5G solar simulator (Solar Light Co., 16S-300-002 v 4.0) with an incident light intensity of 1 sun (100 mW cm²) was used to perform the measurements under illumination.

2.5. Photocatalytic Experiments. Figure S1 shows a schematic diagram of the system used for the photocatalytic tests. It contained a jacketed reactor of 300 mL, operated under continuous gas flow, and was equipped with a condenser, kept at -15 °C at the outlet. 44 A broad-spectrum commercial (ACE-Hanovia) Hg lamp was used (Figure S1), which was immersed in the solution inside a watercooled jacket that served as a UV cut-off filter ($\lambda > 385$ nm). The experiments were performed at atmospheric pressure and 20 °C. Before the photocatalytic test, the photocatalyst (300 mg) was dried at 100 °C, and EtOH_{aq} (250 mL, 25% v/v) was purged with Ar; and the corresponding suspension was stirred in the reactor for 30 min under dark and N₂/Ar flow (99.999% N₂ was used as the internal standard) and then irradiated. No products were detected in the dark. After 10 min of light on, the evolved gaseous products were periodically analyzed online using a gas microchromatograph Varian CP-4900, equipped with micro-TCD detectors (detection limit for H₂, 50 ppm) and two columns (10 m PPQ, He carrier; 10 m molecular sieve (5 Å), Ar carrier).

After the test (4 h), the mixture was filtered, and the solution was analyzed by gas chromatography using Bruker 450 GC equipment with an FID detector and a CP-Sil 8 CB capillary column (30 m \times 0.25 mm).

A reusability test was carried out with the most active photocatalyst; the used sample was removed from the liquid reaction mixture by filtering, washed with ethanol, and tested again. Moreover, in a separate cyclic experiment, the light was switched off after 1 h, and then after 0.5 h in dark conditions, the light was switched on for 1 h.

3. RESULTS AND DISCUSSION

3.1. Structural and Chemical Characterization. As stated in the Experimental Section, the Mo_xCT/g-C₃N₄ catalysts studied in this work were prepared by ultrasonic treatment of a suspension containing previously synthesized molybdenum carbide nanoparticles and g-C₃N₄ nanosheets. XRD patterns of the initial Mo_xC800 and Mo_xC900 (Figure S2) show the main presence of relatively narrow peaks that could be perfectly indexed with the hexagonal close-packed, hcp, $P6_3/mmc$, structure of Mo₂C (PDF 04-014-1517). The average crystallite size of Mo₂C was $\overline{d} = 22$ and 30 nm in Mo_xC800 (from now Mo₂C800) and Mo_xC900 (from now Mo₂C900), respectively. On the other hand, in the XRD pattern of Mo_xC1100 (Figure S2), mainly 6 very wide peaks are observed that could be in principle be well indexed as the 111, 200, 220, 311, 222, and 400 reflections of the cubic closepacked, fcc, Fm3m, the structure of MoC (PDF 04-003-1480) with d = 4 nm; for easy identification of this sample, from this point on it will be labeled MoC1100. Meanwhile, the XRD analysis of Mo_xC700 (Figure S2) shows both the presence of very wide peaks of the fcc structure of MoC and less wide peaks of the hcp structure of Mo₂C.

The XRD pattern of g-C₃N₄ prepared in this work shows a main peak at $2\theta = 27.7^{\circ}$ and a peak at $2\theta = 13.0^{\circ}$ with a much

lower intensity (Figure 1). The peak at $2\theta = 27.7^{\circ}$ is due to 002 reflection of the (001) interlayer stacking; the position of

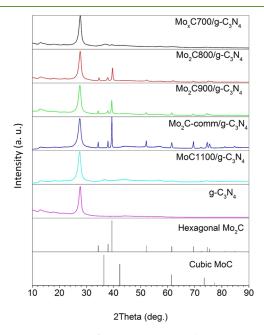


Figure 1. XRD patterns of nanocomposites and g-C₃N₄.

this peak indicates a slightly smaller interlayer distance with respect to bulk g-C₃N₄, which shows the 002 XRD peak at 27.34°. The low intensity peak at $2\theta = 13.0^{\circ}$ is attributed to the in-plane structural packing motifs. 46

The FTIR spectrum of g-C₃N₄ (Figure S3) agrees with that expected for this material. The characteristic band of the breathing mode of s-triazine rings can be seen at 807 cm⁻¹; bands related to C=N and C-N stretchings in the heterocycles are visible in the 1800-900 cm⁻¹ zone. All of these FTIR features can also be seen in the spectra of all nanocomposites prepared (Figure S3).

All photocatalysts showed type IV N_2 adsorption—desorption isotherms with H3 hysteresis loops (Figure S4). The $S_{\rm BET}$ values of 29–39 m² g⁻¹ (Table 1), and wide pore size distributions in the range of meso- and macropores were found (Figure S5).

Figure 1 shows the XRD patterns of $Mo_xCT/g-C_3N_4$ nanocomposites. After the integration of Mo_xCT onto $g-C_3N_4$, the photocatalysts always retained the initial Mo_xC crystalline phases and $g-C_3N_4$ nanosheets used in their preparation (Figure 1).

For Mo_2C900/g - C_3N_4 , MoC1100/g- C_3N_4 , and Mo_2Ccomm/g - C_3N_4 , the 002 interlayer-stacking peaks appeared at slightly a lower angle than that of the prepared g- C_3N_4 ($2\theta = 27.7^{\circ}$) (Table 1).

Table 1 shows the obtained crystallite sizes of the Mo_xC phases in the photocatalysts. The semiquantitative Mo_xC phase analysis of the Mo_xC700/g - C_3N_4 sample results in hcp Mo_2C (14%) and fcc MoC (86%).

Hexagonal Mo₂C (11–31 nm crystallite size) was identified in the Mo_xCT/g-C₃N₄ (T=700-900 °C) nanocomposites; the higher the temperature used in the preparation of Mo_xCT, the larger the Mo₂C crystallite size. Mo₂C-comm/g-C₃N₄ showed the largest hcp Mo₂C crystallite size (37 nm). On the other hand, the fcc MoC phase, which was determined in

 Mo_xC700/g - C_3N_4 and MoC1100/g- C_3N_4 , showed a similar crystallite size (4 nm) in both nanocomposites.

Figure 2 displays TEM-HRTEM images of the Mo₂C800/g-C₃N₄, Mo₂C900/g-C₃N₄, and MoC1100/g-C₃N₄ photocata-

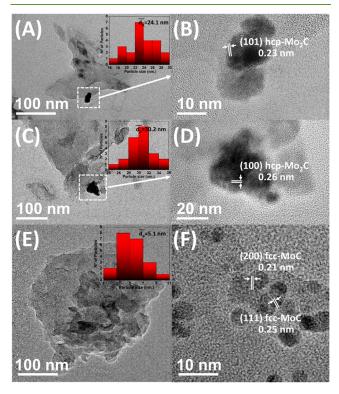


Figure 2. TEM-HRTEM images and particle distribution (insets) of (A) and (B) Mo_2C800/g - C_3N_4 ; (C) and (D) Mo_2C900/g - C_3N_4 ; and (E) and (F) MoC1100/g- C_3N_4 nanocomposites.

lysts; hcp Mo₂C nanoparticles were identified in Mo₂C800/g-C₃N₄ (mean size: 24.1 nm) and Mo₂C900/g-C₃N₄ (mean size: 30.2 nm), whereas cubic MoC nanoparticles were found in MoC1100/g-C₃N₄ (mean particle size: 5.1 nm). These findings agree with those determined by XRD analysis (Table 1).

Figure 3 shows TEM and HRTEM images of Mo_xC700/g - C_3N_4 . In this case, the nanoparticles of Mo_xC with two domains of particle size, with mean sizes of 4.3 and 13.0 nm, can be seen (Figure 3B). Moreover, the presence of hcp Mo_2C and fcc MoC in close proximity was determined by HRTEM (Figure 3C). These results are in good agreement with those of the XRD analysis. Moreover, EDX analysis showed that Mo was homogeneously distributed along the photocatalyst (Figure 3D).

The surface characteristics of the photocatalysts were analyzed by XPS. The XP C 1s spectrum corresponding to g-C₃N₄ (Figure S7) shows, besides the adventitious band due to C-C at 284.8 eV, a main band at about 288.1 eV, characteristic of bound C in the heterocycles (C-N=C). 40,48 In addition, a small C 1s component at a lower BE (283.3-283.8 eV), characteristic of carbides can be identified in the XP spectra of Mo_xC-containing photocatalysts (Figure S7). 24,37,38 In all cases, the broadness and asymmetry of the band located at the highest BE are indicative of the presence of O-bound (C-O, C=O) surface species. 24,40,49 The N 1s spectrum of g-C₃N₄ (Figure S7) shows a main component assigned to sp²bonded N in the heterocycles at about 398.6 eV, and components at higher BEs of 399.4, 401.0, and 404.7 eV. The signal at 399.4 eV can be attributed to the presence of tertiary nitrogen (N-(C)₃). On the other hand, amino functional groups (C-N-H), arising from a defective condensation of heptazine substructures, could be responsible for the component at 401.0 eV; the very low intense peak at 404.7 eV is attributed to the charging effects or positive charge localization in the heterocycles. 48,50,51 The N 1s spectra of the

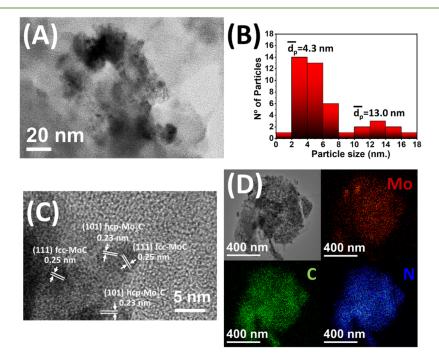


Figure 3. (A) TEM micrograph, (B) particle size distribution, (C) HRTEM micrograph, and (D) scanning transmission electron microscopy (STEM) image and EDX elemental mapping of the Mo_xC700/g-C₃N₄ photocatalyst.

Figure 4. Mo 3d core level spectra of the nanocomposites.

nanocomposites were similar to those of g-C₃N₄ (Figure S7). On the other hand, the presence of a small amount of surface oxygen-containing species could be evidenced in all cases (Figure S8); the asymmetric broad O 1s band with a maximum at 532.6 eV in the XP spectrum of g-C₃N₄ could be assigned to adsorbed H₂O and surface species with C=O bonds.⁴⁰ Molybdenum oxide and/or oxycarbide species could contribute to the O 1s band in the XP spectra of Mo_xC-containing photocatalysts, whose maxima are located at a lower BE than that of g-C₃N₄. ^{24,49} Finally, Figure 4 shows the Mo 3d core level spectra of nanocomposites, which were deconvoluted fixing the Mo $3d_{5/2}/Mo 3d_{3/2}$ intensity ratios of 1.5 and 3.1 eV as the value of orbital splitting. 52 The Mo $3d_{5/2}$ component at 228.4-228.7 eV indicates the presence of surface carbides and is attributed to Mo₂C and/or derived oxycarbide species. 24,37,49,53 The other Mo $3d_{5/2}$ components at higher BEs

can be assigned to the Mo⁴⁺, Mo⁵⁺, and Mo⁶⁺ surface species, which could be related to MoC and/or different molybdenum oxycarbide and oxide species. The samples Mo_xC700/g-C₃N₄, Mo_xC800/g-C₃N₄, and Mo_xC900/g-C₃N₄ showed clear Mo 3d_{5/2} components at a BE lower than 231 eV, and the corresponding molybdenum surface species were about 23% of the total Moⁿ⁺ surface species. Although the Mo 3d spectrum of MoC1100/g-C₃N₄ could not be properly deconvoluted, the existence of surface molybdenum carbide and oxide species could also be inferred in this case (Figure 4). In all cases, the contact of samples with ambient air could produce oxycarbide and oxide species. 24

3.2. Photoelectrochemical Features and Photocatalytic Behavior. The optical properties of the photocatalysts were analyzed by UV-vis eliminate DRS and PL spectroscopy. Figure S9 shows the UV-vis DRS spectra and the

corresponding Tauc plots used in the determination of the band gap values, following the approach reported in ref 54. In all cases, light absorption edges occurred in the visible region (Table 1). The band gap determined for g-C₃N₄ is 2.75 eV, and all of the Mo_xCT/g -C₃N₄ nanocomposites showed only slightly higher band gap values (2.77–2.79 eV).

The recombination process of photogenerated (e^-/h^+) pairs in the photocatalysts was studied by PL analysis. Figure 5

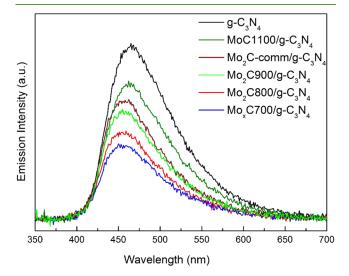
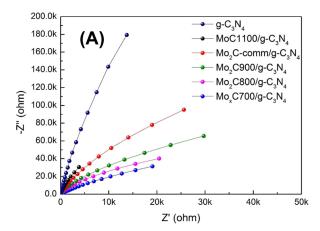



Figure 5. Photoluminescence spectra of nanocomposites and g-C₃N₄.

shows the PL spectra of the nanocomposites compared to that of g-C₃N₄. We observed an emission peak in the visible region for all samples, a maximum at 465 nm for g-C₃N₄, and a slight shift of the emission maxima toward higher energies for the Mo_rC-containing photocatalysts. These findings are consistent with the UV-vis DRS results, which indicate a slight increase in the band gap energy for Mo_xCT/g-C₃N₄ than pristine g- C_3N_4 . Interestingly, the intensity of the PL spectrum of g- C_3N_4 is always higher than that of nanocomposites (Figure 5), indicating that the presence of Mo_xC decreases the e⁻/h⁺ pair recombination rate, thus leading to a decrease in the emission intensity. The trend in the intensity of the PL emission band (Figure 5) suggests that hcp Mo₂C is more effective in reducing charge recombination in g-C₃N₄ than fcc MoC. Moreover, it seems that recombination is less favored when the Mo₂C crystallite size decreases and when hcp Mo₂C and fcc MoC are in close proximity over g-C₃N₄. A low recombination rate of the photogenerated (e⁻/h⁺) pairs and a faster electron transfer rate can improve the photocatalytic properties.

To further evaluate the photocharge separation and electron transfer properties of the photocatalysts, electrochemical impedance spectra, and transient photocurrent response were measured, as described in the Experimental Section.

Figure 6 shows the impedance Nyquist plots for the g- C_3N_4 and $Mo_xCT/g-C_3N_4$ photocatalysts under dark (A) and illumination (B) conditions. As can be seen, in both cases, g- C_3N_4 shows a larger arc radius than the Mo_xC -containing nanocomposites, indicating that the presence of Mo_xC on the g- C_3N_4 nanosheets reduces the electron transfer resistance in the dark and under irradiation. Moreover, in all cases, the arc radius in the dark is larger than that under irradiation, as illustrated in Figure S10 for the samples with the largest and the smallest arc radii, g- C_3N_4 and $Mo_xC700/g-C_3N_4$, respectively. This indicates the effectiveness of irradiation in

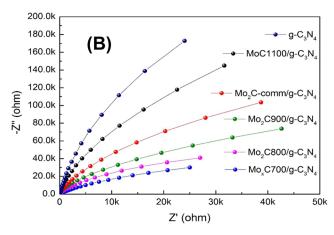
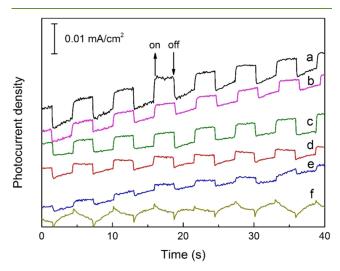



Figure 6. EIS Nyquist plots of nanocomposites and g-C₃N₄: (A) under dark conditions and (B) with irradiation.

decreasing the barrier of electron transfer in these materials. The Nyquist arc radius follows a trend similar to that of the intensity of the PL spectra shown above; the lower the electron transfer barrier, the higher the efficiency of charge separation.

The results of the transient photocurrent responses are shown in Figure 7. The Mo_xC -containing nanocomposites

Figure 7. Transient photocurrent responses of nanocomposites and g-C₃N₄: (a) Mo_xC700/g -C₃N₄; (b) Mo_2C800/g -C₃N₄; (c) Mo_2C900/g -C₃N₄; (d) Mo_2C -comm/g-C₃N₄; (e) MoC1100/g-C₃N₄; and (f) g-C₃N₄.

showed a larger photocurrent density than that of g- C_3N_4 . Mo_xC700/g - C_3N_4 showed the highest photocurrent density. The presence of Mo_xC as a cocatalyst slows down the recombination rate of photogenerated e^-/h^+ , decreases the barrier for electron transport, and accordlingly can favor the further transfer of electrons for proton reduction.

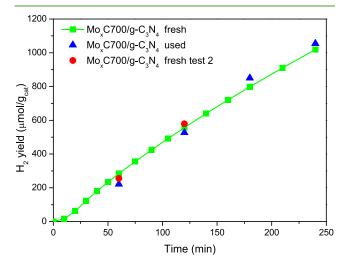
As stated above, the photocatalytic behavior in H_2 generation from $EtOH_{aq}$ (25% v/v) was analyzed under visible light ($\lambda > 385$ nm) for all of the materials prepared, including pristine $g-C_3N_4$, and a blank test without the photocatalyst was also carried out. Under the experimental conditions used in this work, $g-C_3N_4$ and the blank test produced a negligible amount of H_2 . On the other hand, all nanocomposites containing molybdenum carbide species were active in photocatalytic H_2 generation; the H_2 production per gram of catalyst over time is depicted in Figure 8. Besides H_2 , minor

Figure 8. H₂ generated per gram of photocatalyst as a function of irradiation time; results from g- C_3N_4 and the blank test are also included. Reaction conditions: 25% v/v ethanol aqueous solution and $T=20~^{\circ}C$.

amounts of CO_2 were produced; moreover, mainly 2,3-butanediol was found in the liquid phase, and no O_2 was detected. These results point out that photoreforming of ethanol was not accomplished. Moreover, the absence of CH_4 and CO as products in the gas phase suggests that under our experimental conditions and with Mo_xC/g - C_3N_4 photocatalysts, the cleavage of the C-C bond is not favored in the ethanol phototransformation. The oxidation of ethanol could proceed with the generated hole (h^+) , and the α -hydroxyethyl radicals $(^{\bullet}CH(OH)CH_3)$ be formed: 38,555,56

$$CH_3CH_2OH + h^+ \rightarrow {}^{\bullet}CH(OH)CH_3 + H^+$$
 (1)

Then, the coupling of two initially formed α -hydroxyethyl radicals (${}^{\bullet}$ CH(OH)CH₃) could be proposed for the formation of 2,3-butanediol: 38,44,56,57


$$2^{\bullet}CH(OH)CH_{3} \rightarrow CH_{3}CH(OH)CH(OH)CH_{3}$$
 (2)

According to the characterization results given above, the molybdenum carbide species on $g\text{-}C_3N_4$ mainly facilitate electronic transfer, producing H_2 and decreasing e^-/h^+ recombination in $g\text{-}C_3N_4$. This is illustrated in Figure S11 for $Mo_xC700/g\text{-}C_3N_4$.

Figure 8 shows the hydrogen production per gram of the Mo_xCT/g-C₃N₄ photocatalyst; a similar trend is found when

H₂ production is referred to as a gram of Mo (Figure S12). The photocatalytic performance can be straightforwardly related to the photoelectrochemical characteristics of the samples: the intensity of the PL emission peak, EIS values, and transient photocurrent measurements. The smaller the size of the hcp Mo₂C particles in the nanocomposite, the better the photocatalytic performance. Moreover, a positive effect of the close proximity of the hcp Mo₂C and fcc MoC phases is found. Mo_xC700/g-C₃N₄ with both hcp Mo₂C (11 nm) and fcc MoC (4 nm) showed the best photocatalytic behavior. The presence of heterojunctions MoC-Mo₂C could improve the photocatalytic behavior, as has been demonstrated for WC-Mo₂C/ TiO₂ photocatalysts with WC-Mo₂C heterojunctions.⁵⁸ In fact, as stated in the Introduction section, for Mo_xC-based electrocatalysts, the presence of MoC/Mo₂C heterostructures was demonstrated to improve the H₂ evolution reaction,³⁶ and an improved photocatalytic behavior for H_2 production could be expected,³⁵ which is in line with the results presented here.

In order to know the reusability of the most performant photocatalyst, a new photocatalytic test was carried out with the used $Mo_xC700/g-C_3N_4$ (Figure 9), and a similar H_2

Figure 9. Different photocatalytic tests for H_2 production over fresh and used Mo_xC700/g - C_3N_4 . In test 2, the light was switched off after 1 h; then, after 0.5 h in dark conditions, the light was switched on. Reaction conditions: 25% v/v ethanol aqueous solution and T=20 °C.

production for both fresh and used catalysts was observed. Figure 9 also shows the reproducibility of the photocatalytic behavior of fresh $\rm Mo_x C700/g\text{-}C_3N_4$ when the light switch off/switch on procedure was employed. In all cases, the standard deviation was only up to 2% of the values originally obtained. The reused $\rm Mo_x C700/g\text{-}C_3N_4$ was characterized by FTIR and XRD, and similar results were obtained for the fresh photocatalysts (Figures S13 and S14). These results show the stability of $\rm Mo_x C700/g\text{-}C_3N_4$, which can be reused without loss of its properties.

4. CONCLUSIONS

The preparation method led to tailored Mo_xCT/g - C_3N_4 photocatalysts with hcp Mo_2C and/or fcc MoC nanoparticles of different sizes supported on g- C_3N_4 nanosheets. The separately prepared Mo_xC cocatalysts were incorporated into g- C_3N_4 using ultrasound, which maintained the characteristics

of both Mo_xC nanoparticles and g- C_3N_4 nanosheets formerly synthesized.

The photocatalytic behavior of Mo_xCT/g-C₃N₄ in hydrogen generation from EtOH_{aq} under visible light is related to the rate of recombination of photogenerated charges, electron transfer resistance, and photocurrent response of the prepared nanocomposites. These properties depend on the characteristics of the Mo_xC cocatalyst. Photocatalysts containing hcp Mo₂C were more effective than that containing only fcc MoC; the smaller the crystallite size of hcp Mo₂C, the better was the photocatalytic performance of Mo_xCT/g-C₃N₄. The best photocatalytic results were obtained for Mo_xC700/g-C₃N₄, which presented hexagonal Mo₂C and cubic MoC, the lowest rate of charge recombination and electron transfer resistance, and the highest photocurrent response; about 7 mmol of H₂ g_{Mo}⁻¹ h⁻¹ were produced with this photocatalyst under the conditions used. The improved photocatalytic behavior of Mo_xC700/g-C₃N₄ could be related to the presence of MoC-Mo₂C heterojunctions, which could enhance the photoelectrochemical properties of the nanocomposites and therefore photocatalytic H₂ generation. Moreover, the reusability of Mo_xC700/g-C₃N₄ is demonstrated.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acssuschemeng.3c06261.

Additional details related to characterization methods and characterization and photocatalytic results are included (PDF)

AUTHOR INFORMATION

Corresponding Author

Narcís Homs — Departament de Química Inorgànica i Orgànica, secció de Química Inorgànica & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain; Catalonia Institute for Energy Research (IREC), 08930 Barcelona, Spain; orcid.org/0000-0002-0847-7327; Email: narcis.homs@qi.ub.edu

Authors

Yan Wang — Departament de Química Inorgànica i Orgànica, secció de Química Inorgànica & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain; Catalonia Institute for Energy Research (IREC), 08930 Barcelona, Spain; Present Address: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, 518071 Shenzhen, China

Arturo Pajares — Departament de Química Inorgànica i Orgànica, secció de Química Inorgànica & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain; Catalonia Institute for Energy Research (IREC), 08930 Barcelona, Spain; Present Address: Sustainable Materials Management, Flemish Institute for Technological Research (VITO NV), Boeretang 200, 2400 Mol, Belgium.; orcid.org/0000-0002-0160-2770

Jarosław Serafin – Departament de Química Inorgànica i Orgànica, secció de Química Inorgànica & Institut de

- Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
- Xavier Alcobé Unitat de Difracció de Raigs X, Centres Científics i Tecnològics (CCiTUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Frank Güell ENPHOCAMAT Group, Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
- Pilar Ramírez de la Piscina Departament de Química Inorgànica i Orgànica, secció de Química Inorgànica & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain

Complete contact information is available at: https://pubs.acs.org/10.1021/acssuschemeng.3c06261

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the financial support of the MICINN MAT2017-87500-P and PID2020-116031RB-I00/AEI/10.13039/501100011033/FEDER projects and CCiTUB for technical facilities. Y.W. and A.P. acknowledge the predoctoral grants from the China Scholarship Council (CSC 201608460014) and MINECO (BES-C-2015-074574), Spain, respectively.

REFERENCES

- (1) Beltram, A.; Melchionna, M.; Montini, T.; Nasi, L.; Fornasiero, P.; Prato, M. Making H₂ from light and biomass-derived alcohols: the outstanding activity of newly designed hierarchical MWCNT/Pd@ TiO₂ hybrid catalysts. *Green Chem.* **2017**, *19* (10), 2379–2389.
- (2) Zhang, X.; Luo, L.; Yun, R.; Pu, M.; Zhang, B.; Xiang, X. Increasing the Activity and Selectivity of TiO₂-Supported Au Catalysts for Renewable Hydrogen Generation from Ethanol Photoreforming by Engineering Ti³⁺ Defects. ACS Sustainable Chem. Eng. 2019, 7 (16), 13856–13864.
- (3) Chen, W. T.; Dong, Y.; Yadav, P.; Aughterson, R. D.; Sun-Waterhouse, D.; Waterhouse, G. I. Effect of alcohol sacrificial agent on the performance of Cu/TiO₂ photocatalysts for UV-driven hydrogen production. *Appl. Catal., A* **2020**, *602*, No. 117703.
- (4) Karimi Estahbanati, M.; Babin, A.; Feilizadeh, M.; Nayernia, Z.; Mahinpey, N.; Iliuta, M. C. Photocatalytic conversion of alcohols to hydrogen and carbon-containing products: A cleaner alcohol valorization approach. *J. Cleaner Prod.* **2021**, 318, No. 128546.
- (5) Wang, X.; Blechert, S.; Antonietti, M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. *ACS Catal.* **2012**, 2 (8), 1596–1606
- (6) Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. *Adv. Mater.* **2015**, 27 (13), 2150–2176.
- (7) Jiang, L.; Yuan, X.; Pan, Y.; Liang, J.; Zeng, G.; Wu, Z.; Wang, H. Doping of graphitic carbon nitride for photocatalysis: A review. *Appl. Catal., B* **2017**, *217* (15), 388–406.
- (8) Nasir, M. S.; Yang, G.; Ayub, I.; Wang, S.; Wang, L.; Wang, X.; Yan, W.; Peng, S.; Ramakarishna, S. Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. *Appl. Catal., B* **2019**, 257 (15), No. 117855.
- (9) Wang, L.; Wang, K.; He, T.; Zhao, Y.; Song, H.; Wang, H. Graphitic Carbon Nitride-Based Photocatalytic Materials: Preparation Strategy and Application. ACS Sustainable Chem. Eng. 2020, 8 (43), 16048–16085.
- (10) Liu, E.; Lin, X.; Hong, Y.; Yang, L.; Luo, B.; Shi, W.; Shi, J. Rational copolymerization strategy engineered C self-doped g- C_3N_4 for efficient and robust solar photocatalytic H_2 evolution. *Renewable Energy* **2021**, 178, 757–765.

- (11) Ma, D.; Zhang, Z.; Zou, Y.; Chen, J.; Shi, J. The progress of g- G_3N_4 in photocatalytic H_2 evolution: From fabrication to modification. *Coord. Chem. Rev.* **2024**, *500*, No. 215489.
- (12) Zhang, P.; Wang, T.; Chang, X.; Gong, J. Effective charge carrier utilization in photocatalytic conversions. *Acc. Chem. Res.* **2016**, 49 (5), 911–921.
- (13) Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S. Z. Earthabundant cocatalysts for semiconductor-based photocatalytic water splitting. *Chem. Soc. Rev.* **2014**, 43 (22), 7787–7812.
- (14) Zhou, Y.; Wang, W.; Zhang, C.; Huang, D.; Lai, C.; Cheng, M.; Qin, L.; Yang, Y.; Zhou, C.; Li, B.; Luo, H.; He, D. Sustainable hydrogen production by molybdenum carbide based efficient photocatalysts: From properties to mechanism. *Adv. Colloid Interface Sci.* **2020**, 279, No. 102144.
- (15) The Chemistry of Transition Metal Carbides and Nitrides; Oyama, S. T., Ed.; Blackie Academic and Professional: London, 1996. (16) Hwu, H. H.; Chen, J. G. Surface chemistry of transition metal
- (16) Hwu, H. H.; Chen, J. G. Surface chemistry of transition metal carbides. *Chem. Rev.* **2005**, *105* (1), 185–212.
- (17) Prats, H.; Piñero, J. J.; Viñes, F.; Bromley, S. T.; Sayós, R.; Illas, F. Assessing the usefulness of transition metal carbides for hydrogenation reactions. *Chem. Commun.* **2019**, *55* (85), 12797–12800.
- (18) Figueras, M.; Gutiérrez, R. A.; Viñes, F.; Ramírez, P. J.; Rodriguez, J. A.; Illas, F. Supported molybdenum carbide nanoparticles as hot hydrogen reservoirs for catalytic applications. *J. Phys. Chem. Lett.* **2020**, *11* (19), 8437–8441.
- (19) Pajares, A.; Wang, Y.; Kronenberg, M. J.; de la Piscina, P. R.; Homs, N. Photocatalytic H₂ production from ethanol aqueous solution using TiO₂ with tungsten carbide nanoparticles as co-catalyst. *Int. J. Hydrogen Energy* **2020**, *45* (40), 20558–20567.
- (20) Chen, W. F.; Wang, C. H.; Sasaki, K.; Marinkovic, N.; Xu, W.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. *Energy Environ. Sci.* **2013**, *6* (3), 943–951.
- (21) Wang, S.; Wang, J.; Zhu, M.; Bao, X.; Xiao, B.; Su, D.; Li, H.; Wang, Y. Molybdenum-carbide-modified nitrogen-doped carbon vesicle encapsulating nickel nanoparticles: a highly efficient, low-cost catalyst for hydrogen evolution reaction. *J. Am. Chem. Soc.* **2015**, 137 (50), 15753–15759.
- (22) Xiao, T. C.; York, A. P.; Williams, V. C.; Al-Megren, H.; Hanif, A.; Zhou, X. Y.; Green, M. L. Preparation of molybdenum carbides using butane and their catalytic performance. *Chem. Mater.* **2000**, *12* (2), 3896–3905.
- (23) Liu, W.; Chen, B.; Duan, X.; Wu, K. H.; Qi, W.; Guo, X.; Zhang, B.; Su, D. Molybdenum carbide modified nanocarbon catalysts for alkane dehydrogenation reactions. *ACS Catal.* **2017**, *7* (9), 5820–5827.
- (24) Liu, X.; Kunkel, C.; Ramirez de la Piscina, P.; Homs, N.; Vines, F.; Illas, F. Effective and highly selective CO generation from CO_2 using a polycrystalline α -Mo₂C catalyst. ACS Catal. **2017**, 7 (7), 4323–4335.
- (25) Patterson, P. M.; Das, T. K.; Davis, B. H. Carbon monoxide hydrogenation over molybdenum and tungsten carbides. *Appl. Catal., A* **2003**, *251* (2), 449–455.
- (26) Zhang, Y.; Wang, Y.; Guo, C.; Wang, Y. Molybdenum carbide-based photocatalysts: synthesis, functionalization, and applications. *Langmuir* **2022**, *38* (42), 12739–12756.
- (27) Yue, X.; Yi, S.; Wang, R.; Zhang, Z.; Qiu, S. A novel architecture of dandelion-like Mo₂C/TiO₂ heterojunction photocatalysts towards high-performance photocatalytic hydrogen production from water splitting. *J. Mater. Chem. A* **2017**, 5 (21), 10591–10598.
- (28) Ma, B.; Xu, H.; Lin, K.; Li, J.; Zhan, H.; Liu, W.; Li, C. Mo₂C as Non-Noble metal Co-catalyst in Mo₂C/CdS composite for enhanced photocatalytic H₂ evolution under visible light irradiation. *Chem-SusChem* **2016**, 9 (8), 820–824.
- (29) Yi, S. S.; Yan, J. M.; Wulan, B. R.; Jiang, Q. Efficient visible-light-driven hydrogen generation from water splitting catalyzed by

- highly stable CdS@Mo₂C-C core-shell nanorods. *J. Mater. Chem. A* **2017**, *5* (30), 15862–15868.
- (30) Yue, X.; Yi, S.; Wang, R.; Zhang, Z.; Qiu, S. Well-controlled SrTiO₃@Mo₂C core-shell nanofiber photocatalyst: Boosted photogenerated charge carriers transportation and enhanced catalytic performance for water reduction. *Nano Energy* **2018**, *47*, 463–473.
- (31) Dong, J.; Shi, Y.; Huang, C.; Wu, Q.; Zeng, T.; Yao, W. A new and stable Mo-Mo₂C modified g-C₃N₄ photocatalyst for efficient visible light photocatalytic H₂ production. *Appl. Catal., B* **2019**, 243, 27–35.
- (32) Zou, Y.; Ma, D.; Sun, D.; Mao, S.; He, C.; Wang, Z. X.; Ji, X.; Shi, J.-W. Carbon nanosheet facilitated charge separation and transfer between molybdenum carbide and graphitic carbon nitride toward efficient photocatalytic $\rm H_2$ production. *Appl. Surf. Sci.* **2019**, 473, 91–101
- (33) Song, Y.; Xia, K.; Gong, Y.; Chen, H.; Li, L.; Yi, J.; She, X.; Chen, Z.; Wu, J.; Li, H.; Xu, H. Controllable synthesized heterostructure photocatalyst $Mo_2C@C/2D$ g- C_3N_4 : enhanced catalytic performance for hydrogen production. *Dalton Trans.* **2018**, 47 (41), 14706–14712.
- (34) Zhang, J.; Wu, M.; He, B.; Wang, R.; Wang, H.; Gong, Y. Facile synthesis of rod-like g-C₃N₄ by decorating Mo₂C co-catalyst for enhanced visible-light photocatalytic activity. *Appl. Surf. Sci.* **2019**, 470, 565–572.
- (35) Zheng, Y.; Dong, J.; Huang, C.; Xia, L.; Wu, Q.; Xu, Q.; Yao, W. Co-doped Mo-Mo₂C cocatalyst for enhanced g-C₃N₄ photocatalytic H₂ evolution. *Appl. Catal., B* **2020**, *260*, No. 118220.
- (36) Zhang, X.; Wang, J.; Guo, T.; Liu, T.; Wu, Z.; Cavallo, L.; Cao, Z.; Wang, D. Z. Structure and phase regulation in Mo_xC (α -MoC_{1-x}/ β -Mo₂C) to enhance hydrogen evolution. *Appl. Catal., B* **2019**, 247, 78–85.
- (37) Liu, X.; Pajares, A.; Matienzo, D. D. C.; Ramírez de la Piscina, P.; Homs, N. Preparation and characterization of bulk Mo_xC catalysts and their use in the reverse water-gas shift reaction. *Catal. Today* **2020**, 356 (1), 384–389.
- (38) Wang, Y.; Mino, L.; Pellegrino, F.; Homs, N.; Ramírez de la Piscina, P. Engineered Mo_xC/TiO₂ interfaces for efficient noble metal-free photocatalytic hydrogen production. *Appl. Catal., B* **2022**, 318 (5), No. 121783.
- (39) Pajares, A.; Liu, X.; Busacker, J. R.; Ramírez de la Piscina, P.; Homs, N. Supported Nanostructured Mo_xC Materials for the Catalytic Reduction of CO₂ through the Reverse Water Gas Shift Reaction. *Nanomaterials* **2022**, *12* (18), 3165–3180.
- (40) She, X.; Wu, J.; Zhong, J.; Xu, H.; Yang, Y.; Vajtai, R.; Lou, J.; Liu, Y.; Du, D.; Li, H.; Ajayan, P. M. Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency. *Nano Energy* **2016**, *27*, 138–146.
- (41) Gates-Rector, S.; Blanton, T. The powder diffraction file: A quality materials characterization database. *Powder Diffr.* **2019**, *34* (4), 352–360.
- (42) Scherrer, P. Bestimmung der Grösse und der inneren Struktur von Kolloiteilchen mitels Röntgenstrahlen. *Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl.* **1918**, *2*, 98–100.
- (43) Snyder, R. L. The use of reference intensity ratios in X-Ray quantitative analysis. *Powder Diffr.* **1992**, *7*, 186–193.
- (44) Sola, A. C.; Ramírez de la Piscina, P.; Homs, N. Behaviour of Pt/TiO₂ catalysts with different morphological and structural characteristics in the photocatalytic conversion of ethanol aqueous solutions. *Catal. Today* **2020**, *341* (1), 13–20.
- (45) Niu, P.; Zhang, L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. *Adv. Funct. Mater.* **2012**, 22 (22), 4763–4770.
- (46) Hu, C.; Hung, W. Z.; Wang, M. S.; Lu, P. J. Phosphorous and sulfur codoped g- C_3N_4 as an efficient metal-free photocatalyst. *Carbon* **2018**. 127, 374–383.
- (47) Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. Physisorption of gases, with special reference to the evaluation of surface area and pore

- size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87 (9-10), 1051-1069.
- (48) Gu, Q.; Liao, Y.; Yin, L.; Long, J.; Wang, X.; Xue, C. Template-free synthesis of porous graphitic carbon nitride microspheres for enhanced photocatalytic hydrogen generation with high stability. *Appl. Catal., B* **2015**, *165*, 503–510.
- (49) Gao, Q.; Zhao, X.; Xiao, Y.; Zhao, D.; Cao, M. A mild route to mesoporous Mo₂C–C hybrid nanospheres for high performance lithium-ion batteries. *Nanoscale* **2014**, *6* (11), 6151–6157.
- (50) Jiang, Y.; Sun, Z.; Tang, C.; Zhou, Y.; Zeng, L.; Huang, L. Enhancement of photocatalytic hydrogen evolution activity of porous oxygen doped g- C_3N_4 with nitrogen defects induced by changing electron transition. *Appl. Catal., B* **2019**, 240, 30–38.
- (51) Long, B.; Lin, J.; Wang, X. Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis. *J. Mater. Chem. A* **2014**, 2 (9), 2942–2951.
- (52) Oshikawa, K.; Nagai, M.; Omi, S. Characterization of molybdenum carbides for methane reforming by TPR, XRD, and XPS. *J. Phys. Chem. B* **2001**, *105* (38), 9124–9131.
- (53) Porosoff, M. D.; Yang, X.; Boscoboinik, J. A.; Chen, J. G. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO₂ to CO. *Angew. Chem.* **2014**, *126* (26), 6823–6827.
- (54) Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. *J. Phys. Chem. Lett.* **2018**, 9 (23), 6814–6817.
- (55) Wang, J.; Yang, P.; Cao, B.; Zhao, J.; Zhu, Z. Photocatalytic carbon—carbon bond formation with concurrent hydrogen evolution on the Pt/TiO2 nanotube. *Appl. Surf. Sci.* **2015**, 325, 86–90.
- (56) Sola, A. C.; Homs, N.; Ramírez de la Piscina, P. Photocatalytic H2 production from ethanol(aq) solutions: The effect of intermediate products. *Int. J. Hydrogen Energy* **2016**, *41* (43), 19629–19636.
- (57) Lu, H.; Zhao, J.; Li, L.; Gong, L.; Zheng, J.; Zhang, L.; Wang, Z.; Zhang, J.; Zhu, Z. Selective oxidation of sacrificial ethanol over TiO2-based photocatalysts during water splitting. *Energy Environ. Sci.* **2011**, *4* (9), 3384–3388.
- (58) Gao, L.; Liu, J.; Long, H.; Wang, P.; Yu, H. One-step calcination synthesis of WC-Mo₂C heterojunction nanoparticles as novel H₂-production cocatalysts for enhanced photocatalytic activity of TiO₂. Catal. Sci. Technol. **2021**, 11 (22), 7307–7315.