
PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011543  August 5, 2025 1 / 22

 

 OPEN ACCESS

Citation: Gauderman WJ, Fu Y, Queme B, 
Kawaguchi E, Wang Y, Morrison J, et al. (2025) 
Pathway polygenic risk scores (pPRS) for 
the analysis of gene-environment interaction. 
PLoS Genet 21(8): e1011543. https://doi.
org/10.1371/journal.pgen.1011543

Editor: Xiang Zhou, University of Michigan, 
UNITED STATES OF AMERICA

Received: December 15, 2024

Accepted: July 14, 2025

Published: August 5, 2025

Copyright: © 2025 Gauderman et al. This is an 
open access article distributed under the terms 
of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, 
and reproduction in any medium, provided the 
original author and source are credited.

Data availability statement: The study used 
case-control data from an existing large 
consortium. No new contact of participants 
occurred as part of this paper. Summary 
level data for genetic associations utilized in 
the construction of polygenic risk scores are 
available through GWAS catalog (accession 

RESEARCH ARTICLE

Pathway polygenic risk scores (pPRS) for the 
analysis of gene-environment interaction

W. James Gauderman 1*, Yubo Fu1, Bryan Queme 2, Eric Kawaguchi1, Yinqiao Wang1, 
John Morrison1, Hermann Brenner 3,4, Andrew Chan5,6, Stephen B. Gruber7, 
Temitope Keku8, Li Li 9, Victor Moreno10,11,12,13, Andrew J. Pellatt 14, Ulrike Peters15,16, 
N. Jewel Samadder17, Stephanie L. Schmit 18,19, Cornelia M. Ulrich20,21, Caroline Um 22, 
Anna Wu23, Juan Pablo Lewinger1, David A. Drew 5,6, Huaiyu Mi 2

1  Division of Biostatistics and Health Data Science, Department of Population and Public Health 
Sciences, University of Southern California, Los Angeles, California, United States of America, 2  Division 
of Bioinformatics, Department of Population and Public Health Sciences, University of Southern 
California, Los Angeles, California, United States of America, 3  Division of Clinical Epidemiology and 
Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany, 4  German Cancer 
Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany, 5  Clinical and 
Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, 
Massachusetts, United States of America, 6  Division of Gastroenterology, Massachusetts General Hospital 
and Harvard Medical School, Boston, Massachusetts, United States of America, 7  Center for Precision 
Medicine and Department of Medical Oncology, City of Hope National Medical Center, Duarte, California, 
United States of America, 8  University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 
United States of America, 9  Department of Family Medicine, UVA Comprehensive Cancer Center, UVA 
School of Medicine, Charlottesville, Virginia, United States of America, 10  Oncology Data Analytics 
Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain, 11  Colorectal 
Cancer Group, ONCOBELL Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 
L’Hospitalet de Llobregat, Barcelona, Spain, 12  Department of Clinical Sciences, Faculty of Medicine 
and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of 
Barcelona (UB), L’Hospitalet de Llobregat, Barcelona, Spain, 13  Consortium for Biomedical Research in 
Epidemiology and Public Health (CIBERESP), Madrid, Spain, 14  Intermountain Health, Salt Lake City, 
Utah, United States of America, 15  Public Health Sciences Division, Fred Hutchinson Cancer Center, 
Seattle, Washington, United States of America, 16  Department of Epidemiology, School of Public Health, 
University of Washington, Seattle, Washington, United States of America, 17  Mayo Clinic Comprehensive 
Cancer Center, Phoenix, Arizona, United States of America, 18  Genomic Medicine Institute, Cleveland 
Clinic, Cleveland, Ohio, United States of America, 19  Population and Cancer Prevention Program, Case 
Comprehensive Cancer Center, Cleveland, Ohio, United States of America, 20  Huntsman Cancer Institute, 
Salt Lake City, Utah, United States of America, 21  Department of Population Sciences, University of Utah, 
Salt Lake City, Utah, United States of America, 22  Department of Population Science, American Cancer 
Society, Atlanta, Georgia, United States of America, 23  Department of Population and Public Health 
Sciences, University of Southern California, Los Angeles, California, United States of America 

* JimG@usc.edu

Abstract 

A polygenic risk score (PRS) is used to quantify the combined disease risk of many 

genetic variants. For complex human traits there is interest in determining whether 

the PRS modifies, i.e. interacts with, important environmental (E) risk factors. Detec-

tion of a PRS by environment (PRS x E) interaction may provide clues to underlying 

biology and can be useful in developing targeted prevention strategies for modifiable 

risk factors. The standard PRS may include a subset of variants that interact with 

E but a much larger subset of variants that affect disease without regard to E. This 
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latter subset will dilute the underlying signal in former subset, leading to reduced 

power to detect PRS x E interaction. We explore the use of pathway-defined PRS 

(pPRS) scores, using state of the art tools to annotate subsets of variants to genomic 

pathways. We demonstrate via simulation that testing targeted pPRS x E interaction 

can yield substantially greater power than testing overall PRS x E interaction. We 

also analyze a large study (N = 78,253) of colorectal cancer (CRC) where E = non- 

steroidal anti-inflammatory drugs (NSAIDs), a well-established protective exposure. 

While no evidence of overall PRS x NSAIDs interaction (p = 0.41) is observed, a 

significant pPRS x NSAIDs interaction (p = 0.0003) is identified based on SNPs within 

the TGF-β/ gonadotropin releasing hormone receptor (GRHR) pathway. NSAIDS 

is protective (OR=0.84) for those at the 5th percentile of the TGF-β/GRHR pPRS 

(low genetic risk, OR), but significantly more protective (OR=0.70) for those at the 

95th percentile (high genetic risk). From a biological perspective, this suggests that 

NSAIDs may act to reduce CRC risk specifically through genes in these pathways. 

From a population health perspective, our result suggests that focusing on genes 

within these pathways may be effective at identifying those for whom NSAIDs-based 

CRC-prevention efforts may be most effective.

Author summary

The identification of polygenic risk score (PRS) by environment (PRSxE) inter-
actions may provide clues to underlying biology and facilitate targeted disease 
prevention strategies. The standard approach to computing a PRS likely in-
cludes many variants that affect disease without regard to E, reducing power 
to detect PRS x E interactions. We utilize gene annotation tools to develop 
pathway-based PRS (pPRS) scores and show by simulation studies that testing 
pPRS x E interaction can yield substantially greater power than testing PRS x E, 
while also integrating biological knowledge into the analysis. We apply our meth-
od to a large study of colorectal cancer to identify a significant pPRS x NSAIDs 
interaction (p = 0.0003) based on SNPs within the TGF-β/ gonadotropin releasing 
hormone receptor (GRHR) pathway. Our findings suggest that focusing on ge-
netic susceptibility within biologically informed pathways may be more sensitive 
for identifying exposures that can be considered as part of a precision prevention 
approach.

Introduction

Gene-environment (GxE) interactions likely play an important role in the etiology of 
most complex human traits [1]. A GxE analysis aims to identify genetically defined 
subsets of the population that may be more sensitive to adverse or protective effects 
of an exposure on disease risk. Alternatively, one can view G x E interaction as 
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investigating whether a particular exposure stimulates or suppresses the effect of a 
gene on disease risk. The power to detect GxE interactions, particularly in the context 
of a genomewide scan, is lower than the power to detect similarly-sized genetic or 
environmental main effects [2]. Identification of actionable GxE interactions is essen-
tial to precision medicine approaches that are expected to transform the future of 
medicine, particularly for primary prevention of diseases.

A polygenic risk score (PRS) is commonly used to summarize the overall effect 
of a collection of identified genetic variants on a particular trait. The variants used to 
construct the PRS can be focused on a relatively small set identified by a prior GWAS 
or a much larger set that captures genome-wide genetic variation. The PRS can be 
used to characterize the total trait variance attributable to discovered variants or to 
identify specific subsets of the population likely to be at highest risk for disease [3,4].

Recently, many investigators have utilized PRS x E analysis to study gene- 
environment interactions for a wide range of traits, including lung cancer [5], diabetes 
[6], ADHD [7], and cardiovascular disease [8]. Compared to single-variant GxE anal-
ysis, PRS x E analysis may provide increased power because it focuses on known 
disease-related variants and it integrates the signals across those variants into a 
potentially more informative single measure of genetic susceptibility [9]. Detecting a 
PRS x E interaction will allow us to answer questions such as: Does the effect of  
a particular exposure on disease risk vary depending on overall genetic susceptibil-
ity? Do we need to consider specific exposures when making PRS-based risk predic-
tions? Is there a particularly high-risk subgroup, defined by both genetic susceptibility 
and exposure, for whom targeted prevention (e.g. early screening) may be indicated?

Despite these advantages, a potential difficulty in identifying PRS x E is that stan-
dard construction of the PRS includes all GWAS-significant variants or a very large 
set of genomewide variants. Environmental factors likely work to affect disease risk 
by altering the functioning or expression of genes within specific pathways. Exam-
ples include smoking affecting DNA repair pathways to alter lung cancer risk [10] and 
red meat affecting inflammatory response pathways to affect colorectal cancer risk 
[11]. While a standard PRS may include several variants within an exposure-relevant 
pathway, its standard construction will tend to ‘water down’ the specific signals most 
important for identifying the interaction(s).

To overcome this challenge, we propose the use of pathway polygenic risk scores 
(pPRS) in gene-environment interaction analyses. Relative to a PRS, a pPRS may 
include a greater proportion of disease-related SNPs that individually or in combi-
nation interact with a particular exposure, and which in turn should provide greater 
power for detecting pPRS x E compared to PRS x E. We will describe the use of 
available functional annotation databases to define subsets of PRS SNPs according 
to their known pathway affiliation. Multiple pPRS can be constructed, each corre-
sponding to a particular pathway and utilizing a subset of the overall collection of 
PRS SNPs. The use of pathway-specific PRS has been described for classifying 
disease subtypes [12–14] and enhancing drug target discovery [15], but to our knowl-
edge not for identifying pPRS x E interactions. To illustrate our approach, we analyze 
PRS x E and pPRS x E interactions in a large study of colorectal cancer, focusing on 

NIH award U19 CA148107 and R01 CA81488 
(to SBG). The CCFR Set-4 (Illumina OncoArray 
600K SNP array) was supported by NIH award 
U19 CA148107 (to SBG) and by the Center for 
Inherited Disease Research (CIDR), which is 
funded by the NIH to the Johns Hopkins 
University, contract number 
HHSN268201200008I. Additional funding for 
the OFCCR/ARCTIC was through award 
GL201-043 from the Ontario Research Fund (to 
BWZ), award 112746 from the Canadian 
Institutes of Health Research (to TJH), through 
a Cancer Risk Evaluation (CaRE) Program grant 
from the Canadian Cancer Society (to SG), and 
through generous support from the Ontario 
Ministry of Research and Innovation. The 
SFCCR Illumina HumanCytoSNP array was 
supported in part through NCI/NIH awards 
U01/U24 CA074794 and R01 CA076366 (to 
PAN). The content of this manuscript does not 
necessarily reflect the views or policies of the 
NCI, NIH or any of the collaborating centers in 
the Colon Cancer Family Registry (CCFR), nor 
does mention of trade names, commercial 
products, or organizations imply endorsement 
by the US Government, any cancer registry, or 
the CCFR. CLUE II funding was from the 
National Cancer Institute (U01 CA086308, Early 
Detection Research Network; P30 CA006973), 
National Institute on Aging (U01 AG018033), 
and the American Institute for Cancer 
Research. Maryland Cancer Registry (MCR) 
Cancer data was provided by the Maryland 
Cancer Registry, Center for Cancer Prevention 
and Control, Maryland Department of Health, 
with funding from the State of Maryland and 
the Maryland Cigarette Restitution Fund. The 
collection and availability of cancer registry 
data is also supported by the Cooperative 
Agreement NU58DP007114, funded by the 
Centers for Disease Control and Prevention. Its 
contents are solely the responsibility of the 
authors and do not necessarily represent the 
official views of the Centers for Disease Control 
and Prevention or the Department of Health and 
Human Services. ColoCare was supported by 
the National Institutes of Health (grant numbers 
R01 CA189184 (Li/Ulrich), U01 CA206110 
(Ulrich/Li/Siegel/Figueiredo/Colditz, 
2P30CA015704- 40 (Gilliland), R01 CA207371 
(Ulrich/Li)), the Matthias Lackas-Foundation, 
the German Consortium for Translational 
Cancer Research, and the EU TRANSCAN 
initiative. COLO2&3 were supported by the 
National Institutes of Health (R01 CA060987). 
CPS-II was funded by The American Cancer 



PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011543  August 5, 2025 4 / 22

over 200 GWAS-identified SNPs and a well-established protective exposure, non- 
steroidal anti-inflammatory drug (NSAID) use.

Results

Simulations

We designed a simulation study to determine whether power to detect pPRS x E 
interaction may be higher than for PRS x E interaction, and if so, under what con-
ditions one may expect greater power. Briefly, we simulated 1,000 SNPs, of which 
20 were assumed to affect disease (D) risk and 980 to have no effect on D. We also 
simulated a binary exposure (E) and generated 5 of the 20 SNPs to also have a GxE 
effect on D. We assumed 5 of the 1,000 SNPs fell within a pathway and varied how 
many of those 5 pathway SNPs overlapped with the 5 GxE SNPs, the 15 other  
disease-causing SNPs, and the remaining 980 null SNPs. We replicated the sim-
ulation 1,000 times and estimated power based on the proportion of replicates in 
which we detected interaction based on analysis of PRS x E vs. pPRS x E. Additional 
details of the simulation design, as well as demonstration that Type I error is pre-
served, are provided in Materials and Methods.

Across a wide range of simulated scenarios, power to detect interaction is greater 
for pPRSxE than for PRSxE (Table 1). With 20 simulated disease-causing SNPs, 
there was a cross-replicate average of 18.2 SNPs identified by GWAS and used for 
constructing the overall PRS, including an average of 4.7 of those 5 SNPs simulated 
to have a GxE interaction. Power to detect PRSxE interaction using the overall PRS 
ranged between 41% and 45% across multiple scenarios. When the 5 SNPs simu-
lated to have a GxE effect were synonymous with the 5 SNPs in the pathway, power 
of the pPRSxE test was substantially higher (90%, scenario 1). This demonstrates 
the increased efficiency in focusing on a well-chosen subset of SNPs and corre-
sponding pPRSxE test rather than attenuating the interaction signal in an overall 
PRSxE test.

We also considered simulation scenarios in which only a subset of the 5 path-
way SNPs overlapped with the 5 GxE SNPs. These included scenarios in which the 
pathway SNPs without a GxE effect either did (Table 1, Scenarios 2–5) or did not 
(Scenarios 6–9) have a main (G only) effect on the trait. When the 5 pathway SNPs 
include 4 with true GxE and 1 G-only (scenario 2) or 3 GxE and 2 G-only (scenario 
3), power of the pPRSxE test was still greater (74%, 47%, respectively) than the 
PRSxE test. However, with 2 GxE and 3 G-only (scenario 4) or 1 GxE and 4 G-only 
(scenario 5), power of the pPRSxE was lower (23%, 7%, respectively). By compari-
son, when the 5 pathway SNPs included 4 with true GxE and 1 with no effect on the 
trait (scenario 6), power was 84%, larger than the 74% when the non-GxE SNP had 
a G-only effect (scenario 2). This is because in scenario 6 the non-GxE SNP likely is 
not discovered in the initial GWAS and thus is not used in forming the pPRS (or PRS) 
score, and therefore is not attenuating the signal in the remaining GxE SNPs. This 
trend is further exemplified by the corresponding higher powers in scenarios 7, 8, and 
9 compared to scenarios 3, 4, and 5, respectively.
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As described in the Materials and Methods, for the results in Table 1 we assumed 
the SNP-specific power to detect SNP x E power was 10% and that each SNP had a 
minor allele frequency of 0.35. We observed similar patterns in power comparisons 
across these 9 simulation scenarios when the single-SNP x E power was higher on 
average (55%, S1 Table) and when SNP-specific minor allele frequencies (MAF) 
were allowed to vary (between 0.1 and 0.4, S2 Table).

Colorectal cancer (CRC) application

The most recent and largest GWAS of CRC described a total of 204 previously iden-
tified and novel autosomal SNPs that reached genome-wide significance [16]. We 
investigated whether PRS and pPRS formed from these SNPs interact with use of 
aspirin or non-steroidal anti-inflammatory drugs (NSAIDs) use, a factor well- 
established to reduce CRC risk [17–19]. We used data from the Functionally 
Informed Gene-environment Interaction (FIGI) study, a consortium of 45 studies that 
includes 78,253 subjects (33,937 cases, 44,316 controls) with complete data on 
NSAIDs, genotypes, and covariates [19]. Adjusting for covariates, the NSAIDs main 
effect on CRC is OR=0.76 (95% C.I. 0.74, 0.79). Although NSAIDs is a protective fac-
tor on average, there are risks associated with regular use, such as gastrointestinal 
bleeding, that necessitate a precision prevention approach. This is one motivation for 
exploring a precision prevention approach for NSAIDs based on possible modification 
by genetic susceptibility.

We constructed an overall PRS by first applying logistic regression within the FIGI 
sample to model CRC as a function of the 204 GWAS SNPs, with adjustment for 
study, sex, age, and three global ancestry PCs (see Materials and Methods). The 
SNP-specific log-odds ratios estimated from this model were used as the weights [w] 
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Table 1.  Power to detect polygenic risk score by E interactions.

# Pathway Pathway-SNP Effects on D Power

Sim SNPs GxE - D G - D only No effect PRS x E pPRS x E npPRS x E

1 5 5 0 0 44% 90% 2%

2 5 4 1 0 41% 74% 4%

3 5 3 2 0 41% 47% 7%

4 5 2 3 0 45% 23% 17%

5 5 1 4 0 45% 7% 28%

6 5 4 0 1 41% 84% 4%

7 5 3 0 2 41% 69% 7%

8 5 2 0 3 45% 52% 14%

9 5 1 0 4 45% 27% 25%

Simulated power based on 1,000 replicates. Each replicate includes 15 SNPs with a G-only effect on D 
and 5 SNPs with a GxE effect on D. There are 5 SNPs in the pathway. Each simulation scenario varies 
the number of pathway SNPs that overlap with the GxE SNPs (GxE-D), G-only SNPs (G-D), and no-effect 
SNPs. Power is the proportion of replicates in which the null hypothesis of no interaction is rejected when 
the polygenic score is based on all GWAS significant SNPS (PRS x E), GWAS SNPS in the pathway 
(pPRS x E), or GWAS SNPS not in the pathway (npPRS x E).

https://doi.org/10.1371/journal.pgen.1011543.t001

https://doi.org/10.1371/journal.pgen.1011543.t001
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to construct a PRS
i
, i = 1, …, N for each study subject (S3 Table). To construct pPRS, 

we used ANNOQ [20] to annotate SNPs to genes and PANTHER [21] to annotate 
genes to pathways (S4 Table). Among the identified pathways, overrepresentation 
analysis identified 21 with an FDR < 1.0 (Table 2), of which four included more genes 
than expected by chance alone at a false discovery rate (FDR) of 0.05. Additional 
details of the annotation process are provided in Materials and Methods. The  
four overrepresented pathways included the TGF-β signaling pathway,  
Gonadotropin-releasing hormone receptor pathway, Alzheimer disease presenilin 
pathway, and the Cadherin signaling pathway. A total of 30 of the 204 SNPs were 
annotated to genes in these pathways (Fig 1). Subsets of the above PRS weights 
were utilized to construct the corresponding four pPRS scores. Annotated genes in 
the TGF-β signaling (TGF-β) pathway and Gonadotropin-releasing hormone recep-
tor (GRHR) pathways are highly overlapped (Fig 1A), as are genes in the Cadherin 
signaling (CADH) and Alzheimer’s disease presenilin(ALZ) pathways (Fig 1B). These 
overlaps lead to significant correlations between the computed pPRS scores for 
TGF-β and GRHR (R2 = 0.58) and for CADH and ALZ (R2 = 0.71). Given this, we also 
constructed two additional pPRS scores based on SNPs within the combined subsets 
of TGF-β/GRHR genes and CADH/ALZ genes, respectively.

The estimated GxE odds ratio (OR
GxE

) for the overall PRS x NSAIDs interaction is 0.99 
and is not statistically significant (p = 0.41, Table 3). We also did not observe significant pPRS 
x E interactions for the CADH and ALZ pathways. However, the pPRS x NSAIDs interac-
tion was significant for both the TGF-β (OR

GxE
 = 0.96, p = 0.0069) and GRHR (OR

GxE
 = 0.96, 

p = 0.016) pathways. The TGF-β and GRHR pathways combined include 20 of the 204 
SNPs (Fig 1A). The pPRS x NSAIDs interaction is more pronounced (OR

GxE
 = 0.94, 

p = 0.0003) based on the pPRS formed from this joint set of TGF-β and GRHR SNPs (Table 
3). This estimate can be interpreted as an additional 0.94 protective effect of NSAIDs on 
CRC risk per increase of 1 standard deviation in the combined TGF-β/GRHR pPRS.

To further explore and compare these results, we used the models to predict the 
NSAIDs effect on CRC at various percentiles of the overall PRS and TGF-β/GRHR 
pPRS (Fig 2). There is very little variation in the NSAIDs effect across the range of 
the overall PRS, which is expected given the non-significant PRS x NSAIDs interac-
tion effect. On the other hand, the NSAIDs effect does vary substantially across the 
range of the TGF-β/GRHR pPRS. Specifically, for those at the 5th percentile of the 
pPRS (low risk), the estimated NSAIDs OR is 0.84 (95% C.I. 0.79, 0.89) while at  
the 95th percentile (high risk), it is 0.70 (0.65, 0.74). Put another way, regular NSAIDs 
use is predicted to reduce CRC risk by 16% for those at low risk based on the TGF-β/
GRHR pPRS and by 30% for those at high TGF-β/GRHR pPRS risk.

We repeated these analyses utilizing PRS weights obtained from the PGS cata-
log (PGS-ID 003850) for the same set of SNPs (S3 Table). This was done to further 
evaluate how use of our own data to estimate PRS weights (as above) compared to 
the more standard approach of using catalog-derived, published weights. Applying the 
two sets of weights to our analysis sample yielded PRS scores that were very highly 
correlated for the overall PRS (R2 = 0.9) as well as for the TGF-β (0.98), GRHR (0.97), 
CADH (0.97), and ALZ (0.89) pPRS. Not surprisingly, then, results based on PGS 
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catalog weights (Table 4) were very similar to those reported above (Table 3), with similar interaction estimates and levels 
of significance for TGF-β,GRHR and the joint TGF-β/GRHR pPRS x NSAIDs effects, and non-significant results for the 
other pathway and overall PRS x NSAIDs tests. We also performed single-SNP GxE interaction analyses for the 20 SNPs 
included in the joint TGF-β/GRHR pPRS (S5 Table). After Bonferroni correction for 20 tests, none of these single-SNP inter-
actions achieved statistical significance.

Discussion

We have demonstrated by simulation and application to data that forming a PRS based only on a subset of GWAS signif-
icant SNPs, specifically a subset defined a priori based on pathway information, has the potential to better identify novel 
PRS x E interactions. We also demonstrate that power may be reduced using the standard practice of testing PRS x E 

Table 2.  Pathways with Overrepresentation FDR < 1.0 Based on Annotation of 204 Colorectal-Cancer-associated SNPs to Genes.

PANTHER Pathways Total # genes 
in pathway

# CRC* genes based on 
SNP-gene annotations

Expected # CRC 
genes by chance

Fold 
Enrichment

Unadjusted 
p-value

FDR

TGF-beta signaling pathway 
(P00052)

100 9 1.29 6.99 0.000006 0.0005

Gonadotropin-releasing hormone 
receptor pathway (P06664)

231 12 2.97 4.03 0.000048 0.0019

Alzheimer disease-presenilin 
pathway (P00004)

127 9 1.64 5.50 0.000040 0.0021

Cadherin signaling pathway 
(P00012)

163 8 2.10 3.81 0.0013 0.0406

CCKR signaling map (P06959) 173 7 2.23 3.14 0.0072 0.165

Wnt signaling pathway (P00057) 306 10 3.94 2.54 0.0065 0.174

PDGF signaling pathway 
(P00047)

144 6 1.85 3.24 0.011 0.220

Glycolysis (P00024) 20 2 0.26 7.77 0.027 0.392

p53 pathway feedback loops 2 
(P04398)

50 3 0.64 4.66 0.027 0.425

Methionine biosynthesis 
(P02753)

2 1 0.03 38.83 0.026 0.455

Axon guidance mediated by Slit/
Robo (P00008)

25 2 0.32 6.21 0.041 0.502

Integrin signalling pathway 
(P00034)

192 6 2.47 2.43 0.038 0.512

Purine metabolism (P02769) 5 1 0.06 15.53 0.063 0.717

Angiogenesis (P00005) 169 5 2.18 2.30 0.068 0.724

p53 pathway (P00059) 88 3 1.13 2.65 0.105 0.882

Endothelin signaling pathway 
(P00019)

87 3 1.12 2.68 0.102 0.908

Notch signaling pathway 
(P00045)

45 2 0.58 3.45 0.114 0.913

ATP synthesis (P02721) 8 1 0.10 9.71 0.099 0.927

Interleukin signaling pathway 
(P00036)

96 3 1.24 2.43 0.127 0.967

p38 MAPK pathway (P05918) 41 2 0.53 3.79 0.098 0.977

Cholesterol biosynthesis 
(P00014)

13 1 0.17 5.97 0.155 0.993

* CRC: Colorectal Cancer.

https://doi.org/10.1371/journal.pgen.1011543.t002

https://doi.org/10.1371/journal.pgen.1011543.t002


PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011543  August 5, 2025 8 / 22

interaction based only on an overall PRS. This power reduction is likely due to dilution of the interaction signal with the 
inclusion of most of the SNPs in the PRS construction that do not have any role in modifying the effect of E on disease. 
By contrast, the use of external pathway information to form a pPRS has the potential to improve power by focusing on 
genetic variation within a particular pathway that modifies the E effect. Examination of E effects across quantiles of the 
pPRS can identify those genetically-defined subsets that are most affected, or protected, by exposure. For example, 
our analysis of CRC suggests that although NSAIDs use is generally beneficial for all, those with the highest TGF-β/
GRHR pathway PRS experience a significantly greater reduction in CRC relative risk with regular NSAIDs use. This result 
both adds to the overall preventive evidence for NSAIDs on CRC risk and suggests possible biological pathways that 
are involved in this action. Additionally, among the set of SNPs we examined, none of the single-SNP x NSAIDs tests 

Fig 1.  Subsets of 204 CRC-associated SNPs annotated to genes within the: (A) TGF-β and/or the Gonadotropin releasing hormone receptor 
(GRHR) pathways, or (B) Cadherin signaling (CADH) and/or the Alzheimer’s disease-presenilin (ALZ) pathways.

https://doi.org/10.1371/journal.pgen.1011543.g001

https://doi.org/10.1371/journal.pgen.1011543.g001
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was significant, an indication that using external pathway annotations to combine SNP information into pPRS provided 
increased power to detect the interaction.

Estimates of G x E interaction (and corresponding tests) can be confounded by either measured or unmeasured vari-
ables. While we adjusted for several measured covariates (Z: including age, sex, and PCs of ancestry), Keller [22] points 
out that GxE interaction can be confounded by GxZ and/or ExZ interactions. In sensitivity analyses of our primary findings, 
we considered a model that also included pairwise interactions of pPRS and NSAIDs with each of the abovementioned 
covariates. None of the pPRS x Z or NSAIDs x Z interactions was statistically significant. Furthermore, simultaneous 
adjustment for all pPRS x Z and NSAIDs x Z interactions caused less than a 1% change to our pPRS x NSAIDs esti-
mates, making this an unlikely source of bias (S7 Table). For example, the TGF-β/GRHR pPRS x NSAIDs effect shown in 
Table 2 (OR=0.945) is OR=0.950 (0.6% change) with additional adjustment for pPRS x Z and NSAIDs x Z. Confounding 
due to unmeasured covariates (U) can also occur, if the PRS and E are correlated and there are interactions of PRS and 
E with U [23]. We examined correlation of each of our PRS and pPRS with NSAIDs and found no significant evidence 
that they were correlated. Additionally, none of the SNPs used in constructing these polygenic scores was significantly 
correlated with NSAIDs use. It is therefore unlikely that our pPRS x NSAIDs findings are biased due to unmeasured 
confounding.

The use of pPRS in interaction testing relies on external information to identify the pathways corresponding to a partic-
ular set of SNPs. In our application to CRC, we focused on the set of 204 GWAS significant SNPs. As has been previously 
shown, a GxE interaction typically induces a direct disease-gene (DG) association [24–27], and so requiring some level of 
DG association to be included in PRSxE or pPRSxE analysis is reasonable. We also chose to focus on the subset of four 
pathways that were overrepresented among the annotated genes of the GWAS 204 SNPs, with the goal of enriching our 
pPRS analyses with CRC-related genes that may be jointly involved in affecting disease risk.

For comparison to our primary analysis, we relaxed the overrepresentation condition and generated pPRS x NSAIDs 
results for all 50 pathways annotated by at least one of the 204 GWAS significant SNPs (S8 Table). The interaction 
odds ratios for the 50 pathways show the expected distribution around the null of 1.0 (S2 Fig), The QQ-plot of -log

10
(p) 

for the corresponding pPRS x NSAIDs tests is well calibrated for all 50 pathways (S2a Fig) as well as for the subset of 
21 with FDR < 1.0 (S2b Fig) and 4 with FDR < 0.05 (S2c Fig). All three QQ-plots demonstrate enrichment of TGF-β and 

Table 3.  Analysis of polygenic risk score x NSAIDs interaction for Colorectal Cancer.

PRS E (NSAIDs use) PRS x E

PRS Type # SNP ORa (95% CI) OR (95% CI) OR (95% CI) p-valueb

PRS: All SNPs* 30 1.63 (1.61, 1.66) 0.76 (0.74, 0.79) 0.99 (0.95, 1.02) 0.41

4 Pathways&

  pPRS: TGF-β 13 1.18 (1.16, 1.20) 0.76 (0.74, 0.79) 0.96 (0.93, 0.99) 0.0069

  pPRS: Gonadotropin-receptor 16 1.17 (1.15, 1.19) 0.76 (0.74, 0.79) 0.96 (0.93, 0.99) 0.016

  pPRS: Cadherin-signaling 8 1.10 (1.09, 1.12) 0.76 (0.74, 0.79) 1.00 (0.97, 1.04) 0.82

  pPRS: Alzheimer’s presenillin 9 1.09 (1.08, 1.11) 0.76 (0.74, 0.79) 0.99 (0.96, 1.02) 0.46

2 Combined Pathways&

  pPRS: TGF-β/Gonadotropin-receptor 20 1.21 (1.19, 1.23) 0.76 (0.74, 0.79) 0.94 (0.92, 0.97) 0.0003

  pPRS: Cadherin/Alzheimer’s presenillin 11 1.11 (1.10, 1.13) 0.76 (0.74, 0.79) 1.00 (0.97, 1.03) 0.86

PRS Other# 174 1.55 (1.53, 1.58) 0.76 (0.74, 0.79) 1.01 (0.98, 1.04) 0.63

* PRS formed based on 204 GWAS significant SNPS as reported in Fernandez-Rozadilla et al. (2022).

& pPRS based on subsets of the 204 SNPs within the indicated pathway.

# PRS based on the subset of 174 of the 204 SNPs that are not within any of the indicated pathways.

a Odds ratios (OR) are scaled to a 1 s.d. increase for the indicated PRS and compare users to non-users for NSAIDs. All p < 10–10.

b p-value for the test of the null hypothesis of no PRS x E interaction.

https://doi.org/10.1371/journal.pgen.1011543.t003

https://doi.org/10.1371/journal.pgen.1011543.t003
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Table 4.  Analysis of PGS Catalog derived polygenic risk score x NSAIDs interaction for Colorectal Cancer.

PRS E (NSAIDs use) PRS x E

PRS Type # SNP ORa (95% CI) OR (95% CI) OR (95% CI) p-valueb

PRS: All SNPs* 30 1.59 (1.56, 1.61) 0.77 (0.74, 0.79) 0.98 (0.95, 1.01) 0.24

4 Pathways&

  pPRS: TGF-β 13 1.18 (1.16, 1.20) 0.76 (0.74, 0.79) 0.96 (0.93, 0.99) 0.009

  pPRS: Gonadotropin-receptor 16 1.17 (1.15, 1.18) 0.76 (0.74, 0.79) 0.96 (0.94, 1.00) 0.021

  pPRS: Cadherin-signaling 8 1.10 (1.08, 1.11) 0.76 (0.74, 0.79) 1.00 (0.97, 1.03) 0.84

  pPRS: Alzheimer’s presenillin 9 1.08 (1.07, 1.10) 0.76 (0.74, 0.79) 0.99 (0.96, 1.02) 0.64

2 combined Pathways&

  pPRS: TGF-β/Gonadotropin-receptor 20 1.21 (1.19, 1.23) 0.76 (0.74, 0.79) 0.95 (0.92, 0.98) 0.0004

  pPRS: Cadherin/Alzheimer’s presenillin 11 1.10 (1.09, 1.12) 0.76 (0.74, 0.79) 1.00 (0.97, 1.03) 0.998

PRS Other# 174 1.51 (1.49, 1.53) 0.77 (0.74, 0.79) 1.00 (0.97, 1.03) 0.957

* PRS formed based on 204 GWAS significant SNPS as reported in Fernandez-Rozadilla et al. (2022).

& pPRS based on subsets of the 204 SNPs within the indicated pathway.

# PRS based on the subset of 174 of the 204 SNPs that are not within any of the indicated pathways

a Odds ratios (OR) are scaled to a 1 s.d. increase for the indicated PRS and compare users to non-users for NSAIDs. All p < 10–10.

b p-value for the test of the null hypothesis of no PRS x E interaction.

https://doi.org/10.1371/journal.pgen.1011543.t004

Fig 2.  NSAIDs Odds Ratio (with 95% confidence bands) for CRC by Quantiles of the Overall PRS and TGF-β/GRHR pPRS.

https://doi.org/10.1371/journal.pgen.1011543.g002

https://doi.org/10.1371/journal.pgen.1011543.t004
https://doi.org/10.1371/journal.pgen.1011543.g002
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GRHR, the two key pathways we identified a priori for the focus of our primary analyses. The additional two pathways 
noted in S2 Fig (p38 MapK and apoptosis signaling) were not over-represented among the 204 GWAS significant SNPs 
(S8 Table). For additional comparison, we also relaxed the GWAS significance threshold to 1x10-5 and generated pPRS 
x NSAIDs results for the resulting 1,328 SNPs (pruned for LD), which spanned 80 pathways (S9 Table and S3 Fig). 
Among the 1,328 SNPs, a substantial number were annotated to the TGF-β (288) and GRHR (243) pathways, with a 
dilution of the corresponding pPRS x NSAIDs effect estimates compared to results based on GWAS significant SNPs 
(S9 Table). The QQ-plots show good calibration for all 80 pathways as well as for the subset of 7 with overrepresenta-
tion FDR < 1.0 (S4 Fig).

Taken together, these additional comparison analyses suggest that, at least in this application, a joint focus on GWAS- 
significant and overrepresented subsets of SNPs may be most efficient for detecting pPRS x E interactions. It is not clear, 
however, whether these trends would also hold for other traits and exposures, and how the sensitivity of results would 
depend on the number of lead variants used in identifying pathways and constructing pPRS. Whether to include additional 
SNPs/genes within selected pathways, additional SNPs that flank identified genes, and/or additional pathways not identi-
fied as overrepresented are important topics for analysts to consider in the analysis of pPRS x E for their particular trait of 
interest.

In our application to CRC, we created a workflow that utilized AnnoQ to annotate SNPs to genes that can then be 
analyzed in PANTHER to annotate genes to pathways. One of the strengths of the study is the comprehensive strat-
egy we employ – integrating SnpEff, ANNOVAR, VEP, and the ENSEMBL and RefSeq databases – to ensure robust 
SNP-to-gene mapping. Additionally, we accounted for non-coding variants using PEREGRINE gene-enhancer link 
annotations. This approach allows us to capture potential regulatory effects from non-coding SNPs, reducing the risk 
of missing important functional variants that may influence pathway-level interactions. While we acknowledge that 
some regulatory variants may not be fully captured without incorporating eQTL or long-range chromatin interaction 
data collected directly from the study population, our multi-tool strategy minimized annotation discrepancies and 
increases the likelihood of accurately linking non-coding SNPs to their relevant genes. However, we recognize that 
alternative tools and databases, such as Reactome (reactome.org) or Gene Ontology (geneontology.org), can also be 
used for pathway or functional analysis, and different workflows may result in pathway assignments that do not fully 
overlap. A particular application of pPRS x E analysis could consider the use of multiple workflows, each using differ-
ent tools and databases, to evaluate the sensitivity of findings to specific pathway definitions and corresponding SNP/
gene assignments.

An ancillary finding in this paper is the demonstration that one can construct a PRS or pPRS in three different ways if 
the ultimate focus is a valid test of interaction. Approach #1 (Materials and Methods), i.e. to obtain existing PRS weights 
from the PGS catalog, is the one most often used. This has the advantages that the weights are typically estimated using 
a large and independent dataset, and that one can apply the weights to their data to estimate both PRS main and inter-
active effects. A potential disadvantage, however, is that the data used to generate the PGS weights may come from a 
population(s) that does not represent the sample used for PRS x E analysis. It is well known that cross-population applica-
tion of PRS for main effects can lead to poor estimation, and the same will hold for analysis of PRS x E interactions. The 
advantage of Approach #2 is that it leverages the discovery of SNPs in a larger, independent population, but tailors the 
weights used in PRS construction to the specific population being studied for interaction. Of course, this is also not free of 
cross-population issues if the discovered SNPs in the independent population are not representative of the SNPs/genes 
affecting the trait in the study population. Approach #3, in which the study sample is used both to discover SNPs and 
estimate weights, is perhaps the cleanest from the standpoint of population heterogeneity but may suffer from reduced 
power to discover SNPs relative to larger independent studies. As we demonstrated in our CRC analysis, the flexibility to 
use alternative approaches for valid interaction testing provides the opportunity to evaluate the robustness of PRSxE and/
or pPRSxE findings to the choice of PRS SNPs and weights.
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In our work, we rely on the well-known independence between marginal G effects and GxE effects [27,28] to construct a robust 
and valid method for testing PRS x E and pPRS x E interaction. All three of the approaches described in Materials and Methods 
use only SNP-to-outcome weights in the construction of the PRS and pPRS. This guarantees that the downstream use of these 
polygenic scores for interaction testing will provide valid Type I errors, as we have confirmed via simulation studies. Some have pro-
posed also incorporating SNPxE terms directly into the construction of a polygenic risk score [29–31]. While using SNP and SNPxE 
information to generate a PRS has the potential to improve predictive performance (e.g. R-squared, AUC), its use in the same 
dataset to examine PRS x E interaction can lead to greatly inflated Type I errors [31]. One may be able to develop a valid test that 
uses a PRS from an independent dataset built on both SNP and SNPxE effects, and that approach may provide increased power. 
However, the ability to focus on G-only PRS scores (self-generated or leveraging the many available scores in the PGS catalog), 
along with a robust annotation pipeline, makes our proposed approach applicable to a very wide range of traits and data structures.

Our results highlight that pPRSxE can identify pathways with functional relevance to the exposure’s putative mechanisms of 
action. In this case, we provide evidence that the protective effect of NSAIDs on CRC risk is modified by variation in the TGF-β 
and GRHR pathways. While the primary inhibitory activity of aspirin and other NSAIDs on PTGS1/2 (or COX1/2) has long been 
hypothesized as a central mechanism of their anticancer effects, the overall mode of action is still not yet clear. Several lines 
of functional evidence have supported a role for the TGF-β superfamily in mediating aspirin/NSAIDs protective effects against 
CRC [32], particularly in models of mismatch repair deficient CRC [33]. Long-term follow-up of the CAPP2 randomized,  
placebo-controlled trial conclusively demonstrated that aspirin is protective against CRC among patients with Lynch syndrome 
[34]. Lynch syndrome is also known as hereditary non-polyposis colon cancer and results from pathogenic variants within DNA 
mismatch repair genes, suggesting that NSAIDs protection may also extend to those with sporadic mismatch repair deficient 
tumors. TGF-β has also been demonstrated to induce HPGD [33], a prostaglandin-degrading enzyme with tumor suppressor 
activity that works as a catabolic antagonist for PTGS-2 activity [35]. Moreover, HPGD mucosal gene expression has been 
demonstrated to stratify individuals that may be more likely to experience a preventive benefit from aspirin use [36]. While 
other TGF-β superfamily members like GDF15 have been proposed as potential markers for precision prevention of CRC with 
NSAIDs [18], the role for bone morphogenetic proteins (BMPs) and SMAD family proteins in NSAID chemoprotection are less 
well established than they are for other agents, like metformin [37], or other physiologic processes, like osteogenic differenti-
ation [38,39]. Similarly, functional evidence is limited for a specific role of Gonadotropin-receptor pathway overall in NSAIDs 
mechanisms of action. However, of those genes included in the pPRS score, prior evidence links NSAIDs anti-cancer activity 
with β-catenin (CTNNB1 [40–43]), GNAS [44], and PTGER4 [19], the extracellular receptor for PGE

2
 that is the major down-

stream prostanoid produced by PTGS-2. Combined, these results highlight that a pPRSxE approach may identify additional 
network nodes with potential functional relevance for future mechanistic interrogation.

We have shown that leveraging prior GWAS results combined with pathway information to construct subsets of SNPs 
in pPRS x E tests has the potential to improve power compared to SNP x E or overall PRS x E tests. An additional advan-
tage of the pPRS x E analysis is that it may strengthen the evidence for a potential biological mechanism, via the involved 
pathway, by which E affects the outcome. Although we have focused on SNP subsets based on pathway information, we 
recognize there are other sources of information that could be used to create subsets. For example, subsets could be 
formed based on SNP-expression in a relevant tissue or cell type, or based on SNP associations with traits related to the 
trait of interest. Future research is needed to examine the robustness of pPRS x E analyses to the choice of annotation 
workflow, to the approach to creating subsets, and to demonstrate whether pPRS can be used to successfully identify 
novel gene-environment interactions for other complex traits.

Materials and methods

Notation and standard G × E and PRS × E analysis

Let Di denote a disease indicator for subject i, i = 1, …, N, Ei an exposure of interest, and Zi a vector of adjust-
ment covariates (e.g. age, sex, ancestry principal components). Assume one or more GWAS has been conducted, 
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yielding a set G=[G1, G2, …, GM] of trait associated SNPs, for example those with p < 5x10-8 for the test of SNP vs. 
D association. Assume further that a case-control sample has been obtained, with complete data for D, E, Z, and 
G on each subject. For analysis of G × E interaction with a single SNP, we assume logistic regression model of the 
form:

	 logit
[
Pr (D

∣∣G, E, Z)] = β0 + βgG + βeE+ βgeG× E+ βzZ 	 (1)

Here βg denotes the genetic ‘main’ effect quantifying the association between G and D when E = 0, βe is the correspond-
ing environmental main effect, and βge parameterizes the G × E interaction effect of primary interest. G is typically coded 
as the number of minor alleles, 0, 1, or 2 if it is measured or the corresponding expected number if imputed. In practice, 
we often center both G and E on their respective sample means yielding

	
logit

[
Pr (D

∣∣G, E, Z)] = β0+ βg(G –G)+ βe(E – E)+ βge

(
G –G

)
×
(
E – E

)
+ βzZ 	 (2)

Here βg parameterizes the G to D association at the mean of E and similarly for βe. An advantage of this centering is that 

βg and βe approximate the ‘marginal’ effects of G and E, for example the direct effect of G on D (γg) that is obtained in a 
GWAS using the model:

	 logit
[
Pr (D

∣∣G, Z)] = γ0 + γgG + γzZ 	 (3)

For a collection of M SNPs, e.g. those previously identified as GWAS significant, the following logistic model is used to 
estimate all SNP effects in the context of a single joint model:

	 logit
[
Pr (D

∣∣G, Z)] = α0 +
∑M

k=1
αkGk	 (4)

We define the set of M weights [wk] to be the estimates [α̂k] from Model 4. The equation for generating a PRS for the ith 
individual is

	 PRSi =
∑M

k=1
wkGik	 (5)

Replacing G in Equation 2 by the PRS yields the following model which we used to estimate and test for PRS x E 
interaction:

	
logit

[
Pr (D

∣∣G, E, Z)] = β0+ βg(PRS – PRS)+ βe(E – E)+ βge

(
PRS – PRS

)
×
(
E – E

)
+ βzZ 	 (6)

The test of interaction evaluates the null hypothesis H
0
: βge= 0 and can be based on a Wald, Score, or likelihood-ratio test 

from either model 2 (for SNPs) or model 6 (for PRS), with proper adjustment to the significance level to achieve the desired 
family-wise error rate.

Overview of the pathway PRS x E analysis approach

Following are the steps of the proposed approach for conducting pPRS x E analysis, with reference to the subsequent 
sections that provide additional details.
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1.	 Identify a collection of M SNPs that will be the focus for the development of the overall PRS and pathway PRS (see 
“Identification of PRS SNPs”)

2.	Generate the PRS weights for all M SNPs (see “PRS Weights”)

3.	Annotate the M SNPs to pathways (see “Pathway Annotation”)

4.	Generate pPRS scores and estimates/tests of pPRS x E interaction (see “Pathway PRS”)

Identification of PRS SNPs

The SNPs used to generate PRS weights are typically derived from a separate resource. For example, the PGS catalog 
[45] provides SNPs and weights for over 650 traits, including multiple sets for many of the traits. It is important that the 
weights come from independent data resources if the PRS will be used to examine direct risk effects on the disease of 
interest in the N subjects under study. In other words, if the weights are generated based on the N subjects under study, 
applying the resulting PRS to the same subjects will result in biased inference of the direct PRS effect on disease risk. 
However, we will demonstrate that the same dataset can be used to generate the PRS weights if the focus is on PRS 
x E interaction. The ability to ‘double use’ the same data to generate and apply the weights relies on the independence 
between the marginal genetic effects (estimated via Model 3) and the interaction effects (estimated via Model 2). This 
independence has been shown for tests of single SNPs [28] and is the basis for several 2-step genomewide GxE scan 
methods that screen on marginal G effects in Step 1 and use the information to prioritize SNPs for GxE testing in Step 2 
[24,26,27,46]. We provide simulations in this paper demonstrating that this independence holds for use of the weights [wk] 
derived from Eq. 4 for downstream PRS x E interaction analysis.

PRS weights

Given this independence, there are three Approaches one might consider for generating the [wk] and corresponding PRS:

1.	Obtain [wk] from prior studies based on one or more independent datasets. As noted above, these could come from the 
PGS catalog or a specific previous GWAS of the trait of interest. This will provide weights that can be applied to the N 
subjects under study for use in estimating PRS main and PRS x E interaction effects on D. One must be prepared to 
assume, however, that the weights generated from the previous population(s) are applicable to the current study popu-
lation, which may not be reasonable if there are differences in ancestry [47].

2.	Obtain M SNPs from prior GWAS but estimate [wk] in the current sample that will be used for PRS x E analysis. Again the 
list of previously identified SNPs could come from the PGS catalog or a specific prior GWAS, but rather than use existing 
weights, model 5 is applied to the M SNPs in the current data to generate [wk]. The corresponding PRSi, i = 1, …, N, would 
not provide valid estimates of the PRS main effect but are valid for estimating and testing PRS x E effects. An advantage 
of this approach is that the weights are computed based on the demographic (e.g. sex, age, ancestry) composition of the 
current study. The discovery of the set of M SNPs, however, may have been based on different populations with different 
exposure histories and thus may not fully represent the genetic and GxE contributions in the current sample.

3.	Conduct a GWAS on the current sample to both identify M SNPs and compute corresponding [wk]. Compared to 
approaches 1 and 2, this has the advantage that both the selection of M SNPs and calculation of weights reflect the 
population structure and exposure characteristics of the current sample. On the other hand, the current sample may be 
smaller than prior studies and thus have less power to identify important SNPs in the GWAS discovery step.

We will demonstrate the third approach in our simulation and the first two approaches in our application to colorectal 
cancer.
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Pathway annotation

Human genes and their products typically function together within biological pathways to maintain proper cellular func-
tions. SNPs located within or near gene regions have the potential to influence the pathways in which these genes are 
involved. We assume that the collection of M SNPs used to form the PRS include subsets of SNPs falling within differ-
ent biological pathways. To assign each SNP to a pathway, we first use the Annotation Query (AnnoQ) platform [20] to 
derive annotations to Ensembl [48] and RefSeq [49] genes using inferences from ANNOVAR [50], SnpEff [51] and VEP 
[52]. SNPs residing in enhancer regions were linked to their target genes via PEREGRINE [53]. The resulting genes 
were annotated to pathways using the PANTHER [21] Classification System (v.18.0) [54]. Detailed SNP-gene and 
gene-pathway annotation information is provided in S4 Table. The set of genes falling within the same pathway were 
tested for overrepresentation relative to the PANTHER Pathway annotation sets [55]. Each pathway that is significantly 
over-represented is the focus of pPRS computation and pPRS x E interaction testing. Additional details on our annota-
tion pipeline, along code and a worked example can be found on our Github repository (https://github.com/USCbiostats/
SNP-to-Overrepresentation).

Pathway PRS

Assuming that K pathways are identified by the above approach, we define pPRS
1
, pPRS

2
, …, pPRS

K
 to be PRS includ-

ing only those SNPs within the corresponding pathway. We also let pPRS
0
 denote the PRS that includes the subset of M 

SNPs not annotated to any of the K pathways. Let S
k
, k = 0,…,K denote the subset of M SNPs included in the kth subset. 

The pPRS for pathway k is then defined as:

	
pPRSk =

∑
j∈Sk

wjGj 	 (7)

where weights are obtained by one of the three approaches described above. Note that this approach to computing pPRS 
implicitly assumes that the weights are generated from the full model of D that includes all M SNPs, which has the advan-
tage that the weights are mutually adjusted for one another. To investigate a particular pPRS, Equation 6 can be modified 
to:

	 logit
[
Pr (D

∣∣pPRSk, E, Z)
]
= β0 + βg(pPRSk – pPRSk) + βe(E – E) + βge(pPRSk – pPRSk)× (E – E) + βzZ	 (8)

Alternatively, one can also use a model that includes all pPRS, with form:

	
logit

[
Pr (D

∣∣pPRSk, E, Z)
]
= β0 + βe(E – E) + βzZ+

K∑
k=0

βgk(pPRSk – pPRSk) + βgek(pPRSk – pPRSk)× (E – E))
	 (9)

Additional interactions between pPRS and Z and/or between E and Z can also be included to account for potential con-
founding at the level of the pPRS x E effects [22]. We note that it is possible for a particular SNP to be annotated to two 
or more pathways. In this situation, there will be correlation between two pPRS that include the same SNP(s), which will 
require care in interpreting the resulting effect estimates.

Simulation studies

We conducted simulation studies to: 1) evaluate the claim that the same dataset can be used to estimate the PRS weights 
[w

k
], construct a PRS, and obtain valid estimates and tests of PRS x E interaction, and 2) to compare the power of pPRS x 

E to PRS x E analysis.

https://github.com/USCbiostats/SNP-to-Overrepresentation
https://github.com/USCbiostats/SNP-to-Overrepresentation
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We generate a dataset that includes 5,000 cases and 5,000 controls, with a binary exposure E and 1,000 randomly 
and independently generated SNPs per subject. We designate Q = 20 of the SNPs to affect disease risk, with Q

G
 having 

only a main G to D effect and Q
GxE

 having both a main and GxE effect. We further assume that Q
P
 = 5 of the 1,000 SNPs 

fall within a particular pathway and that Q
PG

 of the pathway SNPs have only main effect and Q
PGxE

 have a GxE effect. We 
vary Q

PG
 and Q

PGxE
 across simulation scenarios. For each simulation scenario, we generate 1,000 replicate datasets and 

use these to evaluate Type I error and power. In our first simulation, we generate each G as a binary variable with 35% 
population prevalence and E as binary with population prevalence 50%. Conditional on simulated G and E, disease status 
for each subject was generated according to a random Bernoulli distribution with probability of disease (P

D
) given by:

	
PD = expit(δ0 + δEE+

∑
k∈QG

δGkGk +
∑

k∈QG×E

δGxEkGk × E)
	 (10)

The values of [δGk
] were determined using Quanto [56] to achieve an expected power of at least 90% to detect each of the 

Q SNPs in a GWAS with adjustment for 1,000 tests. The [δGxEk] values were set to achieve approximately 10% power to 
detect GxE interaction for each of the Q

GxE
 SNPs, assuming 20 SNPs are evaluated for SNP x E interaction post-GWAS.

For each simulated dataset, we conducted a GWAS of the 1,000 SNPs to identify the M that were significant at the 
0.05/1,000 = 5 × 10-5 level. These M SNPs were used in a model of the form in Equation 4 to generate weights [w

k
]. We 

computed the standard PRS based on these M weights using Equation 5, the pathway PRS (pPRS) based on Equation 7 
for the subset of M within Q

P
, and the non-pathway PRS (npPRS) based on Equation 7 for the subset of M not within Q

P
. 

Each simulation scenario was replicated 1,000 times and we tallied the proportion of replicates in which the null hypoth-
esis of no interaction was rejected for likelihood ratio tests of PRSxE, pPRSxE, and npPRSxE based on Equation 8. This 
proportion estimated Type 1 error in simulations with Q

GxE
 = 0 and power when Q

GxE
 > 0.

Our first set of simulations shows that use of the same data set to run a GWAS, generate PRS weights, and test PRS 
x E interaction (approach #3, see above) preserves the desired Type I error rate for the interaction test (S6 Table). We 
simulate 20 disease-causing SNPs (δGk ̸= 0 for k ∈ QG) and set δGk×E = 0, for all k  (Eq. 11). We tested five methods to 
identify the SNPs to generate PRS weights: 1) Identify the M SNPs that were significant at the 0.05/1,000 = 5 × 10-5 level; 
2) identify the M that were significant at the 0.05/10 = 5 × 10-3 level; 3) identify the M that were significant at the 0.05 level; 
4) include the 20 disease-causing SNPs; and 5) randomly select 10 of the 20 disease-causing SNPs and 10 from the 980 
null SNPs. Across all these scenarios, the estimated Type I error rate was within simulation variability of the desired 0.05 
level. Since approaches #1 and #2 for generating PRS (see above) are subsets of approach #3, we conclude that their 
corresponding Type I error rates for PRSxE testing are also preserved.

Data application: Colorectal cancer

We compare the above approaches in an analysis of GxE interactions for colorectal cancer (CRC). We use case- 
control data from an existing large consortium, the Functionally Informed Gene-environment Interaction (FIGI) study. FIGI 
includes 108,649 subjects (51,350 CRC cases and 57,299 controls) drawn from 45 contributing studies. No new contact of 
participants occurred as part of this paper. We focus on E = regular use of aspirin/NSAIDs (denoted NSAIDs from hereon), 
an exposure that has been repeatedly shown to reduce the risk of CRC [17–19]. A total of 78,253 subjects (33,937 cases, 
44,316 controls) have complete data on NSAIDs use and are included in the analyses. Additional details of the study sam-
ple and definition of exposure are provided in Drew et al. [19].

The most recent and largest GWAS of CRC identified 204 SNPs that reached genomewide significance [16]. We apply 
the approaches described above to assess evidence that the PRS constructed from these SNPs interacts with NSAIDs to 
affect CRC risk. The overall PRS was constructed by first applying logistic regression within the FIGI sample to the 204 
GWAS SNPs, with adjustment for study, sex, age, and three ancestry PCs (approach #2 described above). The log-odds 
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ratios (“betas”) estimated from this model were used as the weights [w] to construct a PRS
i
, i = 1, …, N for each study 

subject.
To construct pPRS, we first used AnnoQ which successfully annotated 189 of the 204 SNPs to 265 protein-coding 

genes (S4 Table). The remaining 15 SNPs were mapped to non-coding genes and are ignored in this analysis. Application 
of PANTHER annotated 66 of the 265 genes to a total of 50 pathways, with pathways for the remaining 199 genes not 
identified. Among the 50 pathways, four of them included more genes than expected by chance alone at a false discovery 
rate (FDR) of 5%, identified by a Fisher’s Exact test in PANTHER (Table 2). These included the TGF-β signaling pathway 
(p = 6.0x10-6, FDR = 0.0005), Alzheimer disease presenilin pathway (p = 4.8x10-5, FDR = 0.0019), Gonadotropin-releasing 
hormone receptor pathway (p = 4.0x10-5, FDR = 0.0021), and Cadherin signaling pathway (p = 1.3x10-3, FDR = 0.04). A total 
of 30 of the 204 SNPs were annotated to genes in these pathways. Subsets of the above PRS weights were utilized to 
construct the corresponding four pPRS scores.

The genes annotated to the TGF-β signaling (TGF-β) pathway and Gonadotropin-releasing hormone receptor 
(GRHR) pathways are highly overlapped, as are genes in the Cadherin signaling (CADH) and Alzheimer’s disease pre-
senilin(ALZ) pathways (Fig 1). These overlaps lead to significant correlations between the computed pPRS scores for 
TGF-β and GRHR (R2 = 0.58) and for CADH and ALZ (R2 = 0.71). Given these overlaps, we also constructed two addi-
tional pPRS scores based on SNPs within the combined subsets of TGF-β/GRHR genes and CADH/ALZ genes. Logis-
tic regression was used to estimate and test pPRS x NSAIDs interactions for each of the pPRS scores, with adjustment 
for study, sex, age, and three principal components of ancestry. For each pPRS x E test, we report p-values unadjusted 
for multiple comparisons, with the rationale that each pathway-based PRS was constructed in advance using auxiliary 
information.

Supporting information

S1 Table.  Power to detect PRS × E and pPRS × E interaction: Strong interactions. 
(XLSX)

S2 Table.  Power to detect PRS × E and pPRS × E interaction: Varying SNP minor allele frequencies. 
(XLSX)

S3 Table.  Weights for 204 colorectal-cancer-associated SNPs used to construct PRS. 
(XLSX)

S4 Table.  Gene and pathway annotations for 204 colorectal-cancer-associated SNPs. 
(XLSX)

S5 Table.  SNP x NSAIDs interaction results for 20 SNPs in the TGF-β/GRHR pathway. 
(XLSX)

S6 Table:  Estimated Type I error for testing PRS x E interaction based on simulation studies. 
(XLSX)

S7 Table.  Sensitivity of the pPRS x NSAIDs results to additional adjustment for 2-way interactions of pPRS and 
NSAIDs with model covariates. 
(XLSX)

S8 Table.  Analysis of pPRS x NSAIDs interaction for Colorectal Cancer, all pathway annotations derived from 204 
GWAS significant SNPs. 
(XLSX)
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S9 Table.  Comparison of pPRS x NSAIDS odds ratios for pPRS based on SNPs that were GWAS significant at the 
5E-8 or 1E-5 threshold. 
(XLSX)

S1 Fig.  Distribution of pPRS x NSAIDs effects across 50 pathways annotated from 204 SNPs GWAS significant at 
5E-8. 
(TIF)

S2 Fig.  QQ plots for pPRS x NSAIDs p-values for 50 pathways annotated from 204 SNPs GWAS significant at 
5E-8. 
(TIF)

S3 Fig.  Distribution of pPRS x NSAIDs effects across 80 pathways annotated from 1,328 SNPs GWAS significant 
at 1E-5. 
(TIF)

S4 Fig.  QQ plots for pPRS x NSAIDs p-values for 80 pathways annotated from 1,328 SNPs GWAS significant at 
5E-8. 
(TIF)
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