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Abstract 

This paper bridges the gap between the literature on the pandemic’s effects on mobility 

and the literature on the impact of low emission zones (LEZ). Using data for large 

European cities in the period 2018-2021, we examine whether LEZs may explain 

differences in the recovery patterns of traffic in European cities after the shock of Covid. 

Controlling for several city attributes, we examine whether LEZ cities are less congested 

before and after the pandemic in comparison to non-LEZ cities. LEZs may have been 

more effective in reducing congestion after the pandemic because the fleet renewal 

process has slowed down or, alternatively, LEZs may be a proxy of unobservable factors 

related with attitudes of governments and citizens towards a sustainable mobility. Our 

results validate the traffic-mitigating role of the LEZ after the Covid-19 pandemic, 

although such result only holds for the pioneering LEZ cities. Hence, the traffic-

mitigating role of the LEZ after the Covid-19 pandemic seems to be related to 

unobservable attributes that influenced the early decision to implement a LEZ. In this 

regard, we also find that LEZs may have induced a change in local attributes related to 

sustainable mobility given that we do not find differences between LEZs decided at the 

local or regional level.      
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Introduction 

The Covid-19 pandemic has had a very significant impact on mobility due to the restrictions 

imposed by governments, the fear of contagion and the spread of teleworking (Albalate, et al., 

2022). This fall in mobility was very strong for all modes of transport in 2020, particularly in the 

spring, which coincides with the strict lockdown resulting from the first wave of the pandemic. 

These impacts have been even stronger in urban areas, where the high levels of social interaction 

accentuated the effects of the pandemic, also due to the fact that the largest volume of trips by 

both public or private transport are concentrated in urban areas. However, the evolution of car 

traffic in 2021 was more heterogeneous and there is a lack of evidence about the causes behind 

the different recovery patterns of car traffic between cities.  

Before the pandemic, there was growing concern about the excessive volume of cars in urban 

mobility. Indeed, the great volume of private transportation in large cities generates significant 

negative externalities in terms of congestion, pollution, accidents, occupation of public space and 

noise. In this respect, in the short term, the pandemic has had a positive collateral effect, since 

fewer cars have meant less pollution (Venter et al., 2020; Llaguno-Munitxa & Bou-Zeid, 2022) 

and less congestion (Winchester et al., 2021; Chen & Steiner, 2022). 

In this paper, we focus our attention on congestion. Urban congestion results in traffic jams 

that increase travel time representing a huge economic cost. For example, a recent study by the 

European Commission (2019) revealed that congestion due to road transport in all European 

Union countries costs €271 billion per year.  

In addition, congestion aggravates other negative externalities. There is a particularly clear 

relationship between congestion and pollution (Barth and Boriboonsomsin, 2008; Beaudoin et al., 

2015, and Parry et al., 2007). Albalate and Fageda (2021) also show that higher levels of 

congestion may lead to worse safety performance outcomes.  

Although there is a growing literature on the effects of the Covid-19 pandemic on mobility, 

most studies are based on surveys or descriptive data for 2020. As expected, several studies find 
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a reduction in the demand of transportation due to the increasing use of teleworking (Falchetta et 

al., 2021; Mouratidis et al., 2021, Barrero et al., 2020; Brick et al., 2020). However, the demand 

for public transport has fallen more sharply than that of private transport due to fear of contagion, 

and private transportation modes are recovering to pre-Covid levels faster (Albalate et al., 2022). 

Indeed, evidence has been found of a greater preference for private transport over public transport 

after the lockdown in studies in very different geographical areas (Abdullah et al., 2021; 

Eisenmann et al., 2021, Przybylowski et al., 2021, Dias et al., 2021, Dingil et al., 2021; Echaniz 

et al., 2021, Awad-Nuñez et al., 2021, Aloi et al., 2020, Basu & Ferreira, 2021). Moreover, 

another strand of literature has shown that the pandemic has caused an increase in suburbanization 

or, in other words, a shift of residence from the city centre to the suburban area (Chun et al., 2022; 

Murat et al., 2021; Stawarz et al., 2022). Other studies find a higher decrease in the mobility of 

high-income citizens (Mejía et al., 2021) and an increased proportion of traffic made up of 

commercial vehicles (Villa & Monzón, 2021).  

Overall, the short-term effect of the pandemic has undoubtedly been a sharp drop in traffic 

volumes, but the long-term effects are highly uncertain, and may even end up involving an 

increase in mobility (Currie et al., 2021; Eliasson, 2022; Zhang et al., 2021). On the one hand, 

the increasing use of teleworking may reduce car traffic and congestion. On the other, a more 

negative perception of public transport may be maintained over time, with the consequent increase 

in the modal share of private transport and, hence, an increase in congestion. The pandemic may 

also accelerate the process of suburbanization in large cities, in the sense that many citizens will 

move to live in smaller municipalities in the metropolitan area. Suburbanization can increase the 

number of trips made from other municipalities into the central city. As public transport options 

are generally worse in terms of traffic penetration than mobility within cities, suburbanization 

may lead to increased dependence on cars and longer trips. In addition, traffic growth may be 

expected because of the increased number of commercial vehicles generated by the e-commerce 

boom.  
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Thus, it may be even more necessary than before the pandemic to implement policies aimed 

at reducing car dependence (and its associated externalities), such as investment in public and 

non-motorized transport, price-based measures (tolls, parking costs, etc.) and restrictions via 

quantities (low emission zones, reduction of space for cars, etc.).  

Of the policies implemented, low emission zones (LEZ) are the most popular quantity-based 

measure in Europe. LEZs ban polluting vehicles (i.e., those not complying with emission 

standards) from city centres. Several studies have analysed the effects of LEZs on pollution. 

Previous studies for German cities suggest that LEZs can be effective at improving air quality. 

Malina and Scheffler (2015) analyse the impact of LEZs on PM10 emissions with data for the 

period 2000-2009, finding a reduction of 13%. Also focusing on PM10 emissions and using data 

at a detailed geographical scale for 2008-2010, Wolff (2014) finds an average reduction of 9%. 

Morfeld et al. (2014) also find LEZs have a significant impact on reducing NO, NO2, and NOx. 

The magnitude of the impact is around 4%.  

Some other studies examine the effect of LEZs on individual cities by comparing pollution 

levels before and after their implementation. Panteliadis et al. (2014) study the LEZ implemented 

in Amsterdam, which gradually banned heavy-duty vehicles based on their emission category. 

They find a reduction in the concentration of different pollutants, ranging from 4% for NO2 and 

NOx, up to 10% for PM10. Ellison et al. (2013) study the case of London, where an emission 

standard was imposed on trucks, coaches and buses in an area covering most of Greater London. 

They show that PM10 concentrations within the limits of the LEZ dropped by 2.46%-3.07%, 

compared to a lower decrease of 1% in limiting areas; however, no discernible differences are 

found for NOx concentrations. Cesaroni et al. (2012) analyse intervention policies in Rome, 

including the exclusion of all cars from the historical city centre and the prohibition of old diesel 

vehicles within the railway ring. In the intervention area, they find a reduction in PM10 and NO2 

of 33% and 58%, respectively (but the results are modest city-wide). Salas et al. (2021) find that 

the LEZ in the city of Madrid, where an emission standard to access the city centre was imposed 
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on all vehicles, reduced the NO2 levels by 11 µg/m3 in the restricted area. Gonzalez et al. (2022) 

and Peters et al. (2022) find that LEZ has promoted the use of cleaner vehicles also in Madrid.   

Some recent studies also find evidence that the reduction of pollution due to the 

implementation of LEZs in Germany has had positive –albeit modest– health effects (Gehrsitz, 

2017; Pestel & Wozny, 2021). Similarly, Poulhès & Proulhac (2021) find positive health effects 

of LEZ in Paris.  

The literature on the effects of LEZs on congestion is much scarcer. Bernardo et al. (2021) 

do not find evidence that LEZs reduce congestion in a study that considers several European urban 

areas. Taking a different approach, Tassinari (2022) reaches the same conclusion in a detailed 

analysis for the city of Madrid. Moreover, Fageda et al. (2022) develop a model that provides the 

rationale for the prevalence of LEZs instead of tolls in high-income cities.  

Thus, previous literature suggests that LEZs have been effective in reducing pollution but not 

congestion. The main reason behind the reduction in pollution is that LEZs have spurred the 

renewal of the car fleet from older to new and more efficient vehicles. This renewal does not curb 

congestion, as the newer cars can enter the restricted area. Another aspect as to why newer cars 

may reduce pollution but not reduce congestion is related to the rebound effect of fuel efficiency. 

Newer cars are more fuel efficient, so the marginal private cost of driving is lower, which could 

lead potentially to a higher quantity of trips.  

This paper contributes to the literature by bridging the gap between the literature on the 

pandemic’s effects on mobility and the literature on the impacts of LEZs. Using data for large 

European cities in the period 2018-2021, we examine whether the implementation of LEZ policies 

may explain differences in the recovery patterns of traffic in European cities after the shock of 

Covid. Indeed, we examine whether LEZ cities have less congestion before and after the 

pandemic in comparison to non-LEZ cities, controlling for several city attributes –and other traffic 

restrictions– that may influence congestion.  

We find evidence that LEZs reduce congestion after the pandemic but not before. Two 

alternative hypotheses may explain the effectiveness of LEZs in reducing congestion after the 
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pandemic. On the one hand, the fleet renewal process could have slowed down after the pandemic. 

On the other hand, governments and citizens in LEZ cities may have better attitudes towards a 

sustainable mobility after the pandemic, for example increasing the use of public transportation 

and teleworking. Our analysis provides more evidence in favour of the second hypothesis given 

that the reduction in congestion concentrates in the pioneering LEZ cities. 

 

The rest of the paper is organized as follows. The next section explains the data and variables 

used in the econometric analysis. Then, we show the methods and empirical equations that we 

estimate and discuss the identification strategy. This is followed by a section on the results of the 

econometric estimates. The last section is devoted to a discussion and concluding remarks.  

 

Data and variables 

Our analysis draws on a novel database created for the purpose of this research with information 

for 144 cities from 25 different countries in the European Union (plus the United Kingdom and 

Switzerland) between 2018 and 2021.1 Our dependent variable is the level of congestion 

experienced in these cities. Data for congestion were obtained from TomTom 

(https://www.tomtom.com/en_gb/tra_cindex), measured as the additional travel time a vehicle 

needs to undertake as compared to a free-flow situation. TomTom obtains real data from drivers’ 

travel time from every city where they operate. Based on actual GPS-based measurements for 

each city, TomTom registers data from local roads, arterials and highways. Several recent articles 

have used this measure of congestion (see Albalate and Fageda, 2021; Bernardo et al., 2021, 

Fageda, 2021; Winchester et al., 2021, among others). 

Although the variable measures the average congestion for a given year, which has the 

obvious limitation that it hides substantial differences between peak and off-peak periods –as well 

as seasonality–, it seems appropriate for the purpose of this research, which does not focus on the 

dynamics of congestion but on the average reaction of traffic after Covid-19. This logarithm of 

 
1 The sample includes all cities with over 300,000 inhabitants with congestion data available. We only exclude cities 

with road pricing schemes, which are stricter access restriction policies that may confound the effect of LEZs and, due 

to the low number of such schemes, do not offer enough variability to be included as a covariate. 

https://www.tomtom.com/en_gb/tra_cindex
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congestion is regressed on the presence of traffic restriction regulations, and a vector of 

covariates. All of them are described below.  

 The traffic restriction variables considered in our analysis are binary variables, with 1 

denoting the presence of a particular traffic restriction and 0 otherwise. DLEZ denotes the presence 

of LEZs, which is our main variable of interest, while DLTZ refers to limited traffic zones –other 

traffic access regulations– and acts as a necessary control variable. The data used to construct 

these variables were mainly obtained from the database Urban Access Regulations in Europe 

(https://urbanaccessregulations.eu/) and the authors’ own research. The DLEZ variable is also 

divided into different categories in our empirical analysis. First, we distinguish between DWIDE 

and DCITY. They are also binary variables that distinguish whether the LEZ has a large territorial 

scope, or is delimited within the core area of the city. This distinction is made to potentially 

capture heterogeneous effects of the role of LEZs according to their territorial scope. Furthermore, 

we distinguish between DNEW and DOLD.  They are binary variables that distinguish whether the 

LEZ was implemented in the period that goes from 2008 to 2015, or later. This will allow us to 

provide evidence about the mechanism that drives the result for the LEZ variable. It should also 

be noted that we just consider LEZ policies that apply to all types of vehicles, not just commercial 

vehicles.  

Our sample includes 45 LEZ cities. LEZ programmes have been widely implemented in 

Belgium (Antwerp, Brussels, Gent), Germany (Berlin, Bochum, Bonn, Bremen, Cologne, 

Dortmund, Düsseldorf, Duisburg, Essen, Frankfurt, Hamburg, Hannover, Karlsruhe, Leipzig, 

Münster, Munich, Stuttgart, Wuppertal) and Italy (Bologna, Brescia, Florence, Genoa, Milan, 

Modena, Naples, Palermo, Parma, Reggio Emilia, Rome, Torino, Verona). They have also been 

implemented in large cities in other countries (Barcelona, Lisbon, Madrid, London, Oslo, Paris, 

Prague, Rotterdam, Stockholm, and Utrecht). Note here that London, Milan, Palermo, and 

Stockholm are the only cities in Europe that apply congestion tolls.  

It is also relevant to remark that the first LEZs were implemented between 2008 and 2015, 

in most German cities with LEZs, in several Italian cities and in Lisbon and Utrecht. In contrast, 

https://urbanaccessregulations.eu/
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some cities in our sample (Barcelona, Brescia, Brussels, Gent, London and Stockholm) implement 

LEZ after 2018. Thus, the LEZ variable for these cities does not always take the value one in the 

period considered. 

Figure 1 shows the congestion growth rate in 2020 in relation to 2019 for our sample of 

European cities. As expected, all cities have less congestion in 2020, with decreasing rates that, 

in most cases, range from -10% to -30%. More interestingly, Figure 2 shows the growth rate of 

congestion in 2021 in relation to 2019. A high degree of heterogeneity can be observed in the 

growth rates of congestion after Covid. In total, 20 cities have recovered the levels of congestion 

that they had in 2019, while another 20 cities have even higher levels of congestion in 2021 than 

those recorded in the pre-pandemic period. The rest of the cities still have lower levels of 

congestion but with high variability in the growth rates, ranging from -3% to -46%. 

 

Figure 1. Congestion growth rate (2020 vs. 2019) 

 
Note: We exclude London and Paris as population outliers to facilitate the interpretation 

of the figure. The growth rates of London and Paris were -18% and -1%, respectively. 
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Figure 2. Congestion growth rate (2021 vs. 2019) 

 
 

Note: We exclude London and Paris as population outliers to facilitate the interpretation of 

the figure. The growth rates of London and Paris were -13% and 8%, respectively. 

 

 

This strong heterogeneity in traffic recovery patterns between European cities could be 

related to the application of different traffic restriction policies, the identification of which is the 

main objective of this article. Figures 3 and 4 provide suggestive evidence of the role that such 

policies may have had on the recovery patterns in 2021.  

Figure 3 displays the median spline of the relationship between congestion over time 

comparing cities with LEZs to areas without. The 2021 traffic recovery seems to be descriptively 

lower in the case of areas with LEZs. Figure 4 depicts a stricter comparison between cities with 

only LEZs –excluding those with also limited traffic zones regulations– and cities with neither 

LEZs nor limited traffic zones. Again, the rate of increase of traffic for cities with LEZs seems to 

be lower than for the comparison group. However, these are just bivariate relationships that 

neglect confounding factors and other determinants of congestion. A multivariate approach is 

needed.   
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Figure 3. Median spline of the relationship between congestion and time, by LEZ regulation.  

 

 

 

Figure 4. Median spline of the relationship between congestion and time, by LEZ regulation (against 

no traffic regulations cities).  
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In this regard, the vector of covariates in our multivariate analysis is composed of seven 

variables, which are expected to determine the level of congestion in cities. The main sources of 

theses variables are the OECD Regions and Cities Database 

(https://stats.oecd.org/Index.aspx?DataSetCode=CITIES) and Eurostat 

(https://ec.europa.eu/eurostat/data/database).  

Public transportation supply is proxied by two variables: firstly, the endowment of surface 

railways per capita (per thousand inhabitants) (Rail) as a proxy of capacity; and secondly, the 

number of lines of underground rail services (Metro) as an indicator of accessibility. We expect 

a negative relationship between congestion and public transportation supply because public 

transportation is the most direct alternative to private transportation. Note that this variable is only 

available for 2021, so that we assume the same values for the rest of years. In this regard, we may 

expect modest changes in public transport supply in the short four-years period that we consider 

(with two of the years affected by the pandemic).2  

Private transportation demand is captured by the Motorization variable, which is 

constructed as the number of cars per 1,000 inhabitants. We expect a positive relationship between 

motorization and congestion given the stock of cars is highly correlated with their use, and the 

latter with congestion. 

Socioeconomic and demographic variables are also considered in our analysis. The 

number of inhabitants (in thousands) is used to build our Population variable, which captures the 

size of potential mobility needs of a city. We expect more populated areas to be prone to suffering 

from high congestion. The GDP per capita (in thousands) is also included as a control, to account 

for income, but we do not have a particular expectation about the direction of its effect on 

congestion. This is firstly because higher income is usually associated with higher use of private 

 
2 Unfortunately, data in Europe of public transit ridership are not available at the city-level. It may be the case that 

some local agencies provide the information on public transit ridership but collecting this information from different 

sources with different criteria and different time periods covered would not be feasible and probably not effective given 

that the number of cities with available information would be small.  

 

https://stats.oecd.org/Index.aspx?DataSetCode=CITIES
https://ec.europa.eu/eurostat/data/database
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transportation; however, secondly, higher GDP per capita is also associated with better 

transportation systems and public transportation networks and services.  

Urban form might also be a relevant determinant of traffic demand and mobility patterns, 

which might also influence the level of congestion. We use two variables to measure this 

relationship. Firstly, the Urban Sprawl variable accounts for the core-periphery structure of the 

metropolitan area. This is the ratio between the population living in the functional area of the city 

over the population living just in the city area. Thus, we expect this variable to be positively 

correlated with congestion if people living in the functional areas have higher mobility needs into 

and out of the main city, thereby increasing congestion. Alternatively, we would expect a negative 

correlation if the fact that there are more people living in the functional areas implies lower density 

in the core city, where congestion is more likely located. Secondly, we use the Polycentric 

variable to account for differences between monocentric and polycentric cities. Our expectation 

is that monocentric areas are more prone to suffering from congestion due to the concentration of 

activity in the central business district than polycentric cities.  

Table 1 displays the main descriptive statistics of the variables employed in our empirical 

analyses, while table 2 provides the mean values for the different sub-samples according to the 

type of LEZ. 

 

Table 1. Descriptive statistics of variables employed. 

Variables Mean Std. dev. Min Max 

Congestion (additional travel time as 

compared to a free-flow situation 

24 7.38 8 52 

LEZ (dummy variable) 0.27 0.45 0 1 

LTZ (dummy variable) 0.26 0.44 0 1 

Rail (kms per 1,000 inhabitants) 0.21 0.36 0 2.56 

Metro (number of lines) 1.91 3.17 0 16 

Motorization (cars per 1,000 

inhabitants) 

556 86 275 814 

Population (number of 000 

inhabitants) 

1.426 1.538 188 11.236 

GDP (Euros per capita) 33.447 10.429 8.820 84.940 

Urban sprawl (ratio population 

city/functional area) 

1.90 1.96 1.02 5.19 

Polycentric (dummy variable) 0.16 0.37 0 1 

 



13 

 
 

Table 2. Mean values for different sub-samples according to LEZ type. 

Variables Wide LEZ Central LEZ New LEZ Old LEZ No LEZ 

Congestion 24.14 23.64 24.25 23.6 24.27 

Rail 0.36 0.29 0.36 0.29 0.19 

LTZ 0.45 0.38 0.57 0.57 0.22 

Metro 4.01 4.62 4.12 4.52 1.04 

Motorization 556 572 563 564 553 

Population 2880 2139 2693 2253 1132 

GDP 36672 37864 34728 39263 32049 

Urban sprawl 1.59 1.76 1.71 1.68 1.96 

Polycentric 0.44 0.27 0.32 0.36 0.11 

Observations 77 93 70 100 411 

 

Methods 

To evaluate the role of LEZs on traffic congestion, we implement a variety of econometric 

models, exploiting both the cross section and the short time series of our data. These models 

estimate the contribution of LEZs to the average congestion. Firstly, we estimate a pooled model 

with Ordinary Least Squares (OLS). Secondly, we apply different panel data models such as the 

Generalized Estimating Equations (with Gaussian family), the Random Effects and the Fixed 

Effects models. Note that the fixed effect model considers city-specific effects that allows 

controlling for time-invariant unobservable factors like, for example, systematic differences in 

public transit ridership between cities. Equation 1 displays our baseline specification for these 

models:  

 

log⁡(𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛)𝑖𝑡 = ⁡𝛼⁡ + ⁡𝛽𝐷𝑖𝑡
𝐿𝐸𝑍 + 𝛾𝐷𝑖𝑡

𝐿𝑇𝑍 + 𝛿1log⁡(𝑅𝑎𝑖𝑙)𝑖𝑡 + 𝛿2𝑀𝑒𝑡𝑟𝑜𝑖𝑡  

+⁡𝛿3log⁡(𝑀𝑜𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛)𝑖𝑡+⁡𝛿4log⁡(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)𝑖𝑡+⁡𝛿5log⁡(𝐺𝐷𝑃)𝑖𝑡+⁡𝛿6𝑈𝑟𝑏𝑎𝑛_𝑆𝑝𝑟𝑎𝑤𝑙𝑖𝑡+⁡𝛿7𝑃𝑜𝑙𝑦𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖 +

⁡𝐷𝑡
2019 + 𝐷𝑡

2020 + 𝐷𝑡
2021 + 𝜀𝑖𝑡                                                                                                  (1) 

 

The average congestion variable was not normally distributed, so we used its log 

transformation, which produced a normally distributed dependent variable for our analysis (See 

Figure 5), as confirmed –or at least not rejected– by the Shapiro-Wilk W test for normal data (p-

value 0.26). The log transformation also facilitates the interpretation of coefficients as elasticities 
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or semi-elasticities. The Ramsey Reset test for omitted variables also rejected specification errors 

(Prob > F = 0.4687). 

 

Figure 5. Histogram of the dependent variable log(Congestion). 

 

 

The baseline specification is later modified to estimate a potential differentiated effect of 

LEZs depending on their territorial scope and the year of implementation. As displayed in 

equations 2 and 3 below, the binary variable DLEZ is substituted by two binary variables DWIDE 

and DCITY, and DNEW and DOLD.  

 

log⁡(𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛)𝑖𝑡 = ⁡𝛼⁡ +⁡𝛽1𝐷𝑖𝑡
𝑊𝐼𝐷𝐸 + 𝛽2𝐷𝑖𝑡

𝐶𝐼𝑇𝑌 + 𝛾𝐷𝑖𝑡
𝐿𝑇𝑍 + 𝛿1log⁡(𝑅𝑎𝑖𝑙)𝑖𝑡 + 𝛿2𝑀𝑒𝑡𝑟𝑜𝑖𝑡 

+⁡𝛿3log⁡(𝑀𝑜𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛)𝑖𝑡+⁡𝛿4log⁡(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)𝑖𝑡+⁡𝛿5log⁡(𝐺𝐷𝑃)𝑖𝑡+⁡𝛿6𝑈𝑟𝑏𝑎𝑛_𝑆𝑝𝑟𝑎𝑤𝑙𝑖𝑡+⁡𝛿7𝑃𝑜𝑙𝑦𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖 +

𝐷𝑡
2019 + 𝐷𝑡

2020 + 𝐷𝑡
2021 +⁡𝜀𝑖𝑡                                                                                                                      (2)                                            

 

log⁡(𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛)𝑖𝑡 = ⁡𝛼⁡ +⁡𝛽1𝐷𝑖𝑡
𝑁𝐸𝑊 + 𝛽2𝐷𝑖𝑡

𝑂𝐿𝐷 + 𝛾𝐷𝑖𝑡
𝐿𝑇𝑍 + 𝛿1log⁡(𝑅𝑎𝑖𝑙)𝑖𝑡 + 𝛿2𝑀𝑒𝑡𝑟𝑜𝑖𝑡  

+⁡𝛿3log⁡(𝑀𝑜𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛)𝑖𝑡+⁡𝛿4log⁡(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)𝑖𝑡+⁡𝛿5log⁡(𝐺𝐷𝑃)𝑖𝑡+⁡𝛿6𝑈𝑟𝑏𝑎𝑛_𝑆𝑝𝑟𝑎𝑤𝑙𝑖𝑡+⁡𝛿7𝑃𝑜𝑙𝑦𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖 +

𝐷𝑡
2019 + 𝐷𝑡

2020 + 𝐷𝑡
2021 +⁡𝜀𝑖𝑡                                                                                                                      (3)                                            

 

Although these baseline specifications are of interest because they estimate the general 

role of LEZ on traffic congestion, the main goal of this paper is to estimate whether LEZs are 
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having any differentiated impacts on traffic recovery after the shock of Covid-19. For this 

purpose, our main contribution comes from an alternative specification that considers different 

timing effects of LEZs, taking 2021 as the first year of the pandemic recovery (PostCovid). 

Equation 4 details the specification that allows us to evaluate the effect of LEZs on congestion in 

2021.  

log⁡(𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛)𝑖𝑡

= ⁡𝛼⁡ + ⁡𝛽1𝐷𝑖𝑡
𝐿𝐸𝑍_2018−2020 + 𝛽2𝐷𝑖𝑡

𝐿𝐸𝑍_𝑃𝑂𝑆𝑇𝐶𝑂𝑉𝐼𝐷 + 𝛾𝐷𝑖𝑡
𝐿𝑇𝑍 + 𝛿1log⁡(𝑅𝑎𝑖𝑙)𝑖𝑡 + 𝛿2𝑀𝑒𝑡𝑟𝑜𝑖𝑡  

+⁡𝛿3log⁡(𝑀𝑜𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛)𝑖𝑡+⁡𝛿4log⁡(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)𝑖𝑡+⁡𝛿5log⁡(𝐺𝐷𝑃)𝑖𝑡+⁡𝛿6𝑈𝑟𝑏𝑎𝑛_𝑆𝑝𝑟𝑎𝑤𝑙𝑖𝑡+⁡𝛿7𝑃𝑜𝑙𝑦𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖 +

𝐷𝑡
2019 + 𝐷𝑡

2020 + 𝐷𝑡
2021 +⁡𝜀𝑖𝑡                                                                                                                                                       (4) 

 

where DLEZ_2018-2020 accounts for cities with LEZs in years 2018, 2019 and 2020 and DLEZ_POSTCOVID 

accounts for cities with LEZs in the year 2021. Hence, these variables are the interaction between 

a dummy variable for LEZ and two dummy variables that differentiate between 2018-2020 and 

the post-Covid year that is 2021. It should be noted that most cities with LEZs kept the regulations 

in place throughout the whole period 2018-2021. Thus, these binary variables are capturing time 

differences for cities with LEZs rather than variations in traffic regulations over time.  

 

Results 

Our estimates on the baseline specification using pooled data models are displayed in Table 3.3 

Columns 1 and 2 display results for equation (1) presented above. Column 3 displays results for 

equation (2), considering the territorial scope of LEZs. Column 4 shows the results for equation 

(3) considering the year of LEZ implementation.  

Overall, the fit of our models is correct. All models show a good fit (R2>0.50) and the 

joint significance test validates the explanatory power of our specification. In all cases, LEZs have 

 
3 Unfortunately, our final sample for the analysis loses 143 observations due to missing information, particularly 

regarding population and the motorization variables. Results without these variables are available upon reasonable 

request. They do not change our main conclusions with respect to the support for the hypothesis tested in this research.  
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associated coefficients that are statistically significant at the 5% or 10% level with a negative 

sign. This indicates that cities with LEZs suffer lower congestion levels than the cities without 

this traffic restriction. Note that this is an average correlation for all four years in our sample. Our 

results suggest that the average reduction in the congestion level achieved by LEZs is about 8.5%. 

Considering the average congestion level of 24% of our sample, this implies a reduction of 2 

percentage points. The territorial scope of LEZs does not seem to significantly affect their effect 

according to the estimates displayed in column 3. Coefficients are both statistically significant at 

the 10% level, and coefficients are quite close, although it is higher for the type of LEZ that is 

constrained to the core city. The coefficients (and statistical significance) of the two LEZ variables 

that differentiate between the period of implementation shows that the impact of LEZs is clearly 

higher for the old LEZ cities.   

 Other restrictions, such as limited traffic zones, do not seem to produce congestion relief 

because the coefficient is not statistically significant. In addition, the magnitude of its effect is 

half the effect produced by LEZs.  

Regarding our control variables, public and private transportation variables are 

statistically significant and display the expected sign. Public transportation supply diminishes 

congestion, while motorization increases it. Population is also positively associated with 

congestion, but GDP per capita shows a negative correlation. This means that the effect produced 

by better transportation infrastructure and systems linked to income is the force driving this result, 

rather than the usual higher mobility demand of higher income groups.  

Urban form also seems to matter. Both the ratio of the functional area over the core city 

area and the polycentric feature of a city are negatively associated with congestion and highly 

statistically significant at 1%, as expected.  
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Table 3. Pooled data OLS model estimates on the logarithm of congestion. 

Covariates Pooled 

OLS 

Pooled 

OLS 

Pooled 

OLS 

 (1) (2) (3) 

    

           LEZ -0.0851*   

 

           Wide LEZ 

(0.0443)  

-0.0684* 

 

 

           Central LEZ 

 (0.0397) 

-0.0867* 

 

 

           New LEZ 

 (0.0479)  

-0.0525 

 

           Old LEZ 

  (0.0619) 

-0.114** 

   (0.0501) 

           Rail -0.191** -0.188** -0.199*** 

 (0.0737) (0.0739) (0.0739) 

          Metro -0.0183*** -0.0184*** -0.0178*** 

 (0.00695) (0.00694) (0.00675) 

          log(GDP) -0.142** -0.145*** -0.134** 

 (0.0545) (0.0539) (0.0546) 

          log(population) 0.336*** 0.335*** 0.338*** 

 (0.0313) (0.0316) (0.0317) 

          log(motorization) 0.294*** 0.294*** 0.306*** 

 (0.109) (0.109) (0.110) 

          LTZ -0.0427 -0.0458 -0.0519 

 (0.0486) (0.0479) (0.0496) 

          Polycentric -0.184*** -0.183*** -0.183*** 

 (0.0589) (0.0599) (0.0593) 

          Urban sprawl -0.0388*** -0.0385*** -0.0395*** 

 (0.00555) (0.00563) (0.00573) 

          Constant 0.723 0.764 0.551 

 (0.943) (0.941) (0.950) 

    

         Observations 433 433 433 

         R-squared 0.544 0.544 0.547 

         Year FE YES YES YES 

         Clusters City City City 
Notes: Significance levels based on p-values at *** 1%, ** 5%, * 10%. Standard errors in 

parentheses 

 

 

 

Table 4 displays our key selected results on the differentiated role of LEZs before and 

after Covid-19. All estimations include all covariates and year-specific and country-specific fixed 

effects, except the Fixed Effects Model that considers city-specific fixed effects instead of 

country-specific fixed effects. Column 4 again displays the Pooled OLS model, while models 5-

7 consider Panel Data methods. Consistently, our results indicate that LEZs are only contributing 

to congestion relief in the post-Covid year (2021), while it was not statistically significant in the 

previous years (2018-2020). Only very slight differences exist between the Population Averaged 
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Model (GEE), Random Effects Model (RE) and Fixed Effects Model (FE). Coefficients 

associated to LEZs in the post-Covid year are always negative and statistically significant at 1% 

across models. Thus, estimates seem to confirm our main hypothesis, which suggests that cities 

with LEZs experienced slower recoveries of traffic after Covid than cities without these traffic 

restrictions. Moreover, in terms of the magnitude of effects, coefficient size also suggests an 

average reduction in congestion of between 5.2% and 5.6%, depending on the model. For the 

average congestion of our sample, this implies a reduction of 1.3 percentage points.  

Regarding the control variables, the sign and statistical significance of the variables of 

rail, population, urban sprawl and (mostly) polycentric are like those obtained in regressions 

reported in table 3. The rest of variables loses its statistical significance, while the sign of the 

variable LTZ turns out positive. Note that the effect of these variables may be captured by the 

inclusion of country or city specific effects. In this regard, note that the city fixed effects model 

captures the effect of time-invariant variables (rail, metro, polycentric, urban sprawl).  
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Table 4. Pooled and Panel Data estimates on the logarithm of congestion, by period. 

 

Covariates 

Pooled 

OLS 

(4) 

Panel 

GEE 

(5) 

Panel 

RE 

(6) 

Panel 

FE 

(7) 

     

LEZ     

     

    LEZ_2018-2020 -0.0159 0.0162 0.0170 0.0208 

 (0.0421) (0.0200) (0.0208) (0.0210) 

   LEZ-PostCovid -0.0952** -0.0564*** -0.0555*** -0.0522** 

 (0.0412) (0.0197) (0.0206) (0.0206) 

     

           Rail -0.164*** -0.152*** -0.152***  

 (0.0599) (0.0404) (0.0412)  

          Metro -0.00829 -0.00671 -0.00668  

 (0.00656) (0.00643) (0.00671)  

          log(GDP) -0.0412 -0.0426 -0.0445 -0.110 

 (0.197) (0.184) (0.191) (0.181) 

          log(population) 0.244*** 0.224*** 0.224*** 0.205*** 

 (0.0279) (0.0262) (0.0274) (0.0137) 

          log(motorization) -0.0296 0.0951 0.116 0.708 

 (0.126) (0.104) (0.112) (0.441) 

          LTZ 0.0821 0.0938** 0.0974** 0.134*** 

 (0.0541) (0.0408) (0.0403) (0.0159) 

          Polycentric -0.0714 -0.0784* -0.0786*  

 (0.0437) (0.0444) (0.0464)  

          Urban sprawl -0.0274*** -0.0262*** -0.0264***  

 (0.00676) (0.00688) (0.00719)  

          Constant 2.227 1.642 1.542 -0.186 

 (2.213) (2.048) (2.124) (2.752) 

        Observations 433 433 433 433 

        R-squared 0.758  0.75 0.62 

        Wald Chi2  897.96***   

        Year FE YES YES YES YES 

        Country FE YES YES YES NO 

        Clusters City No City City 

        Number of cities 126 126 126 126 
Notes: Significance levels based on p-values at *** 1%, ** 5%, * 10%. Standard errors in parentheses.  The Stata 

command for Generalized Estimating Equations does not allow to apply clusters.  

 

 

Mechanisms 

In this section, we analyse the factors that may explain our main result. LEZs reduce congestion 

after the pandemic but not before.  

LEZ cities may differ in some key characteristics in comparison to non-LEZ cities. Table 

5 provides the t tests on equal means for all variables considered in previous regressions. On the 

one hand, LEZ cities are richer and have a higher supply of rail infrastructures. Furthermore, they 
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apply more often another traffic restrictions. On the other hand, they are much bigger. Even 

though there are differences between LEZ and non-LEZ cities in these key characteristics, this 

does not explain why we find differences in congestion after the pandemic but not before. Note 

also that our regressions already control for such differences.  Similar, it could also be argued that 

LEZs are usually part of a bunch of measures improving public transport supply (although this is 

more clearly the case with congestion tolls that imply the generation of revenues for 

governments). Again, this would not explain why LEZ cities have a congestion-reduction effect 

after the pandemic but not before. Note also that our fixed effects regression control for time 

invariant unobservable factors and we expect modest changes in public transport supply in the 

short four-years period that we consider (with two of the years affected by the pandemic).   

Table 5. Tests of equality means 

Variables Mean 

(LEZ) 

Obs 

(LEZ) 

Mean (No 

LEZ) 

Obs. (No 

LEZ) 

T-test 

Congestion 23.33 169 24.27 411 1.33 

Rail 0.285 169 0.192 411 -2.70*** 

LTZ 0.36 169 0.22 411 -3.46*** 

Metro 4.22 169 1.04 411 -11.79*** 

Motorization 563 161 553 337 -1.15 

Population 2212 153 1132 374 -7.36*** 

GDP 37139 169 32049 411 -5.26*** 

Urban sprawl 1.73 153 1.96 374 1.20 

Polycentric 0.29 169 0.11 411 -5.25*** 

Deaths per 100,000 (2021) 235 169 263 411 3.18*** 

Vaccination rate per 100 (2021) 80.19 169 77.74 411 -1.41 

Stringency index (2021) 56.15 169 52.11 411 -3.88*** 
Notes: Significance levels based on p-values at *** 1%, ** 5%, * 10%. 

 

LEZs cities could be those that were experiencing lower traffic demand in 2021 –and 

therefore congestion recovery– due to Covid-19 lasting impacts. This would be the case if cities 

with LEZs had been particularly and relatively more hit by the virus –with higher death rates and 

higher mobility restrictions- during the pandemic– than the group of cities without LEZs. 

Furthermore, one aspect that allowed us to enter the new normal scenario was precisely the 

extension of vaccination in 2021. In this regard, it could be that LEZs had been less exposed to 

vaccination against Covid-19 than all other cities. Because data at local level is not available, we 

can only make the comparison between LEZ and non-LEZ cities employing national data as a 
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proxy of death rates, the stringency of restrictions4 and vaccination rates at the city level for 2021 

(data are retrieved from OxCGRT ). The results displayed at the bottom of Table 5 show that the 

mean of Covid-related death rates is lower for cities with LEZs than for cities without a LEZ in 

our sample, while we do not find statistical differences in the mean rate of vaccinations. However, 

LEZ cities have been affected by more mobility restrictions than non-LEZ cities. Table 6 shows 

the results of regressions that control for the stringency index, confirming our previous result that 

LEZ cities are less congested after the pandemic but not before.  In any case, part of the effect 

attributed to LEZs measures could be related with more stringent mobility restrictions associated 

to the pandemic.     

 

Table 6. Pooled and Panel Data estimates on the logarithm of congestion, by period (controlling for 

stringency index).  

Covariates Pooled  

OLS 

(4) 

Panel 

GEE 

(5) 

Panel 

RE 

(6) 

Panel 

FE 

(7) 

LEZ     

PreCovid -0.069* 

(0.0398) 

0.0005 

(0.0172) 

0.0006  

(0.0213) 

0.009 

(0.0212) 

PostCovid -0.0992*** 

(0.0424) 

-0.0533*** 

(0.0195) 

-0.0525*** 

(0.0192) 

-0.0492*** 

(0.0191) 

Stringency index -0.005 

(0.0034) 

-0.003*** 

(0.0011) 

-0.003*** 

(0.0013) 

-0.003*** 

(0.0012) 

All Covariates Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

Clusters  City No City City 

Country FE Yes Yes Yes Yes 

     

N. Observations 433 433 433 433 

R2 0.55 - 0.75 0.63 

F-joint significance 36.31*** - - - 

Wald Chi2 - 917.34*** - - 
Notes: Significance levels based on p-values at *** 1%, ** 5%, * 10%. Standard errors in parentheses. The Stata 

command for Generalized Estimating Equations does not allow to apply clusters. 

 

 

 
4 We use a stringency index that records the strictness of lockdown policies at country level that primarily 
restrict the mobility  and behavior of citizens. In particular, it is a composite index taking value from 0  to 100 
(where 100 is the strictest) based on the average score of nine indicators related to Covid19 containment and 
mitigation measures. They are school closures, workplace closures, cancellation of public events, restrictions 
on public gatherings, closures of public transport, stay-at-home requirements, public information campaigns, 
restrictions on internal movements, and international travel controls. 

 

https://www.bsg.ox.ac.uk/research/covid-19-government-response-tracker
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In addition to more stringent mobility restrictions due to the pandemic, two alternative 

hypotheses may explain the effectiveness of LEZs in reducing congestion after the pandemic. On 

the one hand, the fleet renewal process could have slowed down after the pandemic. In this regard, 

table A1 in the appendix show the share of cars with less than two years over total cars for the 

countries for which this information is available in the period 2018-2021. The numbers in this 

table show that the pandemics seems to have effectively slowed down the process of renewal of 

the car fleet although this process seems to be general in all countries.5  

On the other hand, governments and citizens in LEZ cities may have better attitudes 

towards a sustainable mobility after the pandemic, for example increasing the use of public 

transportation and teleworking. The first hypothesis would be validated if the cities with the most 

recent LEZs are the ones that are less congested after the pandemic. The impact of the LEZs in 

terms of fleet renewal in cities that applied the measure many years ago would have to have 

occurred before the pandemic. In contrast, the second hypothesis would be validated if it is the 

pioneering LEZ cities that are less congested after the pandemic, assuming that the early 

implementation of LEZ is a proxy of better attitudes towards a sustainable mobility that could 

have gained more relevance after the pandemic.  

Table 7 replicates the previous analyses but distinguishing between new and old LEZ 

cities. Results of these additional regressions provide clear evidence that cities with early 

implementation of LEZ are the ones that are less congested after the pandemic. This result implies 

that the negative impact of LEZs on congestion is not explained by a slowdown in fleet renewal 

but by unobservable factors such as better attitudes towards sustainable mobility that could have 

gained more relevance after the pandemics. 

To this point, note that cities impose different requirements in terms of standards (being 

usually stricter for diesel cars) and the stringency in such standards could be related with the 

timing of the LEZ implementation. Germany can be taken as reference because it is the country 

 
5 Unfortunately, data of auto sales at the city level are not available.  
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with more LEZs in our sample and all of them can be categorized as old in our terms, except 

Hamburg. Most of German cities have the following emission standards: Euro 4 for diesel cars 

and Euro 1 for gasoline cars.6 The rest of cities in our sample has similar standards, albeit in some 

cases could be slightly more or less stringent. The standards are only clearly less stringent in 

Naples, Rotterdam, and Utrecht because they do not apply to gasoline cars and only Rotterdam is 

categorized as new LEZ. Thus, we do not expect that differences in the stringency of the standards 

significantly influence our results.   

Table 7. Pooled and Panel Data estimates on the logarithm of congestion, by period (controlling for 

stringency index, lez new and lez old).  

Covariates Pooled  

OLS 

(4) 

Panel 

GEE 

(5) 

Panel 

RE 

(6) 

Panel 

FE 

(7) 

LEZ     

PreCovid -0.069* 

(0.0393) 

0.006 

(0.0167) 

0.007  

(0.0207) 

0.010 

(0.0205) 

PostCovid_new -0.0376 

(0.0505) 

-0.008 

(0.0242) 

-0.007 

(0.0192) 

-0.0006 

(0.0196) 

PostCovid_old -0.1419*** 

(0.0504) 

-0.0909*** 

(0.0232) 

-0.0899*** 

(0.0269) 

-0.0878*** 

(0.0257) 

Stringency index -0.005*** 

(0.0034) 

-0.002*** 

(0.0011) 

-0.002** 

(0.0013) 

-0.003*** 

(0.0012) 

All Covariates Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

Clusters  City No City City 

Country FE Yes Yes Yes No 

     

N. Observations 433 433 433 433 

R2 0.55 - 0.75 0.64 

F-joint significance 33.99*** - - - 

Wald Chi2 - 940.03*** - - 
Notes: Significance levels based on p-values at *** 1%, ** 5%, * 10%. Standard errors in parentheses. The Stata 

command for Generalized Estimating Equations does not allow to apply clusters. 

 

 

 

 

 

 

 

 
6 The European emission standards are vehicle emission standards for pollution from the use of cars sold in the 

European Union. The standards are defined in a series of European Union directives staging the progressive 

introduction of increasingly stringent standards. The stages are typically referred to as Euro 1, Euro 2, Euro 3, Euro 4, 

Euro 5, Euro 6 and Euro 7.  

https://en.wikipedia.org/wiki/Vehicle_emission_standards
https://en.wikipedia.org/wiki/European_Union_directive
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It could also be the case that LEZs have induced a change in local attributes related to 

sustainable mobility. We can test such hypothesis by examining differences between LEZs 

promoted by local and non-local authorities.    

In Europe, the first low-emission zones were introduced in Sweden in 1996 although they 

only applied to heavy vehicles. Over the 2000’s, the number of low-emission zones increased 

exponentially as one of the measures to respond to the growing social concern generated by local 

pollution and its consequent health risks. Also note that, since 1996, the European Commission 

enacted a series of air quality directives that dictated the appropriate limits for air pollution in 

European cities. These ultimately culminated in the 2008/50/EC Directive on Ambient Air Quality 

and Cleaner Air for Europe. Hence, another incentive for cities to implement a LEZ is the risk of 

being fined if they exceed the maximum pollution thresholds established by the European legal 

framework.  

The national framework for LEZs usually only involve the stickers that identify the 

emission levels of the cars.7 Hence, the decision to implement or not a LEZ is usually in charge 

of the city council. Using a similar dataset as that used in this paper, Fageda et al. (2022) analyze 

the factors that explain whether cities implement or not a LEZ. The main determinant in the 

decision to implement an LEZ is the city's income. The higher the income level, the more likely 

it is that the city will decide to implement it. To a lesser extent, high pollution levels (but not high 

congestion levels) also influence the decision. Finally, it is also remarkable that a LEZ is more 

likely to be implemented in those cities where the city mayor is from a left-wing party. These 

results suggest that LEZ may be related with local attributes related to sustainable mobility.  

While most of LEZs are implemented by local authorities, we have identified combined 

regional schemes that apply to the North of Italia (particularly in the regions of Emilia Romagna, 

Lombardia, Piamonte and Veneto). Cities affected in our sample are Brescia, Bologna, Milan, 

Modena, Parma, Reggio Emillia, and Torino. Furthermore, there are regional schemes in Germany 

 
7 Recently, France and Spain have enacted climate laws that made compulsory the implementation of 

LEZs in cities with more than 150,000 (in force from 2025) and 50,000 inhabitants (in force from 2023), 

respectively.  

https://eur-lex.europa.eu/eli/dir/2008/50/oj
https://eur-lex.europa.eu/eli/dir/2008/50/oj
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(particularly in the Ruhr area and Stuttgart) that affect the cities of Bochum, Essen, Dortmund, 

Duisburg and Stuttgart. 

Considering all this, we create a new variable that makes a distinction between different 

types of LEZs depending on whether they are affected by a regional scheme, or the 

implementation has been carried out directly by the city council. Then, we interact these two 

variables with the dummy that identifies the effect of old LEZs cities after the covid.  

Table 8 report the results of these additional regressions that shows that the coefficients of 

the variables capturing the effect of both types of old LEZs cities (either promoted at the regional 

or local level) are negative and statistically significant. Hence, old LEZs cities have less 

congestion after the pandemics regardless of they have been decided at the regional or local level. 

These results suggest that LEZs may have induced a change in local attributes related to 

sustainable mobility that gained more relevance after the pandemics. If LEZs have induced a 

change in local attributes, we should expect significant effects regardless of the measure was 

initially set at the regional or local level.  Even if LEZ was initially set at regional level, given 

that it has changed local attributes, it should have a significant negative impact on congestion as 

we find.  

The estimated impact for LEZs that are decided at the regional level is larger than at the 

local level. Regional LEZs may have larger or smaller effects than local LEZs. Indeed, it is not 

clear a priori if the effect will be larger or not because this will depend on the specific 

characteristics of the implementation including, among others, the level of stringency or the size 

of restricted area.  In this regard, it is not surprising to find larger effects in regional LEZs because 

they are in fact more ambitious than local LEZs. For example, it can be more effective to apply a 

LEZ in the entire Ruhr area that just in the city of Dortmund, or in all cities in the region of 

Lombardia (including the surroundings of Milan) than just in the city of Milan. In fact, our results 

provide some evidence in favor of the latter.   
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Table 8. Pooled and Panel Data estimates on the logarithm of congestion, by period (controlling for 

stringency index, lez new, lez old_city, lez_old_regional).  

Covariates Pooled  

OLS 

(4) 

Panel 

GEE 

(5) 

Panel 

RE 

(6) 

Panel 

FE 

(7) 

LEZ     

             PreCovid -0.0709* 

(0.0394) 

0.006 

(0.0167) 

0.007  

(0.0208) 

0.010 

(0.0206) 

            PostCovid_new -0.0387 

(0.0596) 

-0.008 

(0.0241) 

-0.007 

(0.0194) 

-0.0006 

(0.0196) 

    PostCovid_old_city -0.109** 

(0.0552) 

-0.0742*** 

(0.0250) 

-0.0733*** 

(0.0286) 

-0.0715*** 

(0.0270) 

PostCovid_old_regional -0.271*** -0.154*** -0.152*** -0.150*** 

 (0.0676) (0.0422) (0.0461) (0.0462) 

Stringency index -0.005*** 

(0.0050) 

-0.002*** 

(0.0011) 

-0.002** 

(0.0013) 

-0.003*** 

(0.0012) 

All Covariates Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

Clusters  City No City City 

Country FE Yes Yes Yes No 

     

N. Observations 433 433 433 433 

R2 0.55 - 0.75 0.64 

F-joint significance 50.26*** - - - 

Wald Chi2 - 947.43*** - - 
Notes: Significance levels based on p-values at *** 1%, ** 5%, * 10%. Standard errors in parentheses. The Stata 

command for Generalized Estimating Equations does not allow to apply clusters. 

 

 

Discussion and concluding remarks 

According to the evidence reported in this research, cities with LEZs are experiencing a less 

pronounced traffic recovery after the shock of Covid-19. Although congestion seems to be 

increasing everywhere, and there is evidence showing it is increasing at a higher rate than public 

transportation demand, its rate of increase seems lower where LEZs are in place.  

LEZs aim to cause a change in the composition of traffic, expelling the most polluting 

vehicles, and promoting the renewal of fleets. This is consistent with the results reported in the 

recent literature that highlights that LEZs are more effective at reducing pollution and improving 

air quality than at combatting congestion (Bernardo et al., 2021). However, the Covid-19 shock 

could have set a perfect scenario for LEZ regulations to play a dual role, now also acting against 

congestion recovery after Covid-19. 
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On the one hand, there is sufficient evidence that shows that the Covid-19 pandemic has 

influenced and changed consumer behaviour (see Cruz-Cardenas et al., 2021 for a literature 

review). The automobile industry has been one of the hardest hit by Covid-19. The pandemic 

significantly reduced the number of sales and displaced purchasing decisions to the future due to 

uncertainty. No doubt, the epidemic's negative income effects reduced the purchase propensity 

for automobiles (Yan et al., 2022). Due to the major impact on the automobile industry, the 

expected change in fleet composition towards a greener fleet under LEZ schemes would have 

been slowed down by the effects of Covid-19 on vehicle purchases. However, results of our 

analysis do not provide evidence in favour of the slowdown in the fleet renewal process because 

the cities with the most recent LEZs are not the ones that are less congested after the pandemic. 

On the other hand, Covid-19 has promoted new patterns of mobility also related to the 

new organization of work, fundamentally the emergence of teleworking and more flexible work 

schedules (Albalate et al., 2022), all of which reduce the in-person factor of work to some extent. 

Results of our analysis suggests that these new patterns of mobility that implies less travel demand 

may have played a more relevant role in pioneering LEZ cities. In this regard, our results suggest 

that LEZs may have induced a change in local attributes related to sustainable mobility that gained 

more relevance after the pandemics.  

Our research has some limitations that must be discussed due to data availability 

problems. Firstly, it should be noted that we can only assess the short-term effects of Covid-19 

on the effectiveness of LEZs against congestion. Our main results should be confirmed once data 

on more post-Covid periods are available. Secondly, we have only been able to examine the 

different degree in the intensity of the pandemic employing national data. Therefore, regional, 

and local disparities may remain. Finally, the data available for a panel of 144 cities from 25 

different countries are limited. Hence, a limitation of our analysis is that we do not have data at 

the city level of relevant variables like public transport ridership or car sales.  
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APPENDIX 

Table A1. Share of cars with less than two years over total cars 

Country 2018 2019 2020 2021 

Austria 18% 18% 18% 16% 

Belgium 17% 18% 18% 16% 

Czechia 11% 12% 12% 10% 

Denmark 16% 15% 15% 14% 

Finland 7% 7% 7% 6% 

France 16% 11% 12% 11% 

Germany 20% 20% 20% 19% 

Hungary 7% 8% 8% 8% 

Ireland 19% 19% 19% 16% 

Italy 10% 10% 10% 9% 

Latvia 4% 4% 4% 4% 

Netherlands 15% 15% 16% 15% 

Poland 6% 6% 7% 6% 

Portugal 8% 8% 8% 7% 

Romania 3% 3% 4% 4% 

Slovenia 8% 9% 8% 7% 

Spain 9% 10% 10% 8% 

Sweden 20% 19% 18% 16% 

                     Source: Eurostat. Data for Greece, Iceland, Norway, Slovakia, Switzerland  and 

United Kingdom are not available.    

 


