Optical flow analysis to classify activity patterns in living neuronal networks
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Abstract: Neuronal cultures provide an accessible way to observe and model the behavior of
living neuronal networks. In this study, spontaneous activity recorded in such neuronal cultures
is analyzed with the aim to find distinct spatiotemporal patterns of spontaneous activity, such as
synchrony or spiral fronts. Human and rat neurons, cultured on flat or engineered surfaces, are
analyzed along different days in vitro (DIV) using Neuropatt, a MATLAB toolbox designed for the
detection of spatiotemporal patterns in neural population activity. Based on ‘optical flow analysis’,
the toolbox reveals the emergence of characteristic patterns in the activity of the networks, and their
dependence on DIVs and surface. Results indicate that development and surface properties change
the connectivity of the network, which gives rise to macroscopic signatures such as characteristic

patterns of activity.
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I. INTRODUCTION

Living neuronal networks, from small systems such as
neurons grow in vitro to model animals such as the C. El-
egans or the Zebrafish, are investigated in physics of com-
plex systems to understand the functioning of the brain,
particularly in universal aspects such as spontaneous ac-
tivity, i.e., the ability of neurons to activate without any
external stimulation, or the spatiotemporal propagation
of information, i.e., the transmission of activity from neu-
ron to neuron within the neuronal network.

To investigate these aspects in detail, neuronal cultures
have emerged as an accessible, and highly interesting,
laboratory toolbox [1]. They consist of neurons plated
on a surface that contains the appropriate nutrients for
the cells to grow and develop into a neuronal network.
The surface used as a substrate for the neurons can be
flat (such as glass), filled with electrodes, or topograph-
ically patterned, meaning it has small depressions which
affect neuronal connections and consequently the overall
connectivity details of the network [2].

Neuronal cultures exhibit spontaneous activity, which
is the capacity of the neurons in the network to activate
by themselves thanks to intrinsic noise and connectiv-
ity [1]. This activity propagates throughout the network,
but the propagation details, e.g., a circular wave or a spi-
ral, may depend on the connectivity of the network or the
length of the connections. To monitor this spontaneous
activity in cultures, the scientific community mainly uses
two methods: fluorescence calcium imaging [3] and multi-
electrode arrays (MEAs) [4].

Calcium imaging is based on the optical detection of
neuronal activations as increases of fluorescence in neu-
rons, caused by the increase in intracellular calcium con-
centration when neurons fire an action potential. The
neurons are previously loaded with a calcium indicator,
a compound that exhibits fluorescent properties when
bound to calcium and that allows to detect activity.

MEASs, on the other hand, measure the electrical sig-
nals of neurons when they fire an action potential, thanks
to an array of electrodes embedded in the substrate where
neurons grow. Calcium imaging offers high spatial reso-
lution, but has poorer time resolution since it is limited
by the kinetics of the indicator. MEAs offer great time
resolution but have bad spatial resolution since neurons
cannot be seen due to electrodes’ opacity.

In either case, calcium imaging or MEAs, however, spa-
tiotemporal activity fronts can be tracked and analyzed.
The goal of the present work is to classify such patterns
in experimental data from Dr. Soriano laboratory, and
using the framework of ‘optical flow analysis’ published
by Townsend and Gong [6].

II. EXPERIMENTAL BACKGROUND

Neuronal cultures in the present study came from ei-
ther rat primary neurons or human induced pluripotent
stem cells (hiPSCs) [5]. The types of substrates used
were a flat surface, electrodes, or a topographical sub-
strate containing depressions in the form of randomly
positioned squares with varying sizes, which we named
‘squares’ [2]. For the data obtained with calcium imag-
ing, we used rat neurons placed in a flat surface and the
‘squares’ patterns, and recorded the activity of 2 batches
of cultures for each surface type at different days in vitro
(DIV). For the data obtained with MEAs, we used rat
neurons and hiPSCs cells placed on a flat MEAs surface
and recorded one culture of each type for multiple DIVs.
The used data is summarized in Table I.

The overall motivation to analyze the described ex-
perimental data is: (i) to see whether there are distinct
spatiotemporal patterns that emerge in the spontaneous
activity of the neuronal networks, and (ii) to investigate
the effect that different types of neurons and substrates,
as well as the development of the cultures along DIVs,



have on these activity patterns.

MEA |Flat

Human |DIV 37, 65, 98
Rat DIV 10, 17
Calcium|Flat Squares

DIV 7, 10, 12 DIV 7, 10, 12

DIV 7, 10, 12, 14, 17|DIV 7, 10, 12, 14, 17

Rat

TABLE I: Summary of experimental data used.
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FIG. 1: Overview of the data used and the detection
methods. (A) Picture of the MEA chip. The neurons are
placed on the square inside the circle, which contains the
electrodes. (B) Frame of an activity matrix for human
neurons placed on a flat MEA surface. (C) Same as (B)
but for rat neurons. (D) Frame of a calcium imaging
video for rat neurons placed on a patterned surface. (E)
Frame of an activity matrix for rat neurons placed on a
patterned surface. (F) Same as (E) but for a flat surface.

III. METHODS
A. Introducing ‘optical flow analysis’

Optical flow analysis consists of determining the mo-
tion between consecutive frames of data by tracking
changes on the images. This is done by solving two con-
straints. The first constraint states that the same data D
is present at time t and ¢t + dt, but it may shift in space
depending on the z and y components of the velocity
field, w and v respectively, of the data, i.e.,

D(x + udt,y + vdt, t + dt) — D(x,y,t) =0. (1)
In a first order approximation, this can be expressed as:
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where E is the error in the conservation of data. The sec-
ond constraint states that the velocity fields are smooth

and continuous, so that
EZ = |Vul® + Vo], (3)

where F is the error in the smoothness of the velocity.
The velocity field w(z,y,t) = (u(z,y,t),v(z,y,t)) can be
then uniquely defined by minimizing both errors, i.e.,

min{[ [[p(Ea)? + ap(E,)?|dzdy, (4)

where « is a smoothing parameter and p = /22 + 32 is
a penalty controlled through a parameter 5. Eq. (4) is
solved through its Euler-Lagrange equations.

For the purpose of analyzing the activity patterns
of neuronal networks, we used the NeuroPattToolbox
MATLAB toolbox [6] which detects spatiotemporal pat-
terns in neuronal networks. This toolbox uses a 3D ma-
trix I(x,y,t) as input data, where I is the intensity of the
signal, (x,y) the position in Cartesian coordinates of each
dynamic element (neurons) and ¢ the corresponding time
of activation. Being I a matrix, x, y and ¢ are discrete
and evenly spaced. The time dimension ¢ is associated
to frames in a recording of neuronal activity.

Our data, regardless of the type of neuron (primary
or hiPSC), culturing surface or recording method used,
had a similar structure. It consisted of noise with very
little activity and sudden bursts of strong neuronal activ-
ity (Fig. 1). The frequency, intensity and duration of the
bursts changed, and we speculate that their spatiotempo-
ral structure also changed, e.g., from slow circular wave
to fast synchronous dynamics. In order to analyze these
spatiotemporal patterns, we followed 3 steps: (i) data
preprocessing to convert the recordings into a matrix,
(ii) selection of bursts of high activity in the network,
and (iil) analysis through the aforementioned toolbox.

B. Preprocessing of MEA data

MEA recordings consist of a list of the electrode num-
ber and the time of activation of every event detected.
To transform this data into a matrix we used the grid
of the MEA to convert the electrode number into x and
y positions, starting with electrode number 1 at the top
left corner with coordinates (1, 1) and ending at electrode
4096 at the bottom right corner with coordinates (64, 64).
To discretize time, we chose a certain time interval, and
all activations that happened within that time belonged
to a single frame. As the MEA does not offer a value for
the intensity of the activation we used 1 for the presence
of activity and 0 otherwise.

The duration of a frame was chosen case by case to
achieve the optimal time resolution. Using the periods
of high activity in the network we tested different frame
durations to see which ones allowed sufficient temporal
resolution but also accumulated enough activations, since
a higher amount of activations in a frame shortened the
time needed to estimate the optical flow.
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FIG. 2: Flowchart of data analysis. Main figure: data
preprocessing and input. Inset panels (A)-(B): Examples
of network activity evolution (blue) and detected events
of strong network activity (red dots).

Proper mathematical definitions were given for elec-
trode activation and activity episode. An activation was
defined, for the MEA data, as an event recorded by a sin-
gle electrode. A set of activations A in a time window At
defined an ‘activity episode’ by quantifying the number
of electrode activations within this time.

The quantity A was then evaluated along a moving
widow to detect episodes of strong activity in a smooth
manner. The size of the window and its moving step was
set for each particular dataset. The ultimate goal was to
detect events in which activity appeared, became strong
and then stopped, which actually indicated a macro-
scopic propagating wave or a burst of activity.

Next, we isolated the spikes within these bursts of high
activity. For that, as illustrated in Fig. 2A-B, we selected
all the time steps at which activity was above half of
the maximum activity and chose the time steps at the
beginning and end of the half peak. Choosing only the
values of activity above half of the maximum ensured
that there were enough activations in every frame for the
toolbox to analyze the data in an adequate amount of
time.

The chosen time steps were then converted onto frames
by taking the frame that contained the first time step

and the frame that contained the last time step plus the
window. The resulting frames contained the beginning
and end of the high activity episodes. Then, all these
strong activity episodes were given as input data to the
NeuroPattToolbox toolbox to extract the spatiotempo-
ral patterns.

C. Preprocessing of calcium imaging data

The data obtained from calcium imaging is a video
in which neuronal firings appear as bright spots on the
images. To transform the video into a matrix, we first
converted the video to grayscale, divided each image into
a 70 x 70 grid of regions of interest (ROIs), and averaged
the brightness of all pixels inside each ROI, repeating for
every frame. We focused only on the square inscribed
inside the circular culture (Fig. 1E-F), since the toolbox
assumes the input matrix to be rectangular.

In the experiments there were light artifacts in the form
of ambient illumination (from the laboratory) and back-
ground fluorescence (from the neurons at rest), which had
to be corrected. We took the intensity over time of a sin-
gle ROI and performed a parabolic regression on it. The
regression was made after removing the peaks in inten-
sity so it would follow only the base brightness that was
independent of the network’s activity. After subtract-
ing the regression to the original intensity, we obtained a
brightness proportional to neuronal activity.

To isolate the bursts of high activity we defined again
activation and activity episode for the calcium data, this
time using the intensity of fluorescence to consider neu-
ronal activations and strong peaks of global activity to
consider bursting episodes. Then, everything was the
same as in the MEA data.

D. Neuropatt Toolbox

This toolbox performs an analysis of the spatiotem-
poral patterns that appear in neuronal networks. For
our analysis, we focused only on the type and number of
patterns that appeared in each investigated culture.

NeuroPatt is able to detect 7 different types of pat-
terns, as described in Fig. 3. The first step in the detec-
tion algorithm is to perform an optical flow estimation
that produces a velocity field, which is then analyzed.
First as a whole to determine the appearance of plane
waves and synchronies, and then through fized point anal-
ysis, i.e., regions in space where the velocity field is zero,
such as sinks, sources, spiral-ins and outs, and saddles.

Given a velocity field w(z,y,t) = (u(z,y,t),v(z,y,t))
with v the x component of the velocity and v the y com-
ponent, a plane wave is detected by introducing param-
eter
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FIG. 3: The different patterns in the NeuroPatt toolbox.

which approaches 1 when all velocity vectors point in the
same direction. For ¢(t) above a threshold ¢r = 0.7,
then a plane wave is considered dominant and accepted.

For the detection of synchronies, the phase 6 of the
intensity I is obtained through the Hilbert transform I+
il = Ae" where I is the transform of the intensity. Then
we define another parameter

1 160 (x
R(t) = N' E vt (6)
zy

where N is the number of ROIs. R(t) approaches 1 as
the phase of every space takes the same value, and when
the value of R(t) surpasses a threshold Ry = 0.7, then
synchrony is considered strong and accepted.

Fixed point analysis is performed by finding the Jaco-
bian matrix of a fixed point as

Qu  du
9z 9
2 ov |- (7)
oz dy

Depending on the trace (1) and determinant (A) of the
matrix, we can characterize the rest of the patterns,
which are: sink (A >0, 72 > 4A, 7 > 0); source (A > 0,
72 > 4A, 7 < 0); spiral-in (A > 0, 72 < 4A, 7 > 0);
spiral-out (A > 0, 72 < 4A, 7 < 0); and saddle (A < 0).
To help validating the results, NeuroPatt provides a
generator of synthetic data to compare the results ob-
tained from real recordings to artificial noisy data with
similar statistical properties. For that, for every ROI, a
time series of white noise with the same mean and stan-
dard deviation of the experimental data is created. Then,
synthetic data is analyzed in the same way as the exper-
imental one, and the obtained results are compared.

IV. RESULTS AND DISCUSSION
A. Experimental and synthetic data

To check whether the results we obtained depended
on the activity of the network or if they were created
by noise, we compared the detected patterns in experi-
mental and synthetic data. We can see in Fig. 4 that,

in general, all patterns had stronger rates of presence in
the experimental data than in the synthetic one, which
suggests that the detected patterns were not just noise
or analysis artifacts. Saddles (SA) and spirals (SP) were
conflicting, and often their presence appeared to be more
relevant in the synthetic data, but spirals were ultimately
used in our analysis since we considered they were rele-
vant. In Fig. 4 we only provided 2 examples of analyzed
data, but this trend persisted in all cultures and DIV.

As Fig. 4 shows, MEA (left) and calcium data (right)
could be properly analyzed, and both detected different
patterns. We found that the cultures grown on MEA
and flat surfaces (left) had stronger differences between
experimental and synthetic data than those placed on
the "Squares’ surface and recorded with calcium (right).
Additionally, as we will show later, there were interesting
differences along DIV.
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FIG. 4: Comparison of the presence of patterns between
experimental (blue) and synthetic (orange) data. (A)
hiPSCs on a flat MEA surface. (B) Rat neurons on a
patterned surface recorded through calcium imaging.

B. Evolution of the number of patterns
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FIG. 5: Percentage of pattern type along DIVs for the
MEA data. Left: rat neurons. Right: hiPSCs neurons.

To analyze the evolution of the activity of the networks
we focused on the number of patterns of each type. For
clarity, we put together sinks and sources into the ‘source’
category, and spiral-ins and outs into the ‘spiral’ cate-
gory. The reason is that these patterns were similar in
form and had similar appearance rates. Then we calcu-
lated the percentage of presence of each pattern.
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FIG. 6: Percentage of pattern type along DIVs for the first (left) and second (right) batches of cultures of calcium
data. (A) % of PW and SY of the first batch. (B) % of SO and SP of the first batch. (C)-(D) Same as (A)-(B) but
for the second batch. The dotted line indicates a flat surface and the continuous line a patterned surface.

Fig. 5 compares the dominant patterns between rat
(left) and human (right) cultures in a MEA system, show-
ing that characteristic patterns appear in their spon-
taneous activity, and that percentage of each pattern
changed was somehow maintained across cell types, but
that clearly changed along DIV, with ‘source’ (SO) be-
coming stronger as compared to ‘spiral’ (SP). This sug-
gests that the biological network changes itself over time,
which brings about changes in connectivity that have a
macroscopic evidence through the activity patterns.

Regarding calcium data on rat cultures, Fig. 6(A)-
(B) shows a first batch comparing substrate type, with
the dominant patterns separated in two panels for clar-
ity. Interestingly, the data shows that the substrate had
an effect, with flat surfaces being dominated by ‘syn-
chronous’ (SY) and ‘planar waves’ (PW), while patterned
substrates being dominated by ‘spiral’ and ‘source’ (SO)
patterns. Thus, substrate patterning affects connectivity
and the overall dynamics of the network. Interestingly,
a second batch of calcium data, shown in Fig. 6(C)-(D),
reveals that results are consistent across realizations, but
that one has to consider, for a strong assessment of domi-
nant patterns, several batches and average over the data.

V. CONCLUSIONS

The present work has demonstrated that optical flow
analysis can be successfully applied to the analysis of
spontaneous activity of neuronal networks, being able to
detect a variety of spatiotemporal patterns in data as dif-
ferent as MEAs and calcium imaging. More importantly,
the results show that the detected patterns change when
the substrate in which neurons grow is altered, or when
the connectivity of the network evolves due to develop-
ment. The latter case is very important, since it indicates
a reorganization of the connectivity of the network that
translates into macroscopic observables, an aspect that
is in general very difficult to explore.
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Resum: Els cultius neuronals sén una manera accessible d’observar i modelitzar el comportament
de xarxes neuronals vives. En aquest estudi, 'activitat espontania observada en aquests cultius és
analitzada amb la finalitat de trobar patrons espaciotemporals en 'activitat espontania, com ara
sincronies o fronts espirals. Neurones humanes i de rata, cultivades en superficies planes o alterades,
han sigut analitzades al llarg de diferents dies in vitro (DIV) utilitzant Neuropatt, una eina creada
amb MATLAB per la deteccié de patrons espaciotemporals en 'activitat neuronal. Aquesta eina,
basada en el ‘flux optic’, revela ’aparicié de patrons en l'activitat de les xarxes i la seva dependeéncia
en els DIV i superficie. Els resultats indiquen que el desenvolupament de la xarxa i les propietats de
la superficie canvien la connectivitat de la xarxa, causant efectes macroscopics com ara els patrons
en 'activitat.

Paraules clau: biofisica, xarxes neuronals, activitat espontania, flux optic, deteccié de patrons.
ODSs: Aquest TFG esta relacionat amb els Objectius de Desenvolupament Sostenible (ODS) 3,419

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reduccié de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles
3. Salut i benestar X[12. Consum i produccié responsables
4. Educacié de qualitat X|13. Acci6 climatica

5. Igualtat de geénere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, justicia i institucions solides
8. Treball digne i creixement economic 17. Alianga pels objectius

9. Industria, innovacid, infraestructures|X

El contingut d’aquest TFG es relaciona amb ’ODS 3, ja que lestudi del comportament de les neurones té beneficis
per la salut com ara ajudar a combatre malalties neurodegeneratives, entre d’altres. També es relaciona amb 1’ODS
4, i en particular amb la fita 4.4, ja que contribueix a ’educacié a nivell universitari. Finalment, sent un treball
d’investigacid, es relaciona amb la fita 9, concreatament la fita 9.5, que busca augmentar la investigacié cientifica.



