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Advisor: Conrado Pérez Vicente, conrad perez@ub.edu

Abstract: This work explores the dynamics of synchronization in a coupled system of oscillators,
focusing on the role of a mobile pacemaker. Global synchronization, under certain conditions, may
emerge when a pacemaker sequentially visits distinct oscillator groups, each with heterogeneous
natural frequencies. This approach is applied to the so-called Bluegrass problem, inspired by the
coordination of musicians with differing tempos. Numerical simulations reveal dependencies on the
pacemaker’s visiting order. Our findings establish that visiting first those communities with higher
synchronization levels is optimal. Considering such ordering, convergence to the global synchronized
state then follows a power law described by geometric progressions.
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I. INTRODUCTION

Collective synchronization is a widespread phe-
nomenon that emerges in many natural and engineered
systems. In a few words, local interactions cause in-
dividual units to lock to a common frequency, despite
their intrinsic distinct rhythms. The first to document
this phenomenon was Christiaan Huygens. He observed
that two of his pendulum clocks, mounted on a com-
mon support, would synchronize their swings over time,
oscillating in opposite directions [1]. Biologic examples
include neurons, exhibiting intrinsic circadian rhythms
[2] which synchronize to an overall average period. Net-
works of pacemakers in the heart self-organize to produce
a heart beat [3][4]. Natural swarms of Photinus caroli-
nus in Southeast Asia, where thousands of fireflies flash
in unison as a mating strategy [5]. In engineered sys-
tems, individual components or subsystems adjust their
internal state to operate in unison through shared sig-
nals. This phenomenon is observed in Josephson junc-
tions, where superconducting currents lock in phase [6],
as well as in power grids, where phase coherence ensures
stable electricity distribution [7].

One of the first to formally tackle this problem was
Arthur T. Winfree [8]. Introducing a mathematical
simplification of the problem, the essence of the prob-
lem is captured in one degree of freedom. Using phase
responses, synchronization emergence was analyzed by
mean-field interactions. His model is:

θ̇i = ωi +

 N∑
j=1

X(θj)

Z(θi) (1)

where θi denotes the phase for the oscillator i and ωi its
natural frequency. Each oscillator j exerts a force mod-
eled by X(θi) and responds with a sensitivity response
function Z(θj). With this, he discovered that by decreas-
ing the spread of the natural frequencies such populations
could exhibit a phase transition from an unordered state
to a partially or completely ordered one.

II. THE KURAMOTO MODEL

Yoshiki Kuramoto [9] worked on collective synchro-
nization and contributed deeply to its analysis and refin-
ing. He began working on it in 1975, providing crucial re-
sults but raising even more questions. He first recognized
that the mean-field treatment was of easier tractability
with a purely sinusoidal, all-to-all interaction of N oscil-
lators. Kuramoto’s model is thus described by

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi), i = 1, .., N (2)

where K ≥ 0 is the coupling strength and ωi is the nat-
ural frequency of the i-th oscillator. The frequencies are
distributed according a probability density g(ω). For
simplicity, g(ω) is assumed to be unimodal and symmet-
ric about its mean frequency.
The factor 1/N ensures the model is well behaved as

N → ∞ since the term
∑N

j=1 scales as N . We will go
back to this later.
From a dynamical perspective, the system’s evolution

is governed by two competing terms with opposing ef-
fects. The intrinsic frequency term ωi promotes inde-
pendent evolution of the oscillators, leading to an un-
synchronized state and thus acts as a disordering force.
In contrast, the interaction term stimulates coherence by
driving the system toward a stable fixed point where all
phases align. The resulting behavior emerges from the
competition between these two forces, chaos and order.

A. Order parameter

The collective rhythm will be studied through the fol-
lowing complex order parameter:

reiΨ =
1

N

N∑
j=1

eiθj (3)
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It is a macroscopic quantity containing the crucial infor-
mation of the internal collective rhythms of the system.
The modulus r(t) measures the phase coherence while
Ψ(t) measures the mean phase. It is highly useful to
visualize each oscillator as a point in the complex cir-
cumference of radius unity. When most of them move
clustered around the same phase, the modulus r ≈ 1 and
Ψ returns the mean phase. On the contrary, when the os-
cillators are scattered and unorganized around the circle,
r ≈ 0.

A system reaching a stable value of the order parame-
ter contains a degree of synchronization if r∞ > 0. In this
context, synchronization refers to phase-locking synchro-
nization, where all oscillators maintain a constant phase
difference and evolve with a common frequency.

Expressing the sine function in the Kuramoto Model
(2) as an imaginary exponential, one can introduce the
complex order parameter in Kuramoto’s equation.

θ̇i = ωi −Kr sin(θi −Ψ), i = 1, .., N (4)

This is the mean-field representation of the Kuramoto
Model. Note how no approximation has yet been
done. The mean-field character is intrinsic to Kuramoto’s
model from the start in (2).

B. Conditions for synchronization

Solutions to equation (4) depend on the size of |ωi| rel-
ative toKr. The oscillators with |ωi| < Kr will approach
a stable fixed point

ωi = Kr sin(θi −Ψ). (5)

where they will be phase-locked to the system.
Kuramoto [9] split the population of oscillators of the

steady state in ”locked” and ”drifting”. Locked oscilla-
tors fulfill condition (5) while drifting ones do not. When
the frequency deviation from the mean is considerably
small, the ordering effect of the interaction succeeds in
phase-locking an oscillator. On the contrary, when the
frequency is highly deviated from that of the frame, the
coupling may not be strong enough and those will drift
away.

Working on the limit for N → ∞, he defined
ρ(θ, t, ω)dθ to be the fraction of oscillators with frequency
ω that lie in the phase θ and θ + dθ in time t.

Using definition (3) for the order parameter, the self-
consistency equation shows to be

r = Kr

∫ π/2

−π/2

cos2θg(Kr sin(θ)dθ. (6)

Equation (6) has a trivial solution r = 0 for any K. A
second branch of solutions continuously bifurcates from
r = 0 at a value K = Kc obtained by letting r → 0+:

Kc =
2

πg(0)
(7)

g(0) is the centre value of the frequency distribution g(ω).
This is Kuramoto’s critical coupling, separating the in-
coherent state from the coherent state.

FIG. 1: Dependence of the steady state order parameter r∞
on the coupling strength K. [10]

III. PACEMAKERS IN THE KURAMOTO
MODEL

In many biologic and engineered systems, synchroniza-
tion arises not only from the interaction of individual
agents themselves, but from an external timing source
known as a pacemaker. In the context of the Kuramoto
model, a pacemaker is an external oscillator with a fixed
frequency that interacts with the group and introduces
external rhythms. An interesting analogy is the Blue-
grass problem. Musicians in peripheral communities,
lacking consistent local experts, overcome this challenge
by creating festivals and jams where they can synchronize
and entrain with visiting master musicians - the pace-
maker. These circulating pacemakers transfer rhythms
and facilitate intergroup entrainment, allowing geograph-
ically distant communities to learn from and eventually
synchronize with each other not through direct interac-
tion, but through the influence of recurring rhythmic par-
ticipation guided by the circulating pacemaker.
It is of big importance to highlight that the natural

frequency of a group is not merely a tempo, it is a way
to encode internal characteristics such as skills and style.
The most skilled agent is the pacemaker! The aim of
this paper is to create the optimal strategy so that all
groups learn as fast as possible from the master. How
can the master optimize its time and teach efficiently?
What should the master expect at each tour? How fast
will the groups learn?
In this approach, we want to scale the pacemaker’s

effect to be that of a whole group. Each group g contains
Ng conventional oscillators. Having l groups, the total

amount of conventional agents is NT =
∑l

g=1 Ng.
All oscillators in group g have an internal rhythm of

ωg. Kuramoto’s equation (2) for the i-th oscillator in
group g connected to the pacemaker is modified in the
following fashion:

θ̇gi = ωg +
1

Ng

Ng+1∑
j=1

Kj sin(θj − θi), i = 1, ..., Ng (8)
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where the interaction term sums over the Ng oscillators
in group g, denoted Gg, plus one pacemaker. Coupling
constant Kj = K for j ∈ Gg and Kj = Kpm for the
interaction with the pacemaker. The pronounced effect of
the pacemaker is encoded in the coupling constant Kpm

scaling as Ng.
By defining Kpm = QNg, the pacemaker induces an

effect comparable that to of the whole group but with
coupling constant Q. On the contrary, the equation of
motion of the pacemaker when connected to Gg is simply:

θ̇pm = ωpm +
K

Ng

∑
j∈Gg

sin(θpm − θi) (9)

Where ωpm is the natural rhythm of the pacemaker. Note
how the interaction is symmetrical only when K = Q.

Once the static parameters are set, the focus of atten-
tion becomes the dynamics of the process. The Blue-
grass problem concerns a master who helps l groups to
synchronize with each other. Information from group 1
must travel to group 2 and vice versa. The driving force
behind global synchronization is the pacemaker, there-
fore it must retain and ”remember” its interaction with
G1 when it moves to G2. In physics, this is what is known
as inertia, an inner drive to continue the former motion
one had. For terms of simplicity, as inertia entails higher
order derivatives, the system is modeled in the following
fashion.

Each interaction results in a changed θ̇ for all oscilla-
tors involved. The natural rhythms ωi change as a cause
of an interaction. Otherwise, once decoupled, the os-
cillators would return to their original dynamics, and no
synchronization would occur. A straightforward choice is
for ωi to be θ̇i right before decoupling. Hence, the pace-
maker visits all l groups, introducing changes in their
rhythms and also conveying information from one to an-
other. The pacemaker encodes the influence of G1 into
its frequency ωpm, which it then communicates to G2.
After visiting all groups, one tour has been completed.

The master then returns to its master group, where it in-
teracts as a conventional oscillator and recovers its orig-
inal frequency. Meanwhile, the frequency shifts induced
in each group persist. At the beginning of each new tour,
this reset can be understood as ωpm returning to its orig-
inal value.

A. Analytical Approach

All analytical derivations presented in this section are
original contributions of this work and have not been
previously reported in the literature.

Motion equations (8) and (9) will provide a theoretical
basis for the local and global interactions. It is assumed
that each group remains internally synchronized while
interacting with the pacemaker, and thus behaves as a
unified entity.

Then, equations (8) and (9) when θi = θj ∀i, j ∈ G
simplify to:{

θ̇i = ωg +Q sin(θpm − θi) i = 1, ..., Ng

θ̇pm = wpm +K sin(θi − θpm)
(10)

1. Local coupling dynamics

This section is concerned with the group-pacemaker
coupling. Group Gg is initialized with random initial
phases ranging from 0 to 2π. With the suitable param-
eters for ωg and K, the group will perfectly synchronize
after some transitory period. When the internal syn-
chronization of the group is achieved, the pacemaker is
coupled. We will explore how the phase and effective
frequency differences from the group to the pacemaker
evolve in time.
The difference variable is introduced as δ = θpm − θi.

Using the previous assumption, δ does not depend on i.
The effective frequency difference from one to another is
described then by δ̇ = θ̇pm − θ̇i. Subtracting equations
(10), we get the equation of motion for group g for the
difference variable.

δ̇g = ∆ωg − (Q+K) sin(δ) (11)

where ∆ωg = ωpm − ωg. Approximating for small dif-
ferences sinδ ≈ δ and solving the differential equation,
the solution is

δg(t) =
∆ωg

Q+K

(
1− e−(Q+K)t

)
+ δ0e

−(Q+K)t (12)

where δ0 is the initial difference. For t → ∞, δ(t) →
∆ω

Q+K . This constant phase difference in the steady state

will be defined as δ∗. Differentiating equation (12), one
obtains

δ̇g(t) = (∆ωg − δ0(Q+K))e−(Q+K)t. (13)

In this case, as t grows large, δ̇(t) → 0. Equations directly
show how the system tends to reach equal frequencies
even if there is a constant phase difference. This result
is in great accordance with the literature [11].
Once it is clear the conventional group + pacemaker

system reaches a global effective frequency, we shall now
be concerned with what this frequency is.

2. Local effective frequency

For the sake of simplicity and applicability of the equa-
tions, this section will concretely refer to the case in
which Q = K ≡ K. Adding equations of motion (10)
and further adding it to equation (13), one can isolate
the evolution of the frequency in time

θ̇i =
wg + wpm

2
+

∆ωg − 2Kδ0
2

e−2Kt, (14)
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concluding that the frequency exponentially relaxes to
the half-sum Ω =

wg+wpm

2 .

The fact that for large t δ̇(t) → 0 implies that in the

steady state θ̇i = θ̇pm ≡ Ω.

3. Conditions for synchronization

As mentioned in section II B, not all parameters lead
to a fully synchronized steady regime. The aim of this
section is to provide a general expression for this condi-
tion. In the same fashion as the previous section, one can
subtract both equations of motion in the steady state.
Rearranging terms, we can see

∆ω = (Q+K) sin(δ∗) ⇒ ∆ω ≤ (Q+K). (15)

The difference in the suitable natural frequencies has an
upper bound dictated by the coupling constants.

It is of great significance that none of the results re-
garding the pacemaker coupling depend on Ng. This fur-
ther confirms our hypothesis in which, when the effect of
the pacemaker escalates as N , the group and the pace-
maker interact one-to-one as the group moves as a unified
oscillator.

B. Strategies

The order in which the pacemaker interacts with the
different groups influences the overall synchronization dy-
namics. Since each interaction modifies the pacemaker’s
state, the sequence of visits impacts the efficiency of the
convergence process. This section is dedicated to explor-
ing how different ordering strategies affect the evolution
toward synchronization.

One possible strategy, referred to as the worst-first
method, consists of visiting first the group with the
largest ∆ωg and proceeding towards those with smaller
discrepancies. On the contrary, the best-first method
starts with the groups closest to synchronization and pro-
ceeds towards the least synchronized ones.

Physical intuition suggests that the best-first strategy
is preferable. By first visiting the most synchronized
groups, the pacemaker’s frequency is preserved closer to
its initial value, thereby constraining the entire system to
remain near the target rhythm. This hypothesis matches
numerical simulations.

The total time required for the pacemaker to visit all
groups is denoted by Ttour, with equal residence time in
each group. To validate the strategy, the simulations are
performed over a range of Ttour values.

The synchronization time is determined based on
a threshold criterion. Synchronization is considered
achieved when the frequencies of all groups differ from
that of the pacemaker by less than a predefined thresh-
old. For the simulations presented, this threshold was set
to 0.0001.

FIG. 2: Synchronization time as a function of the tour time
for two distinct ordering methods. Random ordering at each
iteration has been added.

As evidenced by Figure 2, the best-first scheme gives
faster rhythm locking, with synchronization times consis-
tently shorter than those observed in the worst-first strat-
egy. The rest of all possible orders give results bounded
by the latter two methods.

C. Frequency convergence behavior

Once the proper ordering method has been chosen, we
proceed to study how the system achieves such a syn-
chronized state. For simplicity, further derivations corre-
spond to the case in which both coupling constants are
equal, Q = K. Equation (14) therefore states that the
achieved stationary frequency lies exactly in the midpoint
of the two starting ones. The succession of natural fre-
quencies a group has is represented by wg

n, where n is the
number of tours performed and g represents the group.
The first visited group in the tour updates its frequency

w0
n as predicted by equation (14). When considering the

frequency increment at each step ∆ωn = ωn −ωn−1, one
can find the recursive relation

∆ω0 =
∆ω0

n−1

2
(16)

which is exactly a geometric progression of ratio r =
1/2. The frequency increment as a function of n therefore
follows

∆ω0
n = ∆ω0

0 · 2−n (17)

We proceed to apply an analogous derivation for the
second group visited by the pacemaker, expressing its fre-
quency increment in terms of n. The resulting expression
will differ due to the fact that the pacemaker’s frequency
is no longer constant but evolves with each tour as pre-
dicted by the previous result (17).
The next group to be visited updates its natural fre-

quency as ω1
n as

ω1
n =

ω1
n−1 + ω0

n

2
(18)
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since the pacemaker’s frequency becomes updated to that
achieved by the former group. The evolution of ∆ω0

n

allows for this frequency increment to be solved. After a
series of rearrangements, one can show that

∆ω0
n =

(
∆ω0

0

2
n+∆ω1

0

)
2−n. (19)

This expression maintains a geometric form but incor-
porates an n−dependent correction to the initial value,
resulting in a distinct behaviour. Since the procedure
is analogous to subsequent groups, a detailed derivation
will not be provided.

In order to validate such calculations, a simulation has
been performed.

FIG. 3: Frequency increments for group 0, ω0
0 = 2 and group

1, ω1
0 = 1 in contact with a pacemaker of frequency wpm = 6,

along with the theoretical predictions.

One might ask, what would the convergence behave
like if the time spent in each group is not sufficient for
the steady state to be achieved. The frequency at the
time of decoupling is found by evaluating equation (14)
at t = Tround. Therefore, the geometric progression will
not be of ratio 1/2 but of one depending on the system
parameters ∆ω,K, δ0 and Tround.

IV. CONCLUSIONS

Both analytical and numerical results show conclusions
that can be inferred to the real intergroup entrainment of
the bluegrass musicians. Analytical derivations describe
the exponential approach the group and the pacemaker
have in their respective abilities, with the final state al-
ways lying between the original ones. We can therefore
conclude that the group will not fully learn at a master
level in the first interaction; it will rather need several
visits to adjust to the desired state. Due to the inertia
carried by the master, the order proved to be of impor-
tance when optimizing global synchronization. The best
and worst orders were found and described, thus bound-
ing the overall efficiency. The master must start with the
best groups, and sequentially move into the worse ones,
thus maximizing its mastery throughout the tour.

Each group approaches the final rhythm following a
power-law, precisely a geometric-like progression with a
ratio dependent on the system parameters and the group
considered. Finally, numerical results prove the internal
coherence of each group when playing in front of the mas-
ter, highlighting how each peripheral community main-
tains its inner alignment.

Acknowledgments

I want to thank my advisor Conrad Pérez for trans-
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Resum: Aquest treball explora la dinàmica de sincronització en un sistema d’oscil·ladors acoblats,
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Bluegrass
ODSs: Educació de qualitat
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