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A sovereign bond market offers a wide range of opportunities for public 
and private sector financing and has drawn the interest of both scholars and 
professionals as they are the main instrument of most fixed-income asset 
markets. Numerous works have studied the behavior of sovereign bonds at 
the microeconomic level, given that a domestic securities market can enhance 
overall financial stability and improve financial market intermediation. 
Nevertheless, they do not deepen methods that identify liquidity risks in bond 
markets. This study introduces a new model for predicting unexpected 
situations of speculative attacks in the government bond market, applying 
methods of deep learning neural networks, which proactively identify and 
quantify financial market risks. Our approach has a strong impact in 
anticipating possible speculative actions against the sovereign bond market 
and liquidity risks, so the aspect of the potential effect on the systemic risk is of 
high importance.
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electronic, quote-driven interbank market comprising multiple trading platforms. All MTS 
platforms use identical technology for trading; however, every platform maintains its 
rules set, market participants (Biais and Green, 2019; Friewald and Nagler, 2019). Fixed 
income securities are commonly traded over-the-counter (OTC), on inter-dealer wholesale 
platforms, and, less frequently, on retail platforms where liquidity is provided by pre-
purchased dealers. Transactions are not anonymous and are bilateral; therefore, the 
conditions of negotiation are determined by search and trading frictions, in the absence of a 
focal point, dealers have to proactively seek out and negotiate with possible counterparties 
to get the “best” offer (Darbha and Dufour, 2013; Neklyudov, 2019; Glode and Opp, 2020). 
OTC markets draw significant volumes of trading despite the fragmentation that does not 
exist in the centralized limit order markets. However, given the significance of OTC in 
world financial marketplaces, the OTC market microstructure remains poorly known, due 
to both the scarcity of empirical data and the complexity of this diffuse and nontransparent 
dealing system (Back et al., 2019; Issa and Jarnecic, 2019).

The numerous serious incidents of financial turbulence that have affected the world 
economy over the last 10 years have given rise to growing demands for stronger and closer 
involvement of governments in the financial market pricing procedure (Pasquariello et al., 
2020). A well-functioning and effective public debt market is, therefore, generally per-
ceived to be relevant for the proper working of financial systems in general (Pholphirul, 
2009; Bai et al., 2013; International Monetary Fund, 2021). On the microeconomic policy 
level, the expansion of a national capital market can enhance financial stability overall and 
contribute to better financial intermediation by increasing competition and developing 
related financial infrastructure, services and products (Bessembinder et al., 2020; Yurastika 
and Wibowo, 2021). According to Darbha and Dufour (2013), the main research areas 
of microstructure are liquidity, the formation of prices, trading costs and the impact of 
regulatory changes on the behavior of operators. They conclude that the costs of requiring 
prompt execution of transactions in fixed income markets, and the impact of trades on 
prices, can provide information to decision-makers on the effect of policy actions on the 
weakness of credit systems. These costs are a function of the volatility of yields, the arrival 
rates of customers and the likelihood of information distortions against intermediaries that 
provide liquidity (Piesse et al., 2007; Ehrmann and Fratzscher, 2017).

Although government bonds are often viewed by market participants as safe and liquid 
assets, Pelizzon et al. (2013) showed that the state debt securities proved not to be 
insensitive to the cash crunch. When market participants required liquidity, they started 
to sell off any of their most highly liquid assets, spreading the liquidity crisis even to 
government bonds. Therefore, governments should develop tools for liquidity risk man-
agement and apply them to fixed income markets (Fleming et al., 2018; Benos et al., 2019; 
Schlepper et al., 2020; Pasquariello et al., 2020). They investigate the impact of non-
informative operations by central bankers on the government bond markets’ liquidity in a 
context of both informed and policy speculation. They conclude that higher levels of 
uncertainty aggravate equilibrium market liquidity because they make private information 
of speculators more high-value and the attendant more stringent negative screening risk for

1. Introduction

Government bonds are the main instrument of most fixed income asset markets, for de-
veloped and developing economies alike. They supply a yield curve benchmark and help
set the global credit curve across countries. In the United States, the main data source
for public securities trading activity is GovPX and MTS for Europe. The MTS is a fully



market-makers. They, therefore, proposed as future research a government bond model that
considers the incidence of market manipulation by speculators.

On the other hand, speculative attacks cause major disruptions in the government bond
market, playing a major factor in sparking shifts in the market’s microstructure (Biais and
Green, 2019). Speculative attack models were successfully implemented in a diverse
variety of crises. Fujimoto (2014) concluded that although his research has focused on the
currency crisis scenario, its wider implications span a broader framework and that future
research requires a different approach to other markets. Some authors have investigated
price speculation in the government bond market (Carfì and Lanzafame, 2013; Della Posta,
2016, 2021). According to Della Posta (2016), speculators assess the condition of the debt
to determine if a selling attack on it is beneficial or not, while borrowers evaluate the
benefits and costs of abandoning the initial commitment to repay their debt. Della Posta
(2021) showed that the primary surplus that must be achieved to ensure government debt is
stable and can be constrained by a higher limit of viability, thus establishing a higher limit
on the rate of interest that ensures the stability of government debt as well. It is the absence
of a credible upper limit that is behind the speculative assault on sovereign debt.
Hence, financial organizations and policy makers need to understand how the bond market
works to formulate the regulation in this system and estimate potential systemic risks. If
speculative financial market conduct is concentrated on sovereign government debt, it is
up to the government to make the best decision, i.e., whether to default on government
debt, considering the benefits and expenses of default and what kind of economic policy to
adopt to reduce the probability of a speculative attack (Della Posta, 2016). The increasing
difficulty of economic decisions, particularly in financial markets, means that new meth-
odologies are needed to estimate speculative attack models with greater precision and to
prevent liquidity risks, as these models have almost always been estimated using statistical
techniques (Benchimol and Fourçans, 2017).

To fill this gap and given the importance of the incidence of market manipulation by
speculators, this research builds different machine learning techniques for predicting
speculative attacks in the fixed income asset markets, specifically with government bonds.
For this purpose, we have analyzed data for the two countries, Greece and Thailand, both
of which have struggled in recent decades with the problems of the Greek sovereign debt
crisis and the yield volatility in the Thai bond market, having an impact on liquidity, and
being subject both countries to attacks by numerous players in the state securities market.
The method used is that of Deep Neural Networks, specifically Convolutional Neural
Network (CNN), Recurrent Convolutional Neural Network (RCNN) and Long Short-Term
Memory (LSTM) verifying that it may be the best methodology to detect and predict this
type of unexpected situations, offering greater robustness in their results. The models that
have been built using this methodology are as follows: liquidity measure coupon, liquidity
measure CDS, time-weighted bid-ask spread (TWBAS), volatility, large versus small
players and arbitrage no feasibility equation. Deep Neural Networks methods have been
extensively employed in a variety of computational problems (predicting energy prices,
processing of data and macro/micro tendency analysis, forecasting of demand, adminis-
tration of risks, negotiation skills) that generally face the difficulty known as the curse of



dimensionality. Therefore, the remarkably superior results obtained using the reported 
methods suggest that they can be effectively implemented in such difficult computational 
problems (Inglada-Pérez, 2010). As market turmoil and uncertainty in financial markets 
have increased considerably, machine learning algorithms are quite applicable for the 
analysis of financial markets and, in particular, the sovereign bond market. Financial 
disorder emerges if financial circuits are susceptible to early state conditions and produce 
unpredictable long-term effective behavior, driven by natural events and spillover factors, 
such as speculative attacks (Horváth et al., 2006; Klioutchnikov et al., 2017). The mar-
ketplace is very complicated, and the only forecast that can be made is its unpredictability. 
The financial market’s unforeseeability is caused by the uncertainty of many episodes that 
occur in it. Deep Neural Networks draw knowledge from the data, which can then be 
utilized to forecast and produce further data. This feedback decreases unreliability by 
indicating specific problem-solving. Machine learning is especially useful for handling 
problems where an analytical solution is not explicitly instructed to do so, such as complete 
categorization techniques or recognition of trends (Ghoddusi et al., 2019). Therefore, our 
new model, developed using machine learning techniques, will be useful in detecting and 
forecasting the speculative reaction of financial markets on public debt.

The contribution of our study is that we have obtained high levels of accuracy in our 
models, thanks to new estimation techniques we have considered, achieving high perfor-
mance and precision. The benefit of Deep Neural Network methods over those offered by 
classical statisticians and econometricians is that machine learning algorithms can handle a 
huge quantity of organized and nonstructured information and provide quick predictions or 
conclusions (Ghoddusi et al., 2019), improving the real market detention of scenarios of 
speculative attacks. Therefore, our method is a powerful way to explain and predict the 
behavior of financial markets, being able to detect trends that are at the root of the 
uncertainty, solidity or disorderly chaos of a financial system (Klioutchnikov et al., 2017). 
Therefore, our model provides a complex quantum study, being a reliable solution to 
contemplate the uncertainty and complexity of the financial system, the aim being to 
simulate speculative attack models to provide more information about the possible events 
that may occur in the state securities market.

This paper is arranged as follows. In Section 2, the methodology is described. Section 3 
details the estimation methods. Section 4 shows all data used for the study. Section 5 
points out the results and findings obtained. Section 6 concludes.

2. Methodology

2.1. Speculative attacks’ model

Since the success of the attack is decided in period 2, we first consider the small players’ 
actions from period 1 and then consider the big player’s decision whether or not to start an 
early attack. A possible delayed strike by the big investor would be the rest of his L-credit 
following any speculation advanced on.

According to Corsetti et al. (2004), we will suppose that the small players play an 
activation strategy where agents assail the coin if the symbol drops under a certain value x�.



Like in this approach the equilibrium unique to the model is defined by two crucial
variables: x� and a fundamental minus crucial parameter for early speculation by the big
investor, ðθ � λÞ. If θ � λ• ðθ � λÞ�, the coin would collapse.

We first discuss the equilibrium of the given activation strategies; we, therefore,
examine the optimal strategies for activation. Certainly, if the approach is activated,
a minor agent i would attempt to raid the coin if his signal xi• x�. The likelihood of
occurrence depends on the true economic situation, θ � λ, described as follows:

prob½xi • x�jθ � λ� ¼ prob½θ � λþ �"i• x�� ¼ prob "i • x� � ðθ � λÞ
�

� �

¼F
x� � ðθ � λÞ

�

� �
: ð1Þ

Because there is a small-agent continuum, and their noise conditions are separate, a joint
confusion about the conduct of little actors is absent. Therefore, the density of attacking
minor agents, �, is the same as this probability. Since Fð:Þ is tightly rising, the impact of the
conjectural attack is narrowly declining in θ � λ; the weaker the big investor’s early
speculation, the further little agents will strike.

A successful speculative attack would occur if the aggregate of minor speculative actors
outweighs the power of the economic fundamentals, minus the speculation early on by the
big actor, i.e., if

F
x� � ðθ � λÞ

�

� �
‚ θ � λ: ð2Þ

Hence, the crucial variable ðθ � λÞ�, for the set of minor actors attacking is enough to
provoke a devaluation, as follows:

F
x� � ðθ � λÞ�

�

� �
¼ ðθ � λÞ�: ð3Þ

For smaller amounts, in which θ � λ• ðθ � λÞ�, the impact of speculation is higher, and
the force of the exchange rate fixed smaller, which implies that aggression has more
success. Consequently, for greater parameters, where θ � λ > ðθ � λÞ�, the occurrence of
speculation is shorter and the fixed exchange rate force higher, meaning that an assault
would not have success.

We obtain the activation-optimal approaches of the minor actors. An investor notices a
signal xi and, for this signal, the likelihood of a successful offense is denoted by

prob½θ � λ• ðθ � λÞ�jxi� ¼ prob½xi � �"i • ðθ � λÞ�� ¼ prob "i‚ xi � ðθ � λÞ�
�

� �

¼ 1� F
xi � ðθ � λÞ�

�

� �
¼ F

ðθ � λÞ� � xi
�

� �
, ð4Þ



ð1� tÞF ðθ � λÞ� � xi
�

� �
� t 1� F

ðθ � λÞ� � xi
�

� �� �
¼ F

ðθ � λÞ� � xi
�

� �
� t: ð5Þ

In an activation optimal strategy, the reward anticipated of the coin attack for the
marginal player has to be equal to 0, the best cut x� in the activation, the approach is
provided by

F
ðθ � λÞ� � x�

�

� �
¼ t: ð6Þ

To resolve the balance, we redesign (6) to get ðθ � λÞ� ¼ x� þ �F�1ðtÞ. Replacing
into (3), we obtain

ðθ � λÞ� ¼ F
x� � ðx� þ �F�1ðtÞÞ

�

� �
, or

ðθ � λÞ� ¼ Fð�F�1ðtÞÞ ¼ 1� Fð�F�1ðtÞÞ ¼ 1� t:

ð7Þ

So, these parameters are

ðθ � λÞ� ¼ 1� t and ð8aÞ
x� ¼ 1� t � �F�1ðtÞ: ð8bÞ

These parameters match with the only novelty being the early speculation of the major
agent λ.

Next, we take into account the big player’s decision whether or not to speculate in
period 1, and, if so, to what extent. There is no incertitude in the small players’ combined
behavior, hence the large player can perfectly predict its speculation, save for the noise of
its sign. From (8), there will be a devaluation if the essential θ• θ�≡1� t þ λ.

The likelihood of aggression being successful can be expressed as

prob½θ• 1� t þ λjy� ¼ prob½y� �η• 1� t þ λjy� ¼ prob
y� λ� ð1� tÞ

�
• ηjy

� �

¼G
1� t þ λ� y

�

� �
, ð9Þ

where we once again employ the distribution symmetry. If the attack is successful, the
major investor also wishes to build up speculation in the next period, so that the total
amount of speculation is L. But we have the risk, which occurs with quantity q, that
speculation in the next period is much excessively delayed, hence the big investor benefits
only from his speculating early λ. The payoff desired to attack in quantity λ‚ 0 in an early
phase is, therefore,

E� ¼ G
1� t þ λ� y

�

� �
ðLð1� qÞ þ λqÞ � tλ: ð10Þ

where the last equation is derived from f ð:Þ, FðνÞ ¼  1 � Fð�νÞ. The reward requested
from hitting the coin for agent i, by speculation value, is therefore



The first requirement for an indoor explanation λ� is

∂E�
∂λ

¼ g
1� t þ λ� � y

�

� �
1
�
ðLð1� qÞ þ λ�qÞ þ G

1� t þ λ� � y

�

� �
q� t ¼ 0: ð11Þ

Since E� is a function uninterrupted of λ, which is fixed on the closed interval ½0,L�, we
assume the existence of an early optimum quantity of speculation λ, which maximizes the
profit expectation. Yet, the optimum λ is neither single nor internal. Indeed, if speculation
charges, t, are low, the efficient speculation soon is the same as the L credit constraint.
Rule 1. Requirements for speculation at an early stage by major investors:

There is a value critical to the charges of early speculation t > 0 as if 0 < t < t , for
certain values of the other parameters, indicating that the efficient early speculation is the
higher restriction, λ ¼ L. For some variables of other indicators, there is a score to the
charges of speculation �t > 0 as if t > �t , this means that the efficient early speculation
becomes 0, λ ¼ 0.

So, if speculation is very low, as speculation encourages minor agents to assault, it is the
more lucrative option. Since the major actor is a neutral risk, then he will hypothesize up to
his boundary L. But, if speculation is costly enough, it would at no time be worth spec-
ulating at an early stage.

The second condition if the solution is internal is

∂2E�

∂2λ
¼ g 0 1� t þ λ� � y

�

� �
1
� 2

ðLð1� qÞ þ λ�qÞ þ 2g
1� t þ λ� � y

�

� �
q

�
< 0: ð12Þ

The second term of (12) is a positive term, which implies that the first terminus should
be contradictory, for example, that g 0ð:Þ < 0 in an internal solution. To investigate the
impact of rising costs of speculation t on the efficient speculation, note that (11) could be
denoted by Hðλ, tÞ ¼ 0, which implies the definition of the efficient speculation λ� to be a
function of costs of speculation. Deferring about t, we get H1

dλ�
dt þ H2 ¼ 0, or

dλ�=dt ¼ �H2=H1, where H2≡
∂2E�
∂λ∂t and H1≡

∂2E�
∂2λ < 0 from the second requirement. It

deduces, thus, that the sign of dλ�
dt is the same as the sign of H2≡

∂ 2E�
∂λ∂t . We distinguish the

first-order condition (11) about t, leading to

∂2E�

∂λ∂t
¼ �g 0 1� t þ λ� � y

�

� �
1
� 2

ðLð1� qÞ þ λ�qÞ � g
1� t þ λ� � y

�

� �
q

�
� 1: ð13Þ

A rise in speculation charges t concerns efficient early speculation through the three terms
in (13), with the second and third terms being refusal. The reduction in speculation by
minor investors due to upper charges of speculation is reflected in the second term. This
decreases the success likelihood of the assault, and thus decreases the estimated return on
the early speculation. The third variable incorporates the impact of greater speculation
rates, making speculation more costly, and driving less speculation early on.

For the very first term, though, it assumes that it is affirmative, since g 0ð:Þ < 0. As
greater speculation costs decrease speculation by minor agents, the projected impact
of greater early speculation by the major player on the probability of success rises.



Gð � þ �
� ÞðLjð1� qÞ þ λjqÞ � tcðλjÞ where λ ¼ P

jλj, and Lj is player j’s credit limit. It
follows from the above pattern arguments that a Nash equilibrium exists in combined
approaches to the speculation by major agents, but unanimity is not assured. However,
similar results to Rule 1 can be deduced, which implies that if costs are not above a critical
value, there will be no speculation. The first requirement for efficient indoor speculation λ�j
of agent j is

∂E�
∂λj

¼ g
1� t þ λ� � y

�

� �
1
�
ðLjð1� qÞ þ λ�j qÞ þ G

1� t þ λ� � y

�

� �
q� tc 0ðλ�j Þ ¼ 0:

ð14Þ
In an equilibrium interior in pure strategies, all major traders would soon speculate in the
quantity shown by (14).

2.2. The state bond interest rate and its higher ceiling

2.2.1. The interest rate on state bonds

A variant of the interest rate differential to government bonds in a linearized form is given
in the following equation:

it ¼ �r þ RPt, ð15Þ
where

RPt ¼ αbt þ β
EðditÞ
dt

, ð16Þ

so that

it ¼ �r þ αbt þ β
EðditÞ
dt

: ð17Þ

Equation (15) states that the interest rate, it, could be considered to be given by a risk-free
benchmark interest rate, �r and by a risk prime, RPt. The latter relies on two factors
recognized in the relevant studies, as shown in (16). The first is the ratio of government
debt to GDP, because the larger bt is, the lower the estimated negative shocks to the

The phenomenon encourages the big trader to expand early speculation. Indeed, it is not 
excluded that this mechanism may dominate for some range of t, which implies that an 
increment in speculation charges can induce an increase in speculation by the large trader. 

The model might be changed to accept N > 1 major traders as described below. First, 
for tractability reasons, it will disregard information imbalances between the large inves-
tors, under the assumption that all of them are observing the identical signal y. These are 
companies that devote a significant number of funds to the market and have available 
similar information feeds, so can be a reasonable approximation neglecting information 
asymmetries. Next, it presumes that the prices of speculation fundings are convex,
implying that the charges of speculation λj for agent j is tcðλjÞ, for which cð:Þ is convex
and

1 t λ

strongly
y 

positive. The estimated profit from the speculation of player j will be E�j ¼



economy are likely to be (Corsetti et al., 2014). The parameter α measures the interest rate
sensitivity concerning bt. On the other hand, the second part has characteristics of self-
fulfillment. The smaller the projected acceptability of government debt, the larger the
anticipated interest rate change in the future, which one after another impacts the present
interest rate’ domain with a value assigned by the value of the setting β.

2.2.2. The higher interest rate ceiling of the government bond yields

Government and central bank, which are both operating via the instrument under their
control, �r, and using the possible monetization of public debt must comply with a higher
level of nominal yields on government debt to ensure the sustainability of public bonds.

The interest rate also has a minimum value, which can be regarded as the zero lower
bound (though central banks have proven that it is possible to go even below it). The value
assumed by it, may then be labeled, as shown in the following way:

it ¼ �i� if it ‚�i�,

it ¼ ~it if i � < it < �i�,
it ¼ i � if it < i �,

ð18Þ

where �i�, i �, ~it and it denote, simultaneously, the higher and lower limits for the interest
rate, the rate of interest that could be achieved if it moves inside the announced ranges and
the interest rate that remains in the event of noncommitment, where �i� is a simplicity value
fixed by the public debt adequacy equation, as explained next.

The typical government debt developments, i.e., the changes in government debt over
time about GDP, dbt, when central government unanimity is not allowed — as is the euro
zone — is given as follows:

dbt ¼ ftdt � mtdt þ ðit � gtÞbtdt þ �dz: ð19Þ
The factor ft is the ratio of the primary government deficit to GDP (i.e., et � tt, where et is
government fiscal spending relative to GDP and tt are public revenues about GDP) and mt

is the rate of monetization of government debt (Tamborini, 2015). The expression ðit �
gtÞbt is the debt service as a share of GDP. The component stochastic of the growth of state
debt relative to GDP is assumed to pursue a Brownian cycle �dz. The character � stands for
the standard deviation of the Brownian cycle and dz is the variation of the Brownian
movement, defined as follows:

dz ¼ χ
ffiffiffiffi
dt

p
, ð20Þ

where χ is a probability variable that is normally, separately and equally dispersed, with
average 0 and variance is 1, and dt is infinity time-varying variation.

Setting dbt ¼ 0 in (19), and supposing that mt ¼ 0, it results that the long-term primary
surplus/deficit must provide for the long-run service on the debt:

f � ¼ ðg� � i�Þ�b, ð21Þ
referring the symbol � to long-term securities.



If i� > g�, for ðg� � i�Þ < 0, it implies that f � < 0, the state requires a surplus on the
budgetary position s� ¼ �f � to balance public debt.

Therefore, reordering (21), gets the following:

i� ¼ g� þ s�
�b
, ð22Þ

where i� denotes the long-term interest rate which ensures a ratio of government debt to
GDP, �b, for a specified long-term main excess, s� and a long-term rate of GDP increase, g�.

The primary surplus a government could implement is not limitless (Tamborini, 2015).
It is measured by applying a comparison of the solvency cost (related positively to s�) and
the cost of nonpayment (linked negatively to s�), in such a way that it is defined at the
moment when the two are equal. The maximum achievable long-run primary surplus of
the government is denoted by s�. This highest possible feasible �s �, in fact, sets �i�, that is
the highest long-term interest rate that a government can allow to spend on its sovereign
debt to guarantee its viability. For the sustainability of government debt to be viable, it
implies that s� • �s �, which means that i� •�i�.

Thus, the i� that the government (which has to cope with �s �) may plausibly argue for is
given by

�i� ¼ g� þ �s �
�b

: ð220Þ

Whereas (15) and (22 0) mean

RP � ¼ g� þ �s �
�b

� �r �, ð2200Þ

where RP � captures the largest risk premium that a government can bear for a certain �s �,
�r �, g�to maintain �b at its constant value of the country. The variable �r � is the smallest level
of the central bank’s choice of long-term interest rate and still guarantees the solidity of
government debt.

Remember, though, that so far we have supposed that mt ¼ 0, an assumption that means
that there is no creditor of the final instance. If the central bank is in a position to pay off
government debt, in the context of stochastic crises, a monetary debt smoothing mecha-
nism would open up, combined with that generated by the fiscal authority’s primary
surplus, as we will examine in the following discussions.

2.3. The interest rate objective framework

Government settles sovereign debt in the stationary condition for a certain maximal achievable
value of �s �, g� and �i�, as discussed above. However, this levelling off does not exclude other
changes in sovereign debt. This implies that sovereign debt as a percentage of GDP could
continue to get up, given the stochastic shock process to which it may be exposed:

dbt ¼ �dz: ð23Þ



The implication of this is that public debt may continue to rise beyond its stationary status
value and this could raise the risk prime over the amount that the public government could
bear to ensure the creditworthiness of the public debt.

This is because there is no more scope for defending the government’s debt stability,
i.e., neither additional government primary surpluses are achievable, nor is the central bank
able or prepared to ensure the rise in the interest rate than �i�: such is the scenario if s� > �s �

If on the other hand the government is required to supply the primary surplus
(achievable), needed to ensure the government’s debt stability and/or if the central bank
responds by purchasing government debt to sustain the price of bonds with its demand,
such that mt > 0, the interest rate may easily stay inside the belt ~it < �i�. The interest rate
could, therefore, settle, and this would lead to a “honeymoon” as described by Krugman
(1991).

In summary, this public debt model is made up of the next two equations, mentioned
before:

it ¼ �r þ αbt þ β
EðditÞ
dt

: ð230Þ

dbt ¼ �dz ð2300Þ
This system is quite reminiscent of Krugman’s (1991) original target area model, further
modified by Bertola and Caballero (1992).

To resolve (23 00) and (23), we use the literature on target areas assembling a general
form for ~it, with bt as a function. Noting (23 00), we may consider ~it as a function of the
debt/GDP ratio

~it ¼ qðbtÞ: ð24Þ
We may apply this equation to compute the assumed change in the interest rate. To do this,
we extend this equation in a Taylor-type series, estimating Ito’s spread:

d~it ¼ q 0ðbtÞEðdbtÞ þ
1
2
q 00ðbtÞEðdbtÞ2: ð25Þ

According to the definition of dbt in (23), it follows that ðdbtÞ2 ¼ �2χ 2dt. Taking the
predicted values and dividing by the time variation infinitesimal, we get Ito’s lemma:

Eðd~itÞ
dt

¼ 1
2
q 00ðbtÞ�2, ð26Þ

since EðdbtÞ
dt ¼ 0 and EðdbtÞ2

dt ¼ �2. Substituting (26) into (19 0), we get

~it ¼ qðbtÞ ¼ �r þ αbt þ β
1
2
q 00ðbtÞ�2: ð27Þ

This is a second-order differential equation, for which the generic form of the solution is as
follows:

~it ¼ qðbtÞ ¼ �r þ αbt þ A1e
λ1bt þ A2e

λ2bt : ð28Þ



ð29Þ

~it ¼ qðbtÞ ¼ �r þ αbt þ β
�2

2
ðλ21A1e

λ1bt þ λ22A2e
λ2btÞ: ð30Þ

Matching (30) with (28), we get

A1eλ1bt þ A2eλ2bt ¼ β
�2

2
ðλ21A1e

λ1bt þ λ22A2e
λ2btÞ,

A1eλ1bt λ21β
�2

2
� 1

� �
þ A2eλ2bt λ22β

�2

2
� 1

� �
¼ 0,

A1eλ1bt λ21β
�2

2
� 1

� �
¼ 0, and A2eλ2bt λ22β

�2

2
� 1

� �
¼ 0:

ð31Þ

We can now obtain λ1 and λ2 by resolving the next two equations:

λ21β
�2

2
� 1

� �
¼ 0 and λ22β

�2

2
� 1

� �
¼ 0:

As a solution, we get

λ1, 2 ¼ �
ffiffiffiffiffiffiffiffi
2

β�2

s
: ð32Þ

This implies that we obtain two complimentary solutions that fulfil the second-order

differential equation: ~i c1t ¼ A1eλ1bt and ~i
c2
t ¼ A2eλ2bt .

We sum them to derive the general solution, with λ1 and λ2 described as high-up:

~it ¼ qðbtÞ ¼ �r þ αbt þ A1e
λ1bt þ A2e

λ2bt :

Ignoring the bottom (implicit) band, thus excluding the A2 coefficient (the convenience of
this supposition, which is not required and is only used to concentrate on the upper
boundary behavior, could be further corroborated because the zero lower limits no longer
appears to be mandatory, as national central banks are now even targeting negative interest
rates). Define, then, the fixed value A1.

The expectation that the present rate of interest, ~it, will not be able to surpass the level
�i�, is driven by the anticipation that ~it will be lowered by a decrease in bt, which is made
possible by a larger primary surplus and/or via a decrease in public debt held by the private
sector due to stronger demand from the central bank. Thus, when ~it catches up to �i�, the
first is unlikely to be exceeded by it, so it will stay within the band, regardless of if bt is
rising or falling: this is only possible if there is a tangency order.

Thus, we apply the condition of “soft sticking” to the above equation:

d~it
dbt

¼ αþ λ1A1e
λ1bt ¼ 0: ð33Þ

Consider the second-order derivative of (28) to get a score corresponding to
q 00ðbtÞ ¼ λ21A1e

λ1 bt þ λ22A2e
λ2 bt :

So, substituting it into (27), we get



It can be seen from this that

A1 ¼
�αe�λ1bt

λ1
< 0: ð34Þ

Then, we get

~iT ¼ �r þ α�b � α
λ1

: ð35Þ

It also happens to

bT ¼ �b þ 1
λ1

, ð36Þ

where �b ¼ �i ���r �
α is the ratio of government debt to GDP resulting when the interest rate

attains �i� in its straight course, not suffering from the enforcement of the top end of
the range. Taking that at time T , ~iT •�i�, substituting (32) into (36) (always with A2 ¼ 0)
we get

bT ¼ �b þ 1
λ1

¼ �b þ
ffiffiffiffiffiffiffiffi
β�2

2

r
: ð37Þ

The discrepancy between bT and �b, denoted by 1
λ1
¼

ffiffiffiffiffiffi
β�2

2

q
, stands for what Krugman called

the “honeymoon effect” and indicates by exactly how much it is likely to raise the

sovereign debt to GDP ratio by holding ~iT •�i�.
What is suggested by the “soft sticking” condition is that the closer~it to �i�, the more the

main excess is supposed to rise, to ensure the supportability of sovereign debt (until it
attains its maximum practicability restriction), and/or the more the central bank is likely to
intercede by issuing government bonds, thus raising their price and lowering the interest
rate below or at the limit of �i� Any raise in government debt due to stochastic shocks is
thus expected to be offset by a higher surplus of government debt or by intervention by the
central bank.

Nevertheless, the reverse result would be the case if there is an expected insufficient
fiscal consolidation, as proposed by Tamborini (2015). In the euro zone crisis, Tamborini
(2015) observed that in certain economies with increasing government debt, the primary
surplus needed for a stable economy was nearing its upper limit of viability, at which no
further stabilization was expected. The closer it approached �s �, the less confidence there
was in stabilization of sovereign debt and the more probable was the speculative attack,
without a central bank to assume the lender of final instance role.

When~it reaches the interest rate level, �i� the first is permitted to rise over the second. As
a reminder, this interest rate level is fixed to the upper limit of the main excess that the
government can hold, fulfilling the stability of government debt. So, the upper the interest
rate rises toward the end of the band, the greater the probability of reaching it.

It can be presumed that the ratio of government debt to GDP ranges between 0 and the
maximum level of government debt (�b), resulting by the most practicable interest rate that
ensures the solidity of the government debt (�i�).



It follows that the arbitrage equation is shown:

p~it �b þ δ
2
, �b þ δ

2

� �
þ ð1� pÞ~it �b � �

2
, �b � �

2

� �
¼ ~it �b,

�b

2

� �
, ð38Þ

where in the formula ~itðxyÞ, x denotes the actual value assumed by the fundamental, and y
relates to the value given by the fundamental at the center of the band (Bertola and
Caballero, 1992). Continuing with this by looking at a symmetric oscillation-band which is
centered at point c and which implies that A1 ¼ �A2 and λ1 ¼ �λ2, the optimal control
variable solution is

~it ¼ qðbt, cÞ ¼ �r þ αbt þ Ae�λðbt�cÞ � Aeλðbt�cÞ: ð39Þ
Consider, therefore, only one band, as in the example of “soft sticking”:

~itðbt, cÞ ¼ �r þ αbt þ Aeλðbt�cÞ: ð40Þ
We get

p �r þ α �b þ δ
2

� �
þ A

� �
þ ð1� pÞ �r þ α �b � �

2

� �
þ A

h i
¼ �r þ α�b þ Ae

�λb
2 , ð41Þ

it follows that

A ¼ pα δþ"
2

	 
� α "
2

� �
e

�λb
2 � 1

: ð42Þ

This also signifies that A‚ 0 when ½pðδþ"
2 Þ � "

2�‚ 0, when

p‚ "

δþ "
, ð43Þ

corresponding to the Bertola and Caballero (1992) case for δ ¼ " ¼ �b. The insight behind
this “divorce” outcome is fairly uncomplicated. The more government debt is assumed to
raise as a result of stochastic shocks (the higher the δ), the smaller the p necessary for the
interest rate to rise as a consequence of speculation. This, in time, relies on the missing
expected resources to stabilize government debt, i.e., the absence of the ability to obtain the

When the interest rate achieves its higher limit, i��, given the corresponding maximum 
level that government debt can achieve to be stable, �b, its value has to be the same as the 
expected value that results from the probability weights expected from the two different 
scenarios that can be expected to happen. A probability p exists that both governments do
not have sufficient resources to prevent bt from rising beyond �b, nor to prevent the interest 
rate from then exceeding its stable limit. This means that government debt can be permitted 
to overshoot its objective, and the interest rate will leap correspondingly.

The additional likelihood ð1 � pÞ also exists, and that government debt does not rise,
holding it at or below �b. The setting of the main excess at the margin could be such that its
buoyancy band down by �. Then, in this scenario, the government debt-to-GDP ratio will
return to the center of a new way, �b � �=2, which lies intermediate from �b � � and �b.



main excess and/or the nonexistence of a central bank as a creditor of final instance.
Certainly, the reverse is true for ".

2.4. Time-weighted bid-ask spread model

The bid-ask spread, the liquidity measure most commonly used, is the distinction between
the best bid and best offer published by liquidity providers. In applying the bid-ask spread,
researchers compare spreads between securities using the proportional or relative differ-
ential, i.e., the bid-offer margin split by the middle point of the bid-offer quotations. Market
makers mitigate transaction costs that emerge due to the risk of adverse selection, inventory
handling, competition and order processing through quoting wide bid-ask spreads. Fleming
(2003) examined various approaches to measure liquidity in the US Treasury market and
determines that the bid-ask spread is the best indicator of liquidity. Beber et al. (2009)
similarly employed the bid-ask spread as one of the cash measurements to investigate the
effect of liquidity versus credit quality on sovereign yield differentials in the euro zone.
Bid-ask spreads are generally good predictors of the execution cost of small trades, as large
trades are often filled at lower prices or through negotiated settlements.

Market makers in MTS are instructed to deliver two-sided quotes for the majority of the
trading day, but the quote updates are spaced irregularly over time, with periods of regular
updates of contributions and then periods of delayed contribution updates. Hence, rather
than simple averages of intraday spreads, time-weighted averages are employed. Intraday
spreads are given weights based on the share of the day of trading on which they are open
for trading before the next updating:

TWBASd ¼
1
T

XQ
t¼1

ðAskt � BidtÞ
ðAskt þ BidtÞ=2

� ðTtþ1 � TtÞ: ð44Þ

Time-weighted bid-ask spread TWBASd is a daily liquidity measurement estimated with
all daily intraday revisions of the top bid and ask quotes; Tt is the time signature of the
quote update expressed in seconds; Q is the total amount of quote reviews in a day, and T is
the dealing day expressed in seconds.

Two alternative popular measures of the spread are the effective spread, described as the
difference between the traded price and the midpoint of the spread, and the Roll spread,
calculated from the covariance of consecutive price changes without the need for quote
data. Bao et al. (2011) found that the Roll spread is better than the quoted bid-ask spread in
explaining US corporate bond returns.

2.5. Model for predicting volatility

The volatility predicting is determined as in Qu et al. (2016), Haugom and Ullrich (2012)
and Frömmel et al. (2014) as follows:

RVt ¼
XM
j¼1

r 2t, j, ð45Þ



MAPE ¼ 1
n

Xn
t¼1

yt � ŷt
ðyt þ ŷtÞ=2










, ð47Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1 ðyt � ŷtÞ2
n

r
: ð48Þ

2.6. Liquidity measure model

2.6.1. Cross-sectional evidence

We consider transversal regressions to investigate the determinants of liquidity in the
market for government bonds. In particular, we examine whether each of our identified
liquidity metrics could be estimated using the product features and dealing activity inputs.
We estimate cross-sectional regressions in which we employ time-series means of all
inputs. We test coupon bonds, according to the following regression:

Coupon : LMi ¼ β0 þ β1Agei þ β2AmountIssuedi þ β3DailyTradesi
þβ4CouponRatei þ β5�8MaturityDummiesi

þβ9
Time to Maturity

Maturityi
þ β10

Time to Maturity
Maturityi

� �2

þ �i, ð49Þ

where LMi is the ith measurement of liquidity. Maturity is fixed as the time, in years, from
the issue date to the maturity date. Daily Tradesi is a per bond metric and is equivalent to
the total number of deals divided by the number of days on which the bond occurs in the
sample. The time to maturity is the time in the number of years between the bond’s
settlement date and its maturity date. Age is the distance between the last two measures.
Coupon rate relates to either a bond’s coupon rate, zero-coupon rate or floating rate. The
issued amount is the one of the bonds in millions of euros. Coupon Rate is the annual
coupon rate.

For coupon bonds, Quoted Spread and Effective Spread display very equivalent out-
comes. The links between them and the maturity of the bond are largely nonlinear. It is
evident that, among the maturity group itself, outstanding and near-maturity bonds have
the shortest bid-ask spreads, meanwhile those in their “mid-life” have upper spreads,
revealing an upside-down U-shaped pattern.

being j ¼ 1, 2,…, M in each day t ¼ 1:2, and the jth intra-day return of day t is denoted as

rtj ¼ ptj � ptj�1, ð46Þ
where ptj is the logarithmic price that is ptj ¼ logðPtÞ, being Pt the realized price.

To measure the return on our predictions, we use two commonly adopted metrics: mean 
absolute percentage error (MAPE) and root mean square error (RMSE). The formulas for
these measures are as follows, with n being the data number to be predicted, yt is the actual
value of the data at time t and ŷt is the actual value of yt at time t. We employ the fitted 
form of the standard MAPE, suggested by Armstrong (1985) which is employed if the 
likelihood of the true values is equal to 0.



The 5-min Single Proposals is the mean number of traders estimated at a frequency of 5
min and the Single Proposal Revisions is the frequency with which quotations vary. The
findings show that the activity market is greater for longer maturity bonds. Market events
have a convex association with time to expiration, reflecting the outcomes of the bid-ask
spread, with a higher number of traders for bonds outstanding and near to expiration.
The number of deals reflects positively on the number of dealers, while in a negative way
on the number of price reviews.

2.6.2. Time-series evidence

We examine the characteristics of liquidity measures through time, and it relates to changes
in credit. In particular, we study whether credit risk and liquidity estimates are correlated,
and if convex or linear: i.e., that major movements in credit risk have a correspondingly
greater effect than minor swings in the different liquidity measures. To explore this, we
perform a regression of changing cash metrics on shifts in the CDS differential, its square
and the amount transacted. Equation (50) details our regression model:

ΔLMt ¼ β0 þ β1 ΔCDSt þ β2ðΔCDStÞ2 þ β3TradedQuantityt þ �t, ð50Þ
where ΔLMt is the measure of liquidity change from time t � 1 to time t, ΔCDSt is the
CDS change and TradedQuantityt is the amount transacted in the market on that day.

The impact is meaningful as well, albeit with a smaller size, for the Effective Spread.
The variation of the CDS differential and its square is highly correlated with the Amihud
measure too. The amount detailed is adversely associated with the quoted and effective
spread. Hence, it is probably caused by the degree of endogeneity of the decision to
negotiate concerning the price differential. The quantity traded is as well favorably asso-
ciated with Revisions per Single Proposal and with the Log Var, but adversely with the
Total Quoted Quantity. So, when more knowledgeable dealers come into the market, the
market developers are also less inclined to the contrarian way. Typically, a high traded
quantity is linked to high price movements, resulting in that price volatility (Log Var)
correlates positively with the quantity traded. Single 5-min proposals are related adversely
to everyday commerce for zero-coupon bonds and favorably to coupon bonds.

3. Estimation Methods

3.1. Convolutional neural network

CNN is a kind of artificial neural network requiring a convolutional layer but may have
additional layer types, including nonlinear, clustering and fully linked layers, that build a
deep CNN (Albawi et al., 2017; Wu, 2016; Stutz, 2014; Bouvrie, 2006). It can be bene-
ficial, especially in the case of a CNN, depending on the application (Suryani et al., 2016).
Nevertheless, it provides further training parameters. In the CNN, convolutional filters are
formed via the technique of backpropagation. The structure of the filter shapes differs
according to the task at hand. For instance, in an application like face detection, one filter
may undertake border removal, while another may perform eye extraction. But, we cannot



ReLU ¼ 0, if x < 0,

x, if x‚ 0:

�
ð51Þ

The pooling layer approximately narrows the size of the inputs. The most popular pooling
method, max pooling, depicts the highest value within the pooling filter (2� 2) as the
output (Ba and Frey, 2013; Wan et al., 2013). There are other pooling techniques, like
averaging and summation. Nevertheless, max pooling is a very extended and powerful
approach in the literature as it delivers meaningful findings by reducing the dimension of
the input by 75% (Szegedy et al., 2015; Han et al., 2014).

The softmax layer is regarded as an ideal methodology for proving the categorical
distribution. The softmax function, mainly employed in the output layer, is a standardized
exponent of the output values (Peng et al., 2017). This function is distinguishable and
stands for a given likelihood of the output. In addition, the exponential element raises the
probability of the maximum amount (Hapke, 2016). The equation softmax is as follows:

oi ¼
eziPM
i¼1 ezi

, ð52Þ

where oi is the output softmax number i, zi is the output i before the softmax and M is the
number of total exit nodes.

3.2. Recurrent convolutional neural network

Recurrent neural networks (RNNs) have been implemented in various forecasting areas
owing to their enormous forecasting efficiency. The prior computations performed are what
form the output within the RNN structure (Wang et al., 2017). For an entry sequence vector

manage these filters in the CNN, and their assets are set by training (Albawi et al., 2017; 
Hapke, 2016; Szegedy et al., 2015; Zeiler and Fergus, 2014).

In the advection coating, the filters are slipped over the coating for the given incoming 
information. The sum of an item-by-item multiplying of the filters and the input responsive 
domain is then computed as the outcome of this layer. The loaded sum is positioned as the 
next layer’s element (Wu, 2016; Stutz, 2014). Each convolutional operation is given by the 
fringe, the size of the filter and the zero packing. The fringe, being a solid positive integer, 
defines the step of the glide path. The filter size has to be stationary for all filters involved 
in the given convolutional operation. Zero padding inserts zero rows and zero columns into 
the source input matrix for managing the output feature map size (Guo et al., 2016; Wu, 
2016; O’Shea and Nash, 2015). Zero padding is primarily intended to fit the data on the 
edge of the input matrix. With no zero padding, the convolution outcome is lower than the 
input. Thus, the dimension of the network is reduced by making multiple convolution 
layers, limiting the number of convolutional layers in a network. Yet, zero-padding avoids 
network shrinkage and gives unbounded deep layers in our network configuration.

If nonlinearity is used, the main function is to adapt or short-circuit the output produced. 
Various nonlinear features can be used in CNNs. The rectified linear unit (ReLU), however, 
is among the commonly implemented nonlinearities in several areas, like image processing 
(Dumoulin and Visin, 2016; Wu, 2016). ReLU can be expressed as



x, the hidden nodes of a layer s, and the output of a shadow layer y, could be computed as
shown in the following equations:

st ¼�ðWxsxt þWssst�1 þ bsÞ, ð53Þ
yt ¼ oðWsost þ byÞ, ð54Þ

where Wxs, Wss and Wso are the input layer weights x to the shadow layer s, by are the
distortions of the shadow layer and the output layer. The following equation indicates that
� and o are the functions of activation.

STFT{zðtÞgð� ,!Þ ¼
Z þ1

�1
zðtÞ!ðt � �Þe�j!tdtÞ, ð55Þ

where zðtÞ is the oscillation signs, !ðtÞ is the Gaussian window function centered about 0.
Tð� ,!Þ is the function that expresses the vibration signs. To compute the convolutional
operation hidden layers, the following equations are implemented:

St ¼�ðWTS � Tt þWSS � St�1 þ BsÞ, ð56Þ
Yt ¼ oðWYS � St þ ByÞ, ð57Þ

where W term shows the convolution kernels.
A RCNN can be stacked to set up a profound structure, named deep recurrent con-

volutional neural network (DRCNN) (Huang and Narayanan, 2017). To employ the
DRCNN methodology in the task of prediction, the following equation defines the last
stage of the network as a monitored machine learning layer:

r̂ ¼ �ðWh � hþ bhÞ, ð58Þ
where Wh is the weight and bh is the bias. The model estimates the residuals driven by the
discrepancy of the planned and current findings in the trained phase (Ma and Mao, 2019).
We apply stochastic gradient drop for the optimization to apprehend the benchmarks.
Taking the data at time t to be r, the residual function is set as given in the following
equation.

Lðr, r̂Þ ¼ 1
2
kr � r̂ k2

2: ð59Þ

3.3. Long short-term memory

LSTM is an improved RNN technology architecture that has become adapted to handle the
time-dependent variables that occur in time series (Hochreiter and Schmidhuber, 1997).
This kind of network provides the benefit of adding historical data to the forecasting of the
variables’ future state when the input data have several dependencies. In the RNN, the
impact of recall is considered by employing an unwound cell loop that enables prior data to
feed back into the following step prediction. Its structure, nevertheless, does not permit the
processing of long-term dependencies efficiently, as its learning procedure causes gradients
to disappear for back-propagation. To bridge this gap, LSTM networks have been built
with an effective framework involving three doors: input gates, output gates and forgetting



it ¼�ðWixt þ Uiht�1 þ biÞ,
ftw ¼�ðWfxt þ Ufht�1 þ bf Þ,
ot ¼�ðWoxt þ Uoht � 1þ boÞ,
Ct ¼ tanhðWcxt þ Ucht�1 þ bcÞ,
Ct ¼ ftm � Ct�1 þ it � Ct,

ht ¼ ot � tanhðCtÞ,
where xt nominates the input variable at the current time step, ht is the exit of the prior cell,
Ct � 1 is the preceding cell state giving the past data. These settings are employed with a
sample of the weight matrices and bias vectors in the logistic sigmoid �, and tanh functions
at the input, forget and outputs gates.

Concerning the option of the best network structure of LSTM networks to get precise
forecasts, a unique hidden layer is embraced where the number of nodes is set on con-
forming to the next law:

ðnin þ 1Þ � nhid þ ðnhid þ 1Þ � nout • 1=α� ntrain,

whereas nin indicates the number of nodes in the input layer, nout is the number of nodes in
the output layer, nhid is the number of nodes in the hidden layer, ntrain is the number of
training data and α is a coefficient, which changes from 1 to over 10. In this investigation,
to keep away from overfitting, α is given a value greater than 2 as the training data double
degrees of liberty in the process of formation.

4. Sample, Data and Variables

Market data for long-term bonds with maturities of 2, 5, 10 and 30 years and short-term
treasury bills with maturities of 1, 3 and 6 months have been used for the cases of Greece
and Thailand. The speculative pressure scenarios are generated from the modeling
expressed in Section 2, concerning the scenarios. Macroeconomic information for the
models used was obtained from International Monetary Fund, World Bank and Eurostat
statistics. The bond market data used were extracted from the Eikon database of Refinitiv
(Thomson Reuters). The period chosen was from 2002Q1 to 2021Q2.

Empirical research for forecasting these models of market microstructure has completed
the following five steps: creating a sample, data preprocessing, construction of model into
the neural networks method, accuracy assessment, and classification and forecasting.
Regarding the point of creating a sample is based on getting the data from relevant sources,
as in our case with Eikon database from Thomson Reuters. The step data preprocessing
consists of the discretization of attributes of continuous values, generalization of data and
analysis of attribute relativity, and elimination of outliers. For its part, the market micro-
structure and speculative attacks models proposed in this study have been estimated, thanks

gates that assure the conservation of the information prior to using a steady-state 
computation of the gradient. At all three gates within a cell state, data are handled by a 
sequential computation employing the next equations (Hochreiter and Schmidhuber, 1997; 
Vu et al., 2020):



to these models are in linearized, and hence, it is possible to introduce every variable no
making transformations. To do this, and randomly, the sample is divided into two sets of
mutually exclusive data: training (or in-sample) data set (70%), and testing (or out-sample)
data set (30%). During the estimations of results, the cross-validation method with 10-fold
and 500 iterations has been applied to obtain error ratios (Salas et al., 2020). The first data
set is used for model training, that is, for parameter estimation. Finally, the second data set
(testing) is used to evaluate the prediction accuracy of the model during the accuracy
assessment step. In an additional way, the differences between observed and predicted
values examine the robustness of the every neural networks method and its ability to
predict both the trend in government bond markets and the possible speculative attack
scenario as well.

5. Results

In the case of Greece, Figures 1–3 show the level of accuracy in training data in CNN,
RCNN and LSTM methods, respectively. These results also appear in Annex A. Table 1
displays the results of Precision Testing, applied to assess the built model and make
predictions. Tables 2 and 3 exhibit the RMSE and the MAPE. In all six models, the level
of accuracy exceeds in every moment 89.99% in short-term maturity and 88.74% in long-
term for the training results. According to the testing results, the precision level overcomes
at all times, 87.40% in short-term maturity and 86.19% in long-term. The model with the
highest level of accuracy in all three methods is that of TWBAS with an accuracy over
95.15% and 92.42% in short term for training and test results, respectively, and the per-
centages of 93.83% and 91.14% in long term for in-sample and out-sample results ac-
cordingly, followed by the volatility model with an average precision of 93.03% and
91.74% in short term and long term for each of them for the training results. In the case of
the testing results in the volatility model, the average accuracy rates are 90.36% and
89.11% in short term and long term separately. Besides, RMSE and MAPE levels are
adequate. All models in all three methods have low RMSE values, being in a range of
0.10–0.21. The MAPE values, the result of measuring the size of the absolute error in
percentage terms, are acceptable for all the models constructed too. On the other hand, the
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Figure 1. Results of Precision Training in CNN Method (%): Greece



method that best adjusts the result in terms of residuals is RCNN with 97.52% (training)
and 94.72% (testing) accuracy in short term and 96.17% (training) and 93.41% (testing) in
long term, followed by CNN with 96.25% and 94.92% for training results in short and long
maturity, respectively. For the testing results, the precision is 93.49% and 92.19% in short
and long maturity individually. The accuracy levels tend to decrease slightly with longer
maturities. Thus, in the TBWAS model of the RCNN method, the accuracy when the
maturity is 1 month reaches 98.20% (training) and 95.38% (testing), decreasing to 96.17%
(training) and 93.41% (testing) when the maturity is extended to 30 years.

For Thailand, Figures 4–6 display the accuracy level on the training data in the CNN,
RCNN and LSTM methods correspondingly, which is also listed in Annex B. Table 4
displays the findings of testing precision, and Tables 5 and 6 report the RMSE and the
MAPE. In the six models in the three methods, the accuracy level for training data always
exceeds 87.87% at maturity in the short term and 86.66% in long term, and the precision
level for testing data all the time outperforms 85.34% in short-term maturity and 84.16% in
long term. The results are slightly worse than in Greece, but the order of accuracy is the
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same, as the best methodology is RCNN with 95.23% and 92.49% in short-term maturity
for training and testing results, respectively, and 93.91% and 91.21% in long term, in
training and testing data accordingly, followed by CNN with 91.29% and 90.02% in short
and long terms, respectively, for testing results, and in case of training results 93.99% and
92.69% in the short and long terms separately. Like in the example of Greece, it is
once again the model TWBAS, the one that has the greatest level of precision. For its
part, the RMSE and MAPE levels are suitable. As in the previous case, the precision
values are slightly lower with longer-term maturities. Hence, in the RCNN TBWAS
model, the precision at 1-month maturity stands at 95.89% (training) and 93.13% (testing),
decreasing to 93.91% (training) and 91.21% (testing) when the maturity is prolonged to
30 years.

Table 1. Results of Precision Testing (%): Greece

Liquidity
Measure Coupon

Model

Liquidity
Measure

CDS Model

TWBAS
Model

Volatility
Model

Large versus
Small Players

Model

Arbitrage-No
Feasibility
Equation

CNN

1 Month 91.02 91.57 94.14 92.04 89.03 89.92
3 Months 90.71 91.25 93.81 91.72 88.72 89.61
6 Months 90.39 90.93 93.49 91.40 88.41 89.30
2 Years 90.08 90.61 93.16 91.09 88.11 88.99
3 Years 89.76 90.30 92.84 90.77 87.80 88.68
10 Years 89.45 89.99 92.52 90.45 87.50 88.11
30 Years 89.14 89.67 92.19 90.14 87.19 87.80

RCNN

1 Month 92.22 92.77 95.38 93.25 90.20 91.11
3 Months 91.90 92.45 95.05 92.93 89.89 90.79
6 Months 91.58 92.13 94.72 92.61 89.58 90.47
2 Years 91.26 91.81 94.39 92.28 89.26 90.16
3 Years 90.94 91.49 94.06 91.96 88.95 89.85
10 Years 90.63 91.17 93.73 91.64 88.65 89.27
30 Years 90.31 90.85 93.41 91.32 88.34 88.96

LSTM

1 Month 89.98 90.52 93.06 90.99 88.01 88.89
3 Months 89.67 90.20 92.74 90.67 87.70 88.59
6 Months 89.35 89.89 92.42 90.36 87.4 88.28
2 Years 89.04 89.58 92.09 90.04 87.1 87.97
3 Years 88.74 89.27 91.77 89.73 86.79 87.67
10 Years 88.43 88.96 91.46 89.42 86.49 87.10
30 Years 88.12 88.65 91.14 89.11 86.19 86.79



Emerging markets experience a loss of foreign exchange access to international capital
markets when currency and banking crises occur. Moreover, due to the prevalent reliance
on short-term debt financing, the public and private sectors in these economies often have
to repay their outstanding debts in the short term. A slowdown in capital inflows or their
reversal could lead the country to insolvency or sharply reduce the productivity of its
existing capital stock (Calvo and Reinhart, 2000). International capital markets are,
therefore, volatile, both downward and upward, with emerging market economies suffering
the most. The Asian financial crisis of 1997 revealed the region’s vulnerability to cross-
border capital flows. During this crisis, for instance, large currency depreciation and falling
equity prices in Thailand led international institutional investors to suffer large capital
losses. Such losses incurred may have driven investors to sell securities in other emerging

Table 2. Results of Accuracy Evaluation: RMSE (Root Mean Squared Error): Greece

Liquidity
Measure Coupon

Model

Liquidity
Measure

CDS Model

TWBAS
Model

Volatility
Model

Large versus
Small Players

Model

Arbitrage-No
Feasibility
Equation

CNN

1 Month 0.10 0.10 0.10 0.10 0.10 0.10
3 Months 0.11 0.11 0.11 0.11 0.11 0.11
6 Months 0.12 0.12 0.13 0.12 0.12 0.12
2 Years 0.13 0.13 0.14 0.13 0.13 0.13
3 Years 0.14 0.15 0.15 0.15 0.14 0.14
10 Years 0.16 0.16 0.16 0.16 0.15 0.16
30 Years 0.17 0.17 0.18 0.18 0.17 0.17

RCNN

1 Month 0.10 0.10 0.11 0.10 0.10 0.10
3 Months 0.11 0.11 0.12 0.11 0.11 0.11
6 Months 0.12 0.12 0.13 0.12 0.12 0.12
2 Years 0.13 0.14 0.14 0.14 0.13 0.13
3 Years 0.15 0.15 0.15 0.15 0.14 0.14
10 Years 0.16 0.16 0.17 0.16 0.16 0.16
30 Years 0.18 0.18 0.18 0.18 0.17 0.17

LSTM

1 Month 0.12 0.12 0.12 0.12 0.11 0.12
3 Months 0.13 0.13 0.13 0.13 0.13 0.13
6 Months 0.14 0.14 0.15 0.14 0.14 0.14
2 Years 0.15 0.15 0.16 0.16 0.15 0.15
3 Years 0.17 0.17 0.17 0.17 0.16 0.17
10 Years 0.18 0.18 0.19 0.19 0.18 0.18
30 Years 0.20 0.20 0.21 0.20 0.20 0.20



Table 3. Results of Accuracy Evaluation: MAPE: Greece

Liquidity
Measure Coupon

Model

Liquidity
Measure CDS

Model

TWBAS
Model

Volatility
Model

Large versus
Small Players

Model

Arbitrage-No
Feasibility
Equation

CNN

1 Month 0.44 0.44 0.45 0.44 0.43 0.43
3 Months 0.48 0.48 0.49 0.48 0.47 0.47
6 Months 0.52 0.53 0.54 0.53 0.51 0.52
2 Years 0.57 0.57 0.59 0.58 0.56 0.56
3 Years 0.62 0.63 0.65 0.63 0.61 0.62
10 Years 0.68 0.69 0.71 0.69 0.67 0.67
30 Years 0.75 0.75 0.77 0.76 0.73 0.74

RCNN

1 Month 0.44 0.45 0.46 0.45 0.43 0.44
3 Months 0.48 0.49 0.50 0.49 0.47 0.48
6 Months 0.53 0.53 0.55 0.54 0.52 0.52
2 Years 0.58 0.58 0.59 0.59 0.57 0.57
3 Years 0.63 0.64 0.65 0.64 0.62 0.62
10 Years 0.69 0.69 0.72 0.70 0.68 0.68
30 Years 0.76 0.76 0.78 0.77 0.74 0.75

LSTM

1 Month 0.51 0.51 0.52 0.51 0.49 0.50
3 Months 0.55 0.56 0.57 0.56 0.54 0.55
6 Months 0.60 0.61 0.62 0.61 0.59 0.59
2 Years 0.66 0.67 0.68 0.67 0.65 0.65
3 Years 0.72 0.73 0.75 0.73 0.71 0.71
10 Years 0.79 0.79 0.82 0.8 0.77 0.78
30 Years 0.86 0.87 0.89 0.87 0.84 0.85

84

86

88

90

92

94

96

1 month 3 months 6 months 2 years 5 years 10 years 30 years

Liquidity Measure-Coupon- Model Liquidity Measure-CDS- Model

TWBAS Model Vola�lity Model

Large vs Small Players Model Arbitrage-No feasibility Equa�on

Figure 4. Results of Precision Training in CNN Method (%): Thailand



economies to get cash in anticipation of a greater redemption frequency. Commercial banks
that concentrate their lending in certain regions may also face liquidity problems (Dorn-
busch et al., 2000). Zhang (2001) concluded that the probability of a currency being
attacked in one period is influenced by the frequency of speculative attacks in other
countries before that period, due to the contagion effect. The reason for the attacks at the
beginning remains an enigma, but the dynamics of regional duration seem to explain the
evolution of the 1997 Asian crisis in Thailand quite well. This crisis resulted in a constraint
on the ability of Thai firms to undertake FDI, extend credit and so on. The Thai gov-
ernment increased public debt to rescue the banks or the business sector. So, there was a
fiscal consolidation at some point, and then they reinforced the regulatory framework for
the financial and monetary sector, which helped them to allow the exchange rate to be more
flexible (Charoenseang and Manakit, 2002).

In the case of Greece, most of the attention on the Greek crisis has focused on the acute
problems of financing the Greek debt and initiating the required Greek fiscal reduction
strategy. The sovereign debt crisis in Greece in 2010 created serious problems in the
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financial markets and came close to provoking the breakdown of the euro, mainly due to
speculative attacks (Wihlborg et al., 2010). Specifically, Greece’s government had amassed
huge debts, faced falling tax revenues from the recession, confronted nonsustainable in-
terest rates in bond markets and was on the verge of insolvency. Up to now, this situation
has been handled by European leaders using a mix of additional rescue loans, debt
renegotiations and “haircuts” as well as severe austerity measures for the Greek govern-
ment (Seyler and Levendis, 2015).

On balance, in both countries, the method with the highest precision is RCNN, being
the models TWBAS and volatility the most accurate. TWBAS provides robustness since it
does not rely on strike prices, which are utilized for all other liquidity metrics. In previous
literature, some authors have used TWBAS and volatility models to measure the liquidity

Table 4. Results of Precision Testing (%): Thailand

Liquidity
Measure Coupon

Model

Liquidity
Measure CDS

Model

TWBAS
Model

Volatility
Model

Large versus
Small Players

Model

Arbitrage-No
Feasibility
Equation

CNN

1 Month 88.88 89.41 91.92 89.88 86.94 87.81
3 Months 88.57 89.1 91.6 89.56 86.63 87.5
6 Months 88.26 88.79 91.29 89.25 86.33 87.2
2 Years 87.96 88.48 90.97 88.94 86.03 86.9
5 Years 87.65 88.17 90.65 88.63 85.73 86.59
10 Years 87.35 87.87 90.34 88.33 85.44 86.03
30 Years 87.04 87.56 90.02 88.02 85.14 85.73

RCNN

1 Month 90.05 90.59 93.13 91.06 88.08 88.96
3 Months 89.74 90.27 92.81 90.74 87.77 88.65
6 Months 89.42 89.96 92.49 90.43 87.47 88.35
2 Years 89.11 89.65 92.17 90.11 87.16 88.04
5 Years 88.80 89.33 91.85 89.80 86.86 87.73
10 Years 88.49 89.02 91.53 89.49 86.56 87.16
30 Years 88.19 88.71 91.21 89.18 86.26 86.86

LSTM

1 Month 87.86 88.39 90.87 88.85 85.94 86.80
3 Months 87.56 88.08 90.56 88.54 85.64 86.50
6 Months 87.25 87.77 90.24 88.23 85.34 86.20
2 Years 86.95 87.47 89.93 87.92 85.05 85.90
5 Years 86.65 87.16 89.61 87.62 84.75 85.60
10 Years 86.35 86.86 89.30 87.31 84.46 85.05
30 Years 86.05 86.56 88.99 87.01 84.16 84.75



of government bonds in the euro zone, including Greece (Darbha and Dufour, 2013;
Pelizzon et al., 2013; Ehrmann and Fratzscher, 2017; Benos et al., 2019), and in Asian
countries, especially in Thailand (Piesse et al., 2007; Chabchitrchaidol and Panyanukul,
2008; Pholphirul, 2009; Bai et al., 2013; Yurastika and Wibowo, 2021). Darbha and
Dufour (2013) and Pelizzon et al. (2013) found that more recently issued and larger bonds
have lower Quoted Bid-Ask Spreads. They concluded that the lower the bid-ask spread, the
higher the liquidity. For its part, Pholphirul (2009) showed that the investment growth in
Thailand is more significantly determined by its volatility than by consumption or pro-
duction. Nevertheless, concerning the methodology employed by these authors, they have
focused exclusively on statistical and econometric methods, such as Ordinary Least
Squares, autoregression and generalized autoregressive conditional heteroskedasticity

Table 5. Results of Accuracy Evaluation: RMSE (Root Mean Squared Error): Thailand

Liquidity
Measure Coupon

Model

Liquidity
Measure CDS

Model

TWBAS
Model

Volatility
Model

Large versus
Small Players

Model

Arbitrage-No
Feasibility
Equation

CNN

1 Month 0.22 0.22 0.23 0.22 0.21 0.22
3 Months 0.24 0.24 0.25 0.24 0.23 0.24
6 Months 0.26 0.26 0.27 0.26 0.26 0.26
2 Years 0.29 0.29 0.30 0.29 0.28 0.28
5 Years 0.31 0.32 0.32 0.32 0.31 0.31
10 Years 0.34 0.35 0.36 0.35 0.34 0.34
30 Years 0.38 0.38 0.39 0.38 0.37 0.37

RCNN

1 Month 0.22 0.22 0.23 0.22 0.22 0.22
3 Months 0.24 0.24 0.25 0.24 0.24 0.24
6 Months 0.27 0.27 0.27 0.27 0.26 0.26
2 Years 0.29 0.29 0.30 0.29 0.28 0.29
5 Years 0.32 0.32 0.33 0.32 0.31 0.31
10 Years 0.35 0.35 0.36 0.35 0.34 0.34
30 Years 0.38 0.38 0.39 0.39 0.37 0.38

LSTM

1 Month 0.25 0.25 0.26 0.26 0.25 0.25
3 Months 0.28 0.28 0.29 0.28 0.27 0.27
6 Months 0.30 0.31 0.31 0.31 0.30 0.30
2 Years 0.33 0.33 0.34 0.34 0.33 0.33
5 Years 0.36 0.37 0.38 0.37 0.36 0.36
10 Years 0.40 0.40 0.41 0.40 0.39 0.39
30 Years 0.44 0.44 0.45 0.44 0.43 0.43



(GARCH), having higher error levels results than those achieved in our research. For
instance, the work of Ehrmann and Fratzscher (2017) gets RMSE values close to 0.62, the
study of Benos et al. (2019) gets around 0.60, in the work of Bai et al. (2013) it approaches
0.55 and in the case of Yurastika and Wibowo (2021) it approached 0.50. So, taken as a
whole, our results provide a much higher probability of prediction than previous studies,
and the difference presented by the computational methodologies used in this investigation
far surpassed the precision revealed by the prior literature. Table 7 places our research
among comparable research in predicting speculative attacks in government bonds.

These results exhibit the higher firmness suggested by the RCNN method compared to
the others, mainly considering the RMSE results achieved by the statistical methods. This
ensemble of computational methodologies, found to be very precise, is a novel group of

Table 6. Results of Accuracy Evaluation: MAPE: Thailand

Liquidity
Measure Coupon

Model

Liquidity
Measure CDS

Model

TWBAS
Model

Volatility
Model

Large versus
Small Players

Model

Arbitrage-No
Feasibility
Equation

CNN

1 Month 0.56 0.56 0.58 0.56 0.54 0.55
3 Months 0.61 0.61 0.63 0.62 0.60 0.60
6 Months 0.67 0.67 0.69 0.67 0.65 0.66
2 Years 0.73 0.73 0.75 0.74 0.71 0.72
5 Years 0.80 0.81 0.82 0.81 0.78 0.79
10 Years 0.87 0.88 0.90 0.88 0.85 0.86
30 Years 0.95 0.96 0.99 0.97 0.93 0.94

RCNN

1 Month 0.50 0.57 0.58 0.57 0.55 0.56
3 Months 0.62 0.62 0.64 0.62 0.60 0.61
6 Months 0.67 0.68 0.70 0.68 0.66 0.67
2 Years 0.74 0.74 0.76 0.75 0.72 0.73
5 Years 0.81 0.81 0.84 0.82 0.79 0.80
10 Years 0.88 0.89 0.91 0.89 0.86 0.87
30 Years 0.97 0.97 1.00 0.98 0.95 0.96

LSTM

1 Month 0.64 0.65 0.67 0.65 0.63 0.64
3 Months 0.71 0.71 0.73 0.71 0.69 0.70
6 Months 0.77 0.78 0.80 0.78 0.75 0.76
2 Years 0.84 0.85 0.87 0.85 0.83 0.83
5 Years 0.92 0.93 0.96 0.93 0.90 0.91
10 Years 1.01 1.02 1.05 1.02 0.99 1.00
30 Years 1.11 1.11 1.14 1.12 1.08 1.09



methodologies that evaluate speculative attacks and, hence, differs from those reported in
the prior literature. The main advantage of deep neural network methods over classical
statistical/econometric methods is that machine learning algorithms could manage a huge
quantity of both unstructured and structured data and make decisions or predictions
quickly. This enhanced output is achieved because machine learning models do not create
any predetermined suppositions regarding the functional form of the equation, the interplay
in the middle of the variables, and the parameters’ statistical distribution. Machine learning
methods, on the other side, concentrate on precise forecastings for certain output variables
in the light of several other variables (Ghoddusi et al., 2019).

6. Conclusions

This study has developed a new machine learning estimation for market microstructure and
speculative attack models to prove his accuracy in market microstructure models and that
this mechanism of speculative attack could happen in the government bond market too.
The methodology applied is deep neural networks techniques using data for long-term
bonds with maturities of 2, 5, 10 and 30 years and short-term treasury bills with maturities
of 1, 3 and 6 months for the cases of Greece and Thailand in the time 2004Q1-2020Q4.
Three different Neural Network methods in the estimation of six market microstructure and
speculative attacks models (liquidity measure coupon, liquidity measure CDS, TWBAS,
volatility, large versus small players and arbitrage no feasibility equation) have been
constructed to achieve a robust accuracy capacity, such as CNN, RCNN and LSTM. The
methodology that has achieved the greatest levels of precision is RCNN. Most method-
ologies have exhibited a very low error rate and stability of estimates from speculative
attack models, making them an attractive alternative to traditional statistical methods.

We demonstrate that RCNN method identifies and quantifies financial market risks in a
proactive approach and is a reliable solution to deal with the uncertainty and complexity of
the financial system arising from speculative attacks, providing more information on the
possible events that may occur in the government bond market. Besides, our results achieve
a high level of accuracy, in a range of 94.72%–93.41% in short-term and long-term
maturity in the case of Greece, and 92.49%–91.21% in Thailand.

Table 7. Comparison Between This Research and Other Research

Year Algorithm Used Countries Result (RMSE)

This research 2022 Machine Learning Greece and Thailand 0.18–0.39
Yurastika

and Wibowo
2021 GARCH Indonesia, Malaysia,

Philippines, Singapore
and Thailand

0.50

Benos et al. 2019 Autoregression USA 0.60
Ehrmann and

Fratzscher
2017 GARCH Euro Area 0.62

Bai et al. 2013 Autoregression China 0.55



Our model guides policymakers and empiricists who assess the effectiveness of market
designs. So, our findings are relevant for financial organizations and policymakers, who
should understand how the bond market functions to design the regulation of this system
and to identify possible systemic risks. In addition, our study may be useful for market
regulators (national central banks) to deal with transparency issues in relation the orga-
nization of treasury bond markets and appropriate revelation of data and to assess the
behavior of single traders.

In conclusion, this study offers an excellent contribution to the research on the sovereign
bond market, as the results achieved have significant implications for the decisions of
public and financial institutions in the future, allowing them to avoid liquidity risks by
anticipating possible speculative attacks in the bond market. Further research could apply
these Neural Network methods in models of other financial assets to check their estimation
accuracy in the face of any asset pricing challenge, as it can represent a great starting point
for modeling and estimating new strategies and models on speculation scenarios that
accurately anticipate risk situations for financial stability, as is the recent case of crypto-
currencies.

Annex A. Results of Precision Training (%): Greece

Table A.1.

Liquidity
Measure Coupon

Model

Liquidity
Measure CDS

Model

TWBAS
Model

Volatility
Model

Large versus
Small Players

Model

Arbitrage-No
Feasibility
Equation

CNN

1 Month 93.72 94.28 96.93 94.77 91.67 92.59
3 Months 93.39 93.95 96.59 94.44 91.35 92.26
6 Months 93.06 93.62 96.25 94.11 91.03 91.94
2 Years 92.74 93.30 95.92 93.78 90.71 91.62
3 Years 92.42 92.97 95.59 93.45 90.40 91.31
10 Years 92.10 92.65 95.25 93.13 90.08 90.71
30 Years 91.78 92.33 94.92 92.81 89.77 90.40

RCNN

1 Month 94.95 95.51 98.20 96.01 92.87 93.80
3 Months 94.62 95.18 97.86 95.68 92.55 93.48
6 Months 94.29 94.85 97.52 95.35 92.23 93.15
2 Years 93.96 94.52 97.18 95.01 91.91 92.83
3 Years 93.63 94.19 96.84 94.68 91.59 92.51
10 Years 93.31 93.87 96.51 94.35 91.27 91.91
30 Years 92.99 93.54 96.17 94.03 90.95 91.59



Annex B. Results of Precision Training (%): Thailand

Table A.1. (Continued )

Liquidity
Measure Coupon

Model

Liquidity
Measure CDS

Model

TWBAS
Model

Volatility
Model

Large versus
Small Players

Model

Arbitrage-No
Feasibility
Equation

LSTM

1 Month 92.64 93.19 95.81 93.68 90.61 91.52
3 Months 92.32 92.87 95.48 93.35 90.30 91.21
6 Months 92.00 92.55 95.15 93.03 89.99 90.89
2 Years 91.68 92.23 94.82 92.71 89.67 90.57
3 Years 91.36 91.91 94.49 92.38 89.36 90.26
10 Years 91.04 91.59 94.16 92.06 89.05 89.67
30 Years 90.73 91.27 93.83 91.74 88.74 89.36

Table B.1.

Liquidity
Measure Coupon

Model

Liquidity
Measure CDS

Model

TWBAS
Model

Volatility
Model

Large versus
Small Players

Model

Arbitrage-No
Feasibility
Equation

CNN

1 Month 91.51 92.06 94.65 92.54 89.51 90.41
3 Months 91.20 91.74 94.32 92.22 89.20 90.10
6 Months 90.88 91.42 93.99 91.90 88.89 89.78
2 Years 90.56 91.11 93.67 91.58 88.58 89.47
5 Years 90.25 90.79 93.34 91.26 88.28 89.16
10 Years 89.94 90.47 93.02 90.94 87.97 88.58
30 Years 89.62 90.16 92.69 90.63 87.66 88.28

RCNN

1 Month 92.72 93.27 95.89 93.76 90.69 91.60
3 Months 92.40 92.95 95.56 93.43 90.37 91.28
6 Months 92.07 92.62 95.23 93.11 90.06 90.96
2 Years 91.75 92.30 94.90 92.78 89.75 90.65
5 Years 91.44 91.98 94.57 92.46 89.44 90.33
10 Years 91.12 91.66 94.24 92.14 89.13 89.75
30 Years 90.80 91.34 93.91 91.82 88.82 89.44
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