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Abstract: We study the ground state properties of the one-dimensional quantum Ising model
and its phase diagram through the lens of quantum information theory concepts. We begin
by analysing the area law behaviour of entanglement entropy and its logarithmic violation at
the critical point. Next, we introduce the classical-to-quantum correspondence to elucidate the
structure of two-point correlation functions. Finally, we characterize the distinct phases of the
model via its entanglement spectrum.
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I. INTRODUCTION

At the heart of the quantum theory, lies one of the most
dazzling and surprising features of our current descrip-
tion of reality: entanglement.
Entanglement can be defined as the system’s property
of exhibiting non-local correlations which have no classi-
cal counterpart [1]. The concept of entanglement, firstly
coined by E. Schrödinger [2] in his famous response to the
EPR paradox, has found numerous applications in the
context quantum information theory (QIT). In the last
decades, though, it has proven to be key in understand-
ing the behaviour of correlations in many-body quantum
systems undergoing a quantum phase transition (QPT)
[3]. Contrary to classical phase transitions, QPT occur
at T = 0 K and their origin is no longer explained by
thermal fluctuations but rather Heisenberg’s uncertainty
principle [4].
The aim of this work is to present several novel tech-
niques for discerning the different phases of a quantum
system ground state and its properties at criticality from
an entanglement point of view [5]. Hence, we will study
the most paradigmatic and archetypal model: The Ising
model in a transverse field.
This work is structured as follows: first, in Section II
we introduce the studied model, some quantum informa-
tion concepts for measuring our system’s entanglement
properties such as the entanglement entropy (EE) and
the numerical methods used. Then, in Section III, we
proceed by presenting the most important feature of EE:
the area law. In Section IV, we compute the EE results
at criticality and see their relationship with conformal
field theory (CFT). In Section V, we introduce the so-
called classical-to-quantum (CQ) correspondence which
will lead us to understand the behaviour of the two-point
correlation function. In Section VI, we consider a differ-
ent way of describing the entanglement of our system:
the entanglement spectrum. Finally, in Section VII, we
discuss the conclusions of this work.

II. THEORETICAL BACKGROUND

1. The 1-D Ising model

We consider the 1-D Ising model in a transverse field, the
physics of this model is solely determined by its Hamil-
tonian [4, 6]:

HI = −J

(∑
i

ZiZi+1 + g
∑
i

Xi

)
. (1)

Here J represents the strength of the interaction between
neighbouring spins and g is a dimensionless coupling of
the transverse field, note that both J > 0 and g > 0.
Also, Zi and Xi are the Pauli matrices defined at the
site i and we work with periodic boundary conditions
(PBC). For this model, the first term represents a first-
neighbour interaction while the second one represents the
spin interaction with the external field.
Additionally, our model exhibits a phase diagram where
the parameter g acts as a control parameter. The sys-
tem displays two distinct phases: a ferromagnetic phase,
where spin-spin interactions dominate, and a quantum
paramagnetic phase, where the influence of the external
field prevails. In between, at a critical value: gc, the sys-
tem will undergo a QPT (see Figure 1 for a schematic
representation of both phases) [7].
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FIG. 1: Drawing of the two distinct phases of the ground
state for the quantum Ising model generated by Eq. (1).
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Furthermore, an interesting property of this model is that
it fulfils the Z2 symmetry [8]. We can work on either the
Z basis (|↑⟩ , |↓⟩) or the X basis (|←⟩ , |→⟩). They are
related via: |→⟩ = 1√

2
(|↑⟩+ |↓⟩) and |←⟩ = 1√

2
(|↑⟩−|↓⟩).

First of all, we need to determine the ground state of our
system. In the g = 0 and g →∞ limit, the ground state
can be written as:∣∣∣ψFerro

(g→0)

〉
=

1√
2
(|↑↑↑ ... ↑↑↑⟩ ± |↓↓↓ ... ↓↓↓⟩)∣∣∣ψPara

(g→∞)

〉
= |→→→ ...→→→⟩ ,

(2)

where we note that the g → 0 ground state has a two-fold
degeneracy. For the remaining values of g of the phase
diagram, we will compute them numerically.

2. Von Neumann entropy

In classical physics, the notion of entropy is associated to
the amount of information that we lack in order to fully
identify the microstate of the system compatible with its
macrostate, in other words, it is related to the disorder
in the system or randomness. Whereas, on the quantum
realm, entropy may even arise with a complete knowledge
of the state of the system, this happens due to a funda-
mental property of quantum systems: entanglement [9].
Such measure of entanglement is given via the von Neu-
mann entropy or entanglement entropy (EE) [11]:

S(ρ) = −Tr[ρ log(ρ)], (3)

where ρ = |ψ⟩ ⟨ψ| stands for the density matrix.
Now, consider a bipartition of the system into subsys-
tems A and B, each one defined by its orthonormal basis
{|φi⟩A} and {|ϕi⟩B}. According to the Schmidt decom-
position, we can express our state as [5]:

|ψ⟩ =
∑
i

√
λi |φi⟩A ⊗ |ϕi⟩B . (4)

In our case, we are interested in the EE of a subregion A
of our system (SA), which can be defined as:

SA(ρA) = −Tr[ρA log(ρA)] = −
∑
i

λi log λi, (5)

where TrB [Ô] =
∑

j ⟨ϕj |B O |ϕj⟩B and we have also de-
fined the reduced density matrix (ρA) as:

ρA = TrB [ρ] =
∑
i

λi |ϕi⟩A ⟨ϕi|A . (6)

3. Numerical methods

Even though most of the known results for this model
are for the thermodynamic limit, we have done numeri-
cal simulations to check it for finite-size systems (up to
N = 15). Hence, our goal is to numerically compute the
function SA = SA(g) for each value of g in the phase
diagram, the numerical procedure is the following:

1. Define the Hamiltonian via Eq. (1) for N sites.

2. Compute its ground state (|ψgs⟩) and ρgs =
|ψgs⟩ ⟨ψgs| through exact diagonalization of HI .

3. Compute the reduced density matrix of a subregion
Eq. (6), diagonalize it to obtain its eigenvalues λi.

4. Obtain SA(g) through Eq. (5).

5. Repeat the described process for each value of g.

III. AREA LAW

One of the most interesting properties of the subregion’s
entanglement entropy (SA) is how it scales with its sub-
region size. A priori, one could argue that SA would
possess an extensive character, as its classical counter-
part. Surprisingly, numerous ground state systems such
as ours fulfil an area law, this means that they scale as
SA ∼ Ld−1, here d represents the number of spatial di-
mensions [9, 10].
Claim: An area law holds if the system is gapped ∆E =
E1e − Egs ̸= 0 and only has local interactions [12]†.
The above statement is rather a conjecture than a theo-
rem as it has not been proven for every existing model.
In our case, for the 1-D Ising model, a proof exists show-
casing that in fact the ground state fulfils an area law.
Thus, practically, this means that the entanglement en-
tropy of our subregion system should be bounded by a
constant independently of the subregion size (L), hence:
SA = constant ∀L.
Intuitively, since interactions are short-ranged, quantum
correlations can only build up across the points where the
two regions connect—that is, through the boundary. In
Figure 1, we clearly see that there are just two boundary
points connecting regions A and B: the links 2–3 and
5–6. This remains true regardless of the subsystem size.
It follows that: 1) SA is constant, 2) it is independent of
L, and 3) it satisfies the property SA = SB .
Despite the fact the area law result is stated in the ther-
modynamic limit, the EE difference between two subre-
gions with different subregion sizes (∆SA) has been com-
puted for a finite-size system of total length N = 15.
As expected, their difference is zero—except at the peak
around g = 1, (see Figure 2). Fitting the data with a
parabola near the peak, we obtain: gc,(num.) = (1.0002±
1 · 10−4). In fact, somewhat unexpectedly, we have iden-
tified the critical value gc,(theory) = 1 of the model with
astonishing accuracy, where the QPT occurs [7]. In the
next section, we will explore why the area law is violated
at criticality.

[†] Actually, the condition ∆E ̸= 0 does not hold at g = 0 due to the
presence of a double degeneracy (see Eq.(2)). In fact, degeneracy
also affects the very definition of ρ = |ψ⟩⟨ψ|. Therefore, we will
focus on the limit g → 0. A more detailed treatment of the case
g = 0 lies beyond the scope of this project.
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FIG. 2: Entropy difference: SA(L = 7) − SA(L = 6). The
peak of the function, marked with a dashed line, determines
the critical value gc of the system.

Even though an area law could be seen as a peculiar
feature of our system, let me stress how important this
result is. The greatest difficulty while simulating many-
body systems is due to its complexity, as our Hilbert
space H dimension grows exponentially with N as: 2N .
On the contrary, if an area law holds, the effective di-
mension of our system H is considerably lower [12]. This
solely premise lies at the heart of numerical simulation
methods that exploit this characteristic such as DMRG
algorithms or Tensor Networks [13].

IV. CFT RESULTS

In this section we explain how criticality affects the area
law behaviour for finite-size systems. Initially we had
argued that for an area law to hold ∆E ̸= 0, but at
criticality (gc = 1), this model becomes gapless and a
violation of the area law occurs [4, 6].
At criticality, the correlation length of the system di-
verges, and the system becomes scale-invariant. In this
regime, the critical point can be described by a conformal
field theory (CFT), which is characterized by its central
charge, c. The central charge effectively counts the num-
ber of degrees of freedom at low energies and governs how
entanglement scales at criticality [14]. In this context, a
universal relation between SA(gc = 1) and the central
charge can be established [15, 16].
For a 1D finite-size system with PBC at gc = 1, total
system’s size N , subregion size L, the expression reads:

SA(L) =
c

3
log

(
N

πa
sin

πL

N

)
+D, (7)

where a is the lattice spacing and D is a constant. The
universality class of the 1D quantum Ising model is char-
acterized by the central charge ctheory = 1

2 [16].
Numerically, as shown in Figure 3, we obtain an excellent
agreement with theory:

cfit = (0.507± 0.001) & Dfit = (0.4752± 0.0004). (8)
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FIG. 3: Entanglement entropy at gc = 1 as a function of the
subsystem size L. Our numerical computations are reported
with orange circles. The dashed line correspond to Eq. (7).

Let me also comment that apart from being able to deter-
mine the universality class of the model (by computing
its central charge), violations of area laws are widely used
for determining critical points for other not well studied
systems, as they represent an alternative to renormaliza-
tion group computations [17, 18].

V. TWO-POINT CORRELATION FUNCTION
AND THE CQ CORRESPONDENCE

One of the most interesting features of our 1-D quantum
model is how it can be mapped to a 2-D classical chain§,
thus to the famous Onsager’s solution [19]:

H2d,c = −
∑
⟨i,j⟩

J̃ijSiSj ⇐⇒ H1d,q = −J
∑
i

(ZiZi+1 + gXi) .

(9)
This result is known as the classical-to-quantum corre-
spondence and states that the partition functions of both
models are the same Z2d,c = Z1d,q, as well as their critical
exponents and the behaviour of the two-point correlation
function [8, 20].
First, the 2-point X-Z-correlation function is defined as:

Cxx,(conn)i,j = ⟨0|XiXj |0⟩ − ⟨0|Xi|0⟩⟨0|Xj |0⟩

Czz,(conn)i,j = ⟨0|ZiZj |0⟩ − ⟨0|Zi|0⟩⟨0|Zj |0⟩.
(10)

Now, thanks to the CQ correspondence, we consider the
functional form of Ci,j in the classical 2D model and use
it to fit the data of our quantum 1D system [21, 22]:

C(xx,zz)i,j (g ̸= gc) ∼ e−
|rij |

ξ & Czz
i,j(gc) ∼

1

|rij |η
. (11)

[§] To be more precise, the ground state of the quantum system at
Tq = 0 maps to the equilibrium state of the classical model at
finite temperature Tc ̸= 0.
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FIG. 4: Two-point correlation functions. Top-left: off-
criticality X-direction lin-log scale. Top-right: off-criticality
Z-direction lin-log scale. Bottom-left: criticality Z-direction
log-log scale. Bottom-right: FSS of the η critical exponent

The numerically obtained results in/off criticality are in
accordance with the CQ prediction (see Figure 4) with
the exception of Czz(g < 1) which is constant due to
present long-range order of the ferromagnetic phase. Ad-
ditionally, the exponential decay of Cij off-criticality is
a necessary but not sufficient condition for an area law,
reinforcing the initial idea of studying SA directly [9].
Furthermore, we also determine the critical exponent of
the correlation function η (see Eq. (11) for g = gc) by
using finite-size scaling (FSS) techniques [23].
An established Ansatz for this exponent is [24]:

η(N) = η(N →∞) +
a

N
. (12)

As we said earlier, thanks to the CQ correspondence,
the critical exponent η(1d,q)FSS (see Figure 4, bottom-right)
should coincide with the theoretical value predicted by
Onsager’s solution : η

(2d,c)
theo = 0.25. As expected, both

results are compatible:

|η(2d,c)theo − η
(1d,q)
FSS | = 0.0255 < 2 η

(1d,q)
FSS = 0.0284 . (13)

VI. ENTANGLEMENT SPECTRUM

Up to this point, we have uniquely been interested in
the entanglement entropy of the subregion SA. But, in
principle, the reduced density matrix ρA contains more
information that the single value SA.
As proposed by Li and Haldane [25], the key insight lies
in imagining that the reduced density matrix ρA can be
spanned by an effective Hamiltonian Heff that captures
the behaviour of the subregion A. Mathematically:

ρ =
1

Z
e−βH → ρA =

1

ZA
e−βHeff . (14)

In reduced units, the above equation reads: ρA = e−Heff .
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FIG. 5: Entanglement spectrum for a finite-size system (N =
10, L = 5) for both phases and at the critical point. The
labelled states correspond with the ones shown in Table I.

From Eq. (6), we identify λi as the eigenvalues of ρA. If
we then define λi = e−ξi , comparing with Eq. (14), we
can interpret ξi as the "energy levels" (also called entan-
glement spectrum) of our effective Hamiltonian (Heff).
Studying its spectra, one can deduce multiple properties
of the real Hamiltonian given in Eq. (1) as well as char-
acterize the distinct phases and determine some other
properties at criticality [26].
Actually, for this model, the spectra of Heff is known and
can be found via the corner transfer matrix method. In
the thermodynamic limit, it can be proven that Heff can
be written in terms of non-interacting fermions [27]:

Heff =

∞∑
j=0

ϵj n̂j with ϵj =

{
2jϵ for g < 1

(2j + 1)ϵ for g > 1 .

(15)
Note that n̂ represents the occupation number (n̂ = ĉ†ĉ)
and ϵ is a constant that depends on the value of g.

State E(g<1) E(g>1) n

|0⟩ 0 0 0
|1⟩ 0 ϵ 1
|01⟩ 2ϵ 3ϵ 1
|11⟩ 2ϵ 4ϵ 2
|001⟩ 4ϵ 5ϵ 1
|101⟩ 4ϵ 6ϵ 2
|0001⟩ 6ϵ 7ϵ 1

State E(g<1) E(g>1) n

|1001⟩ 6ϵ 8ϵ 2
|011⟩ 6ϵ 8ϵ 2
|111⟩ 6ϵ 9ϵ 3

|00001⟩ 8ϵ 9ϵ 1
|10001⟩ 8ϵ 10ϵ 3
|0101⟩ 8ϵ 10ϵ 3
|1101⟩ 8ϵ 11ϵ 3

TABLE I: First entanglement spectrum levels of Heff
spanned by Eq. (15) for g < 1 and g > 1, grouped by the total
number of fermions n =

∑
j nj . Owing to the Z2 symmetry,

the degeneracies always occur in even multiples. (Thermody-
namic limit result, N → ∞).
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The first ξi values of ρA for a finite-size system (FS) of
N=10 and L=5 have been numerically computed (see
Figure 5). We then proceed to compare them with the
thermodynamic limit results shown on Table I.
For the ferromagnetic phase, all the degeneracies of the
first levels match with the exception that the spacing is
not equidistant (∆ξ ̸= 2ϵ).
For the quantum paramagnetic phase, the 8ϵ and 9ϵ two-
fold degeneracies are present as well as the missing 2ϵ
level. On the contrary, the level |00001⟩ is missing and
the degenerate levels appear one spectrum entry earlier.
The above discrepancies can be explained through the
fact that in a FS, there is no singularity at the critical
point, and thus there cannot be a transition between both
spectrums, as in the N → ∞ case. Interestingly, for the
FS system at g = 1, a sign of criticality still appears as
all the two-fold and four-fold degeneracies disappear.

VII. CONCLUSIONS

In this work, we have analysed the phases and critical be-
haviour of the transverse field Ising model using a range
of concepts from quantum information theory. The main
conclusions are as follows:
The area law for the entanglement entropy of a subregion
holds in finite-size systems. Its logarithmic violation at
the critical point g = 1 is accurately captured by a con-
formal field theory with central charge c = 1/2.

The two-point correlation function Ci,j exhibits an ex-
ponential decay in both phases (g ̸= 1) and a power-law
one at the critical point gc = 1, in agreement with the
classical-to-quantum correspondence prediction.
Finally, the entanglement spectrum provides a useful tool
to characterize and distinguish the two phases of the sys-
tem based on their entanglement structure.
As future work, we plan to apply the same theoretical
framework to study thermal states and investigate how
the phase diagram is modified by the introduction of dis-
order, as in the one-dimensional quantum random Ising
model. Another promising direction is to explore the
nonequilibrium dynamics of the model following a quan-
tum quench.
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Resum: Estudiem les propietats de l’estat fonamental del model d’Ising quàntic unidimensional
i el seu diagrama de fases utilitzant conceptes de la teoria de la informació quàntica. Comencem
analitzant el comportament de la llei d’àrea de l’entropia d’entrellaçament i la seva violació
logarítmica al punt crític. A continuació, introduïm la correspondència entre sistemes clàssics
i quàntics per deduïr el comportament de les funcions de correlació a dos punts. Finalment,
caracteritzem les diferents fases del model a través del seu espectre d’entrellaçament.
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