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Abstract: In this work we aim to validate data from two model runs of the Servei Meteorologic
de Catalunya’s WRF model post process using the data of three co-located instruments. These
instruments are two Micro Rain Radars (MRR2 and MRR-Pro) and a disdrometer (OTT Parsivel
2). Two Fuzzy Verification approaches to resample the data and validate the forecasts were used: one
considers the predominant precipitation type during a one-hour interval while the other includes
all types which occurred during this period. Contingency Tables were made and Probability of
Detection (POD), False Alarm Ratio (FAR) and Gilbert Skill Score (GSS) were used to analyse the
model behaviour against lead time and UTC. Results show that the model’s performance depends
strongly on lead time and on the method used to resample the data. Tendencies were observed
comparing both model runs which are discussed considering the limitations of the study.

I. INTRODUCTION

The correct identification of different types of precip-
itation is important whether for correctly determining
the phase of the hydrometeors, taking necessary precau-
tions against adverse weather, or providing input to a
hydrological model. When the same variables are ob-
tained by several instruments and models, and using dif-
ferent methods, it is important to determine which one
performs better under certain conditions. In this study
we aim to compare and validate two model runs of the
post-processed product of Weather Research and Fore-
casting (WRF) model provided by Servei Meteorologic
de Catalunya using three co-located instruments: two
Micro Rain Radars (MRR) and a disdrometer.

The study site is an Eastern-Pyrenees valley, ‘La Cer-
danya’, which is of interest due to its altitude and its
topography, which challenges the accurate measurement
of solid precipitation using rain gauges. According to
(Kochendorfer et al., 2017), solid precipitation can be
underestimated using gauges. For this reason, these three
instruments were installed in this particular site.

Both MRR datasets were processed using a software
named RaProM —see (Garcia-Benadi et al., 2020)— which
was developed to obtain the type of precipitation among
other variables. Disdrometer data provides the type of
precipitation and both model runs also forecast it.

II. DATA USED
A. Study site

The study site is at Das, in ‘La Cerdanya’ valley.
All instruments were located near the Das-Aerodrome
weather station —where instruments from previous cam-
paigns have been located—. The Das-Aerodrome weather
station is located 1097 m above sea level in the Eastern
Pyrenees at the bottom of an inner valley and it is sur-
rounded by mountains that exceed 2000 m. Valleys tend

to be relatively isolated from the main air flow thus pro-
ducing specific phenomena, with thermal inversions be-
ing common when the cold air gets caught at the bottom
(Gonzalez et al., 2021).

B. Precipitation types : solid, liquid, mixed and
no precipitation

Since three instruments and one model are used for
this study, four datasets with different precipitation type
classifications are used. For example, the disdrometer
can distinguish up to eight precipitation types, whereas
the model, just up to four. This is the reason the precip-
itation was reclassified into three categories correspond-
ing to its phase: liquid, solid, and mixed. In addition to
these three, there is the category ‘no precipitation’. The
program used to process the MRR data also computes
the type ‘unknown’, which was not used.

This phase-oriented classification is not used by any
of the instruments or by the WRF model, so a certain
criterion was applied to convert data classified using each
instrument into our phase-oriented classified data. The
procedures followed for each instrument are detailed in
the following sections.

C. MRR2 and MRRPRO

Both instruments are Doppler profilers which operate
at 24GHz manufactured by the METEK company in Ger-
many (METEK, 2024). They retrieve the vertical profile
of Doppler spectra from hydrometeors.

The differences in resolution are:

e For the MRR2, we retrieve 30 altitude intervals of
height from 100 m to 3100 m above ground level.
These intervals are 100m high. The time resolution
is 1 min.
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e For the MRR-Pro, we retrieve 253 intervals of
height from 1100m to 7450m above sea level. These
intervals are 50m high. The time resolution is 10s.

Concerning the measuring frequency of both instruments,
the main difference is that the MRR2 is constantly mea-
suring and it provides a daily file in any circumstance,
while the MRR-~Pro only provides an hourly file when
an echo is detected. This process increases the noise in
the MRR2 type data. We do not have a file for every
hour when the MRR-Pro is measuring, but we do for the
MRR2.

D. Disdrometer

The disdrometer is an instrument which uses the prin-
ciple of extinction to retrieve a spectrum of diameter and
fall speed of hydrometeors. It uses the shadow that they
cause while crossing a laser beam produced by the instru-
ment. The disdrometer is a Parsivel 2 model provided by
HydroMet. This spectrum of diameter and fall speed
has 32 classes for both variables. With this data, it is
possible to determine the type of precipitation, among
other variables. From the classification of precipitation
particles, the disdrometer calculates the rain rate. The
type of precipitation is based on the number of parti-
cles within the measurement range, and the precipita-
tion code is determined from the precipitation intensity
R (in mm/h of an equivalent amount of liquid water)
(Parsivel Manual, 2025).

The code used for hydrometeor identification is based
on the SYNOP ww Table 4677. According to this clas-
sification there are eight precipitation types: ‘Drizzle’,
‘Drizzle with rain’, ‘Rain’, ‘Rain, drizzle with snow’,
‘Snow’, ‘Snow grains’, ‘Soft hail’, ‘Hail’ and ‘No precipi-
tation’ (Parsivel Manual, 2025).

We considered ‘Drizzle’, ‘Drizzle with Rain’ and ‘Rain’
as ‘Liquid’; ‘Rain, drizzle with snow’ and ‘Snow grains’
as ‘Mixed’; and ‘Snow’, ‘Soft hail’ and ‘Hail’ as ‘Solid’
for the new phase-based classification.

E. SMC post-process

Catalonia’s meteorology agency (Servei Meteorologic
de Catalunya) runs the WRF model twice a day at
00 UTC and 12 UTC. It is a short-range run since its
forecast horizon is 48 h with a time resolution of 1 h.
Since it is run twice a day with this forecast horizon we
have four simulations per hour (two for each run) except
for the beginning and the end of the forecast period.

Each model output is valid for 1h, it is not a instan-
taneous forecast. It takes into account the precipitation
type and amount, mean temperature and mean relative
humidity of the previous hour to compute the next hour
ones.

Each model grid cell is defined by its 0.015° separa-
tion between points, both in latitude and longitude. The
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model provides data for all Catalonia but the domain
considered in this work is the 3 x 3 grid closest to Das
making the forecast spatially extended data.

The data used from the WRF post process is the type
of precipitation. There are four outputs from the model:
‘Categorical rain’, ‘Categorical snow’, ‘Categorical freez-
ing rain’ and ‘Sleet’ (rain and snow mixed). No cases of
freezing rain are forecast the dataset used.

When assigning precipitation types, we assigned Rain
as liquid, Snow as solid, and Sleet as mixed.

F. Period of study

The starting date of the period of study is the 21st of
November 2023 and the finishing date is the 8th of June
2024 but we only studied the period when all three in-
struments were active to avoid instrument-biased results.

Frequently, there were hours when some instruments
failed to work properly, which were eliminated. For ex-
ample a long gap occurred from the 8th of March to the
1st of May.

G. Quality Control (QC)

Firstly, there were some points (hourly data) which
were eliminated since the data was not reliable.

e For the disdrometer, the points where the detec-
tor was not functioning properly (the output of the
measurements itself has a parameter indicating the
status of the detector and the reliability of the mea-
surement) —e.g., when the anti-freeze heating sys-
tem failed and the sensor froze—.

e For the WRF post-processed product, the first six
hours of each run (corresponding to the first six
hours of lead time) were eliminated. The reason for
doing so is the model needs time to spin-up. The
model starts without any cloud or any hydrometeor
species formed and it needs certain time to develop
them.

After the invalid data was eliminated there was a QC
applied to the data of both MRRs and the disdrome-
ter. The points which did not meet certain conditions
were considered noise and their value was changed to ‘no
precipitation’ regardless of its original value. These con-
ditions change depending on the instrument.

e For the disdrometer, all groups of continuous pre-
cipitation which lasted less than 6 min were consid-
ered noise. This was a QC applied on the dimension
‘time’ only.

e For both MRRs, the same six-minute interval of
continuous precipitation condition is applied and,
in addition, the detection of precipitation over a
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vertical distance of 500 m was required. These con-
ditions were a QC applied over the dimensions of
‘time’ and ‘altitude’, since both MRR measures are
dependent on them.

Since we are validating the type of precipitation at the
surface, we considered the disdrometer to be the reference
observation after the QC. The disdrometer was chosen for
two main reasons: it is the only one that measures the
type of precipitation on the ground, and it is the only in-
strument which explicitly includes the ‘no precipitation’
type. For the other instruments ‘no precipitation’ is ex-
trapolated from the data.

II1. METHODOLOGY
A. Fuzzy verification

The main challenges encountered in the data compar-
ison are the difference in time resolution and in position.
The disdrometer and both MRRs are co-located punc-
tual measurements while the WRF is based on a grid
and their time resolutions are: 10 s (MRRPRO), 1 min
(disdrometer and MRR2) and 1 h (WRF). In addition
to these instrumentation-related challenges we must also
take into account those related to the great spatial and
temporal variability of hydrometeors. These data has
high variability per se.

The method by which the data is sampled can signifi-
cantly affect the comparison results. In this work we used
two Fuzzy Verification approaches. In order to relaz the
comparison conditions we downsampled the data in time
and space to the lowest resolution of 1h. It is important
to take into account that each instrument has a different
time resolution but all of them were downsampled to the
lowest, corresponding to the WRF forecasts.

Since we are working with categorical data, we cannot
average the variable ‘Type of precipitation’. Neverthe-
less, we applied two alternative approaches to downsam-
ple the data. These processes were used to downsample
data points in both time (for example, from a resolution
of 10 s to a resolution of 1h) and space when downsam-
pling the WRF post-process from a 3 x 3 1.5 km grid to
a single point, as are the other instruments.

1. First approach: most frequent type of precipitation

With this approach, only the most frequent type of
precipitation was taken into account. The process used
is as follows.

e If there were no points with any type of precipita-
tion within the 3 x 3 grid or during the time interval
considered, we assigned ‘no precipitation’.

e If a given type of precipitation (A) was repeated
more than 70% of the time or grid —when precipi-
tation was detected—, we assigned this type (A).
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e If no predominant type was observed, we assigned
mixed.

This process is shown in Figure 1 where all the data of
one hour becomes one event of liquid precipitation since
liquid precipitation is observed 75% of the time.

1 hour _— L

Figure 1. Example of a data resample taking into account only
the most frequent type of precipitation. Each colour/letter
indicates a different precipitation type: blue (L) liquid and
orange (M) mixed.

2. Second approach: all types of precipitation detected

With this approach, we consider all the precipitation
types detected during the period of time and in the whole
3 x 3 WRF grid. As expected, using this approach we
obtained more data points than using the previous one,
because when both solid and liquid phases are detected,
we obtain two data points for this period of time —one for
each phase—. This process is shown in Figure 2, where all
the data in one hour becomes three precipitation events.

L
L
M
1 hour M
S
S
L

Figure 2. Example of a data resample taking into account all
types of precipitation. Each colour/letter indicates a different
precipitation type: blue (L) liquid, orange (M) mixed and
green (S) solid.

Concerning mixed precipitation, using the previous
method, we had two ways of obtaining it: if the most
frequent type was actually mixed and if no type was de-
tected more than the 70% of the time. Meanwhile using
this approach we only obtained mixed precipitation if this
type is explicitly detected.

B. Computed verification scores

In order to validate the models we used three scores:
POD, FAR, and GSS whose definition are provided
in the Appendix. The formulae and the meaning of
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each score can be found in (WWRP/WGNE, 2015) and
(EUMETRAIN, 2025). Those were computed along con-
tingency tables every time each type of precipitation is
validated. The definition for a 2 x 2 contingency ta-
ble —to validate Yes/No events such as Precipitation/No
precipitation— and a 3 x 3 contingency tables —to vali-
date the event of a certain type of precipitation against
the other types— are also provided in the Appendix.

POD answers What fraction of the observed ‘yes’
events were correctly forecast, FAR answers What frac-
tion of the predicted ‘yes’ events actually did mot occur
and GSS answers How well did the forecast ‘yes’ events
correspond to the observed ‘yes’ events, accounting for
hits due to chance —which is relevant as it would be eas-
ier to forecast precipitation in wetter climates—.

e GSS has a range of -1/3 to 1 where 1 is the best
score, but the minimum value depends on the ver-
ification sample’s climatology. For rare events, the
minimum GSS value is near 0, while the absolute
minimum is obtained if the event has a climatolog-
ical frequency of 0.5 and there are no hits. If the
score goes below 0 then chance is preferred to the
actual forecast, and it is said to be unskilled.

e POD has a range of 0 to 1 where 1 is the best score.
This maximum value means there are no misses,
so every time the event was observed, it was also
forecast. If the value is between 0 and 1 it means
the model failed to completely forecast the event.
If it is exactly 0, every time the event was observed,
the model forecasted something else.

e FAR has a range of 0 to 1 where 0 is the best score
meaning no false alarms occurred —a false alarm be-
ing the case where the model forecasted the event
but it was not observed and there were only hits.
If the number is between 0 and 1, the model fore-
casted the event when it was not observed but it
performed correctly on other occasions.

It is important to notice that POD and FAR are comple-
mentary scores, meaning that if one is 1 the other is not
required to be 0, since they take into account different
parts of the contingency table (see Tables V and VI at
the Appendix).

Since we are validating a model, the time factor is
important. This is the reason we decided to compute
the scores against lead time to determine their evolution.
Each model run has a maximum lead time of 48 h.

IV. FIRST APPROACH RESULTS: MOST
FREQUENT TYPE OF PRECIPITATION

In Sections IV C and V C the results of the GSS versus
lead time and UTC are are exposed. When distinguish-
ing between types of precipitation, only the figures where
liquid precipitation is validated are shown. The number
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of data for the other types is much smaller and the fluc-
tuations are larger.

When a shadowed area is plotted in any Figure, this
area represents the error variance for each computed val-
idation score.

A. Value counts for the whole period of time
before and after Quality Control

Data in Tables I and II shows the number of hours
before and after the QC for each type of precipitation.
All the instrument data was resampled to a one-hour time
period keeping the most frequent type of precipitation. It
is important to note that since each WRF run has a 48h
lead time, the number of hours for WRF00 and WRF12,
should be twice the instruments’ number of hours. If a
model run (eg WRF00) forecasts rain at lead time hour
28 (24+4) and, one day after, WRFO0O forecasts rain at
hour 4 —representing the same UTC hour but a different
lead time—,both instances are counted as two separate
precipitation events in the following tables.

Disdrometer MRR2 | MRRPRO |WRF00 | WRF12
No preci. 1012 635 650 2682 2590
Preci. 219 1018 1003 240 261
Solid 43 348 733 3 0
Mixed 8 374 185 30 30
Liquid 168 296 85 207 231

Table I. Number of hours for each precipitation type before
the QC using the first method of resampling the data.

Disdrometer MRR2 | MRRPRO |WRF00 | WRF12
No preci. 1065 1094 1014 1980 1896
Preci. 156 127 207 179 208
Liquid 115 81 57 147 179
Mixed 7 14 7 29 29
Solid 34 32 73 3 0

Table II. Number of hours for each precipitation type after
the QC using the first method of resampling the data.

The comparison of both tables shows that the applica-
tion of QC significantly reduces the number of hours with
precipitation. Since the QC considers noise any interval
of continuous precipitation which does not exceed 6 min,
it is clear that the noise is substantial, especially in both
MRR datasets.

In Table II, after QC, it is shown that the number of
precipitation hours is significantly below the one with-
out it, as expected in this climate. The number of hours
where liquid precipitation is forecast is quite consistent
with the number of times it is observed but this is not
the case with the other types. Both runs significantly un-
derestimate the number of hours with solid precipitation,
as well as the hours with mixed one with respect to the
MRRPRO. In general terms both runs tend to underes-
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timate the hours when precipitation is detected because
of the lack of mixed and solid forecasts.

B. Verification scores using the entire time period

To compute the scores in Figure 3, all data was used,
after being resampled to a one-hour interval. Hours when
all instruments did not detect precipitation were kept
since this data does very much have an effect on the value
of GSS.
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Figure 3. POD, FAR and GSS computed for the whole period
of time. In the upper plots we only distinguish between ‘pre-
cipitation’ and ‘no precipitation’ whereas in the lower plots
we divide the ‘Precipitation’ in three categories.

Concerning POD plots on the left, we can see that
roughly 40% of the precipitation events were correctly
forecast by both model runs. This number drops to al-
most zero considering only solid precipitation, but stays
near 30% concerning liquid precipitation.

False alarms have a high ratio, especially for liquid and
mixed precipitation. Note that there is no false alarm for
solid precipitation and WRF12, since this model did not
forecast this type, and the value is low for WRF00 since
it only forecasted mixed 3 times.

GSS value is slightly better for the disdrometer for lig-
uid precipitation. There is no general tendency for the
other cases since all values are really close to zero. From
a general point of view, there is no model which is clearly
more consistent with any instrument.

C. Study of the dependence of the verification
scores on lead time and UTC

Figure 4 shows the evolution of GSS versus the model’s
lead time separated by instruments. In the left column
plots, the validation score is computed while distinguish-
ing between precipitation and the absence of it, while in
the right column plot, there is a differentiation by pre-
cipitation types inside the ‘precipitation’ category.
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Figure 4. GSS computed for both general precipitation and
distinguishing liquid precipitation with respect to the model
lead time. Each comparison between the WRF runs and in-
strument is represented using a distinct colour: green (dis-
drometer), red (MRR2), blue (MRRPRO).

From a general point of view, we can see that the GSS
values for liquid precipitation tend to be lower that the
ones for just precipitation, and not distinguishing be-
tween types.

Although it is not clearly seen in Figure 4, the same
comparison was done plotting instruments against each
other (not shown) and the values for the MRRPRO ap-
pear to be slightly worse than the other instruments.

In the right plots of Figure 4, the 12 UTC WRF run
seems to have a common drop on the GSS around a lead
time between 24 and 30 hours for all three instruments.
This model run seems to be slightly worse than the other
when analysing liquid precipitation, but looking at the
right plots in Figure 4, both runs have values really close
to zero and the value fluctuates a lot especially for both
MRR.

Concerning the error variance Sgqq for general precip-
itation, it stays between 0 and 0.2 except for four cases
—one for WRF00 and three for WRF12— WRFO00 and
the MRR2 at 11 h of lead time where it peaks at about
0.3, WRF12 and MRR2 at 25 h at a value of near 0.3,
WEFF12 and the disdrometer at 17 UTC peaks at near
0.4, and WRF12 and MRR2 at 48 h of lead time at a
value of 0.3.

Regarding the other computed scores, POD appears to
be slightly lower for the MRRPRO from a general point
of view. POD also appears to have a certain daily pattern
when computing it for WRF00 run. When evaluating it
for liquid precipitation it rapidly changes from 1 to 0.
FAR does not fluctuate as much as POD but it stays
high for liquid precipitation, between 0.5 and 1. For gen-
eral precipitation, FAR fluctuates mostly from 0.75 to 0,
depending on lead time.

In Figure 5 is shown the same score but against UTC
to examine possible diurnal cycles. The upper plots cor-
respond to the 00 UTC run and the lower ones to 12 UTC
one. In the first six hours the 00 UTC seems to slightly

Barcelona



Queralt Calderén de Armengol

— Disdrometer ~—— MRRZ ~—— MRRPRO GSS

06

=
o

04

02

WRFQO Preci

‘ i
'WRFOQO Liguid

2 = =

s ke

\

R =
15

0.0

6 1z 13 24 6 1z 24

Hour UTC Hour UTC

06 06
g ]
204 o4
Al o
E - 2 W} ﬁ
= = /

0.0 0.0 1+ \._.,, -

6 12 18 24 6 12 18 24
Hour UTC Hour UTC

Figure 5. GSS computed for both general precipitation and

distinguishing liquid precipitation with respect to UTC.

outperform the 12 UTC one. The value of both model
runs drops between 12 UTC and 18 UTC and rises again
from 18 UTC to 24 UTC.

D. Precipitation types over the whole time period
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Figure 6. Precipitation types during the whole period for
the three instruments and both model runs using the second
method of resampling the data. The colours represent dif-
ferent types of precipitation: blue (liquid), orange (mixed),
green (solid).

The types of precipitation for the whole period of study
were plotted in Figure 6. Each point represents a data
point of each type. The lead time is not taken into ac-
count in this plot: if two runs of the models forecast
different type of precipitation for the same hour —with
one model initialized 24 hours after the first one— two
data points are plotted.

It is is important to notice that the studied period
ends at the beginning of June, but no precipitation was
detected by all three instruments apart from the one plot-
ted in Figure 6. Concerning both model runs we can see
that solid is barely forecast, while all instruments detect
solid precipitation in other episodes of precipitation. The
episodes of liquid precipitation are mostly measured by
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all instruments and forecast by both models.

V. SECOND APPROACH RESULTS: ALL
TYPES OF PRECIPITATION DETECTED

A. Value counts for the whole period of time
before and after Quality Control

The data in Tables IIT and IV also shows the number
of hours where each type of precipitation was detected
after the data was resampled into a one-hour time period
but keeping all types when resampling.

Disdrometer MRR2 | MRRPRO |WRF00 | WRF12
No preci. 1014 482 511 1995 1918
Preci. 219 751 722 182 210
Liquid 191 586 303 168 197
Mixed 11 49 231 50 53
Solid 56 597 682 17 20

Table III. Number of hours when each precipitation type is
detected before the QC using the second method of resam-
pling the data.

Disdrometer | MRR2| MRRPRO |WRF00| WRF12
No preci 1068 1092 1016 1987 1906
Preci 159 135 211 182 210
Liquid 137 105 175 168 197
Mixed 10 6 172 50 53
Solid 44 95 200 17 20

Table IV. Value counts for each precipitation type after the
QC using the second method of resampling the data.

Comparing Tables III and IV it is clear that, even con-
sidering all types of precipitation, the number of hours
of precipitation is reduced after the QC for all three in-
struments but especially for both MRR. The number of
hours without precipitation is almost doubled for these
instruments.

In Table IV is shown how both model runs continue
to underestimate the number of precipitation hours even
though the number of hours with each type of precipi-
tation increased using this method of resampling as ex-
pected. The number of hours when solid precipitation is
detected by the MRRPRO is significantly higher than for
any other instrument. The same applies to mixed precip-
itation. It is important to notice that using this method
of resampling the data, mixed precipitation cannot be
obtained because no type of precipitation was the most
frequent only if mixed was detected.

B. Verification scores based on the entire time
period

In Figure 7 we can see that the upper plots of the
Figure (those being POD, FAR and GSS for precipita-
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Figure 7. POD, FAR and GSS computed for the whole period
of time. In the upper plots we only distinguish between ‘pre-
cipitation’ and ‘no precipitation’, whereas in the lower plots
we divide the ‘Precipitation’ in three categories.

tion) are the same as when computed using the previous
method of resampling. As expected since we also consid-
ered the point to be precipitation if there were at least
one case of precipitation.

When distinguishing the three different types of precip-
itation, POD almost drops to zero for solid, and its high-
est value is for liquid precipitation and WRF12. FAR is
quite high especially for mixed precipitation but it drops
for the MRRPRO. This is because the MRRPRO de-
tects much more mixed than the others, which can also
explain why the GSS mixed value is the highest for the
MRRPRO. When liquid is considered, the disdrometer
and the MRRPRO have a slightly higher value than the
MRR2.

C. Study of the dependence of the verification
scores on the lead time and UTC

In Figure 8 the same plot as in Figure 4 is shown.
The same differentiation in instruments and in type of
precipitation is made.

Looking at all plots in Figure 8, no model run is clearly
better than the other for any instrument. It is expected
that the accuracy of the model should decrease with re-
spect to lead time but it does not happen, a certain ten-
dency is not clearly observed for precipitation nor liquid
precipitation.

The values for liquid precipitation are in a similar
range as the ones for just precipitation. This is an im-
provement with respect the same scores computed for
the first approach shown in Figure 4. The value does
not fluctuate from zero to another value as much and the
same happens for the other type of precipitation (not
shown). A similar tendency is shown comparing left and
right plots. When WRFO00 outperforms when detecting
precipitation, the same happens for liquid one.

Concerning the error variance Sé gg» it stays the same
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Figure 8. GSS computed for both general precipitation and
distinguishing liquid precipitation with respect to the model
lead time. Each comparison between the WRF runs and in-
strument is represented using a distinct colour: green (dis-
drometer), red (MRR2), blue (MRRPRO)

for general precipitation since the same criteria is applied
but it slightly increases for liquid precipitation. Despite
that, it does not fluctuate as much.

Regarding other scores computed, the behaviour for
POD and FAR are the same for general precipitation but
they change evaluating liquid one. POD’s daily cycle for
liquid was not clearly observed using the first method
but now it is more visible, only for WRFO0O as in the first
method. FAR values are not as high but the fluctuations
are bigger.
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Figure 9. GSS computed for both general precipitation and
distinguishing liquid precipitation with respect UTC using the
second method to resample the data.

In Figure 9, a similar plot as in Figure 5 is done but the
second approach is applied. The left plots are exactly the
same (since the criteria is the same as discussed before).
The same drop between 12 UTC and 18 UTC is also seen
in the right plots corresponding to liquid precipitation.
The values of GSS for liquid precipitation are better for
the WRFO00 run. While values stay quite low, these are
better than those obtained using the first method of re-
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sampling the data: in this Figure, the behaviour of the
right column plots are more similar to the left ones, the
fluctuation in the values are not as significant.

D. Precipitation types over the whole time period
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Figure 10. Precipitation types during the whole period for
the three instruments and both model runs using the second
method of resampling the data. The colours represent differ-
ent types of precipitation: blue (liquid), orange (mixed) and
green (solid).

In general, all instruments detect similar episodes of
precipitation but it is clear that MRRPRO sees more pre-
cipitation than the other instruments, especially mixed
one. That said, zooming into the specific events, it is
also seen that mixed precipitation is the least detected
by MRRPRO. The two model runs are really similar and
they rarely produce a false alarm of precipitation. In Fig-
ure 7, we see that FAR for precipitation is 0.4 which is
moderately high since this score is computed using hourly
comparisons. Meanwhile, in terms of general events of
precipitation, the model just has one false alarm at the
beginning of February.

In Figure 10 it is shown that the episodes tend to be
longer when observing with the MRRPRO. On the other
hand, the forecast episodes seem to be shorter than the
ones observed.

The WRF runs are more similar using the second ap-
proach of resampling the data, since more solid precipi-
tation is forecast. That also makes it more similar to the
observation. Both MRRs detect more solid precipitation
than the disdrometer and the WRF forecasts.

VI. PATTERNS AND RECURSIVE
BEHAVIOUR

During the study, some patterns were observed such
as a sudden drop in the GSS value as seen in Figure 5
and Figure 9. A diurnal cycle is seen when computing
POD and FAR (not shown), especially when evaluating
WRFO00. This drop is not as clearly seen when distin-
guishing liquid precipitation, or any of the other types of
precipitation most probably due to the lack of data
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Since the phenomenon is independent of the instru-
ment used, it must be related to a factor common to all
instruments. It was hypothesized to be due to changes in
the number of data available across different hours. We
used the data resampled using the first method to inves-
tigate the fluctuations in data number. This is shown in
Figure 11.
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Figure 11. Number of data as a function of UTC hour.

Since it was suspected that there were certain biases
in the MRRPRO, we analysed the number of data with
and without this instrument. The total number of hours
was doubled using only the MRR2, which could simply
mean that the MRRPRO was not measuring during a
long time period, but when plotting the number of data
versus UTC a certain pattern was observed. This pattern
is shown in Figure 11. There is a clear peak in the num-
ber of data when the MRRPRO is present. To further
understand this peak, we obtained the number of hours
where each type of precipitation was detected in both
situations. There was an increase of at most 5 h in the
number of liquid precipitation hours which is negligible
against the huge amount of ‘no precipitation’ data which
was added. POD, FAR and GSS were also computed and
there were no significant changes.

Since the increase in data is mostly due to noise—
specifically, 'no precipitation’ data— we eliminated the
hours during which no instrument detected precipitation.
However POD and FAR presented similar behaviours as
before and GSS value was lower (not shown).

VII. CONCLUSIONS
A. Conclusions over the full study period

Generally speaking, the scores for the whole period of
time are really similar for both model runs. Observing
the global verification scores for both methods in Figures
3 and 7 and the precipitation type detected during the
whole period in Figure 6 it is observed that from a general
point of view, both model runs can forecast the general
episodes of precipitation but fail to forecast solid and
mixed precipitation. Mixed seems to be forecasted with
a certain time offset. This would explain the high value
for FAR using both methods.
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Solid precipitation is barely forecast for either models
as can be seen in Figure 6, this explains why both POD
and FAR are really low for solid precipitation in Figure 3.
This value slightly increases when considering all types of
precipitation in Figure 7 and it is noticed that the model
forecasts more solid precipitation in Figure 10.

The GSS values are considerably better using the sec-
ond method, which puts an emphasis on how each result
is affected by the way we process the data. However, the
values are quite low. Liquid is the type with the best
value especially for the disdrometer.

When comparing the global value counts using both
methods for each type of precipitation in Tables IT and
1V, —after QC— and also in Figures 6 and 10, when all
precipitation types are plotted, it is clear that there is an
increase of the number of data for all types, especially for
the MRRPRO. This is expected since the MRRPRO has
a time resolution of 10s, so it is easier for this instrument
to observe small changes. That likely causes an overes-
timation of the number of detections, this instrument is
too sensitive to apply the second method of resampling
the data, at least, with a resampling interval of 1 h.

The fact that the episodes of precipitation seem longer
when seen by the MRRPRO in both Figures 6 and 10
—but specially in the second one— can also be explained
by this instrument seeing smaller events. If one zooms
in to the specific episodes of precipitation, the MRR2
barely sees the smallest events and they can easily be
interpreted as noise, whereas the MRRPRO sees those
events better defined.

Less mixed precipitation was expected using the sec-
ond resampling method, as it relies on direct detection
rather than the absence of a dominant type. However,
this was not observed, likely because this effect was com-
pensated by considering all types in one hour. The num-
ber of mixed precipitation is only lower using the second
approach for the MRR2.

The fact that both MRRs observe more solid precipi-
tation than both disdrometers and WRF is as expected
since the MRR do not detect at the surface but at a cer-
tain altitude whereas both the disdrometer and the WRF
model provide data at surface level.

B. Conclusions of the study against lead time and
UTC

In Figures 4 and 8 we expected the GSS value to drop
with lead time but this tendency is not seen. It is also no-
ticed that the values for these scores are generally higher
than the global value considering the whole period of
time. This two facts can be attributed to the limited
number of data. The highest number of precipitation
hours is around 200 at most, meaning that, on average
there should be around 5 h of precipitation for each lead
time hour.

Concerning the GSS fluctuations in Figure 4, these
are not as large when we used more data in the sec-
ond method. This also explains why there is a similar
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tendency between general precipitation and liquid one
in Figure 8, meaning that when WRFO00 outperforms
WRF12 (and wvice-versa) when detecting precipitation,
the same happens for liquid one.

The error variance Séss is slightly higher using the
second approach but it fluctuates less. Regarding the
behaviour of other scores, POD cycle is instrument inde-
pendent, so it can be related to the first run of the model.
The change in FAR values is highly related to the number
of data available. Using the first method, the temporal
offset between observation and forecast probably domi-
nates, which may explain the elevated FAR values. Using
the second method, the fluctuations stay important, as
the increased detection of liquid precipitation does not
fully compensate the offset.

When analysing the behaviour against UTC hour,
there is a drop in the GSS value for all runs using both
methods of resampling the data. To explain this phe-
nomena we looked into the lead time plots in Figures 4
and 8. This UTC time period when the drop is found
corresponds to the following lead times: 12h to 18 h and
36 h to 42 h for WRF00, Oh to 6 h and 24 h to 30 h for
WRF12. WRFO00 is performing worse than WRF12 be-
tween 13h and 17h and between 36 h and 46 h, meaning
that the time where this drop is corresponds to the lead
time when WRFOO is performing at its worst.

Looking at the lead times which corresponds from 12
UTC to 18 UTC in WRF12 lead time, the data for the
first 6 h are eliminated due to the spin-up process on the
model and WRF12 performs worse than WRF00 from
24 h to 30 h. During this interval of time both runs per-
form worse or the data is eliminated.

C. Conclusions of the study on observed patterns

In Figure 11 it is clear that the MRRPRO has a cer-
tain diurnal cycle. This behaviour can be attributed to
the fact that MRRPRO only provides an output when an
echo is detected, since this instrument is near the aero-
drome, it is likely to be influenced by its activity, which
should produce more noise during the day. This ‘no pre-
cipitation’ is obtained from the noise of the aerodrome.

MRRPRO’s behaviour is leading the trend of the
global number of data. However, since the number of
hours where precipitation is detected does not change
significantly, the patterns should not be explained by
the differences in the number of data. Furthermore,
this number of data peak is located between 6 UTC and
18UTC whereas the drop in the scores is between 12 UTC
and 18 UTC. This drop corresponds to the first 6 hours
of modelling for the 12 UTC WRF run and these hours
were eliminated. This patterns are likely associated with
the model.
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VIII. APPENDIX

The formulae for the verification scores used in this
work are the following:

Hits
POD= ———M 1
Hits + Misses’ (1)

False Alarms
FAR = 2
R Hits + False Alarms’ (2)

Hits

I =
€S Hits 4+ False Alarms + Miss’ 3)
Hits — Hits,
GSS = 4
Hits + False Alarms + Misses — Hits,’ (4)
where
Hit (Hits + False alarms)(Hits + Misses)
it,

~ Hits + False alarms + Miss + Correct Negatives’

(5)
is the number of hits for a random forecast.
The definitions of a 2 x 2 and 3 x 3 contingency tables
are shown in Tables V and VI respectively.

Table VI. Standard definition of a 3 X 3 contingency table
to validate event ‘A’ where FA means ‘False Alarm’ and CN
means ‘Correct Negative’

Event observed

Event forecast| A | B C
A Hit |FA| FA
B Miss|CN| CN
C Miss|CN| CN

In Table VI the definitions for a contingency table for
event ‘A’ validation are shown. To fully interpret it, is
important to take into account that this kind of tables
are created in a ‘Hit or miss’ context. When validating
event ‘A’ if the observation is B (observation miss) and
the forecast is also B (forecast miss) the result is a correct
negative, since neither the observed nor forecast was ‘A’.
When validating event B, the numbers of the contingency
table do not change but role they play when calculating
the scores does.
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