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Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
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Abstract: Responsive systems self-adapt their overall characteristics thanks to the presence of
particles that modify their individual properties in response to external stimuli. Inspired by living
matter and recent advances in material science, we perform numerical simulations to study slow
dynamics suspensions in which particle elasticity can be tuned. In particular, we study the evolution
of static and dynamic properties at two different elasticity states, observing that it is possible to
speed up the particle dynamics without altering the overall static properties of the system.
Keywords: Responsive matter, slow dynamics, elasticity, Brownian particles.
SDGs: 4: Quality education, 9: Industry, innovation and infrastructure, 12: Responsible
consumption and production and 17: Partnerships for the goals.

I. INTRODUCTION

Responsive matter refers to systems composed of par-
ticles that can modify their individual properties such as
morphology and mechanical characteristics in response
to external stimuli. This is the case for many living mat-
ters, which consist of agents whose motility and elas-
tic properties can change depending on external factors
such as chemical interactions, local agent concentration,
or light [1, 2]. While significant effort has gone into
understanding how external stimuli can modify motility
in living systems [1], only recently has attention shifted
toward studying changes in size and elasticity. To ap-
proach this scenario, recent advances in materials sci-
ence and engineering have enabled the design particles
with life-like properties that closely mimic the behavior
of bioinspired materials with remarkable precision. For
instance, synthetic hydrogel particles can exhibit peri-
odic and synchronized oscillations in response to chemical
feedback [3]. Additionally, computational models have
been proposed to study the collective synchronization of
size evolution in cells to capture the wave deformation
emerging in living tissues [4].

In this work, we propose a simple model to study the
impact of modifications in particle elasticity on the dy-
namic and static properties of highly concentrated par-
ticle systems. As a reference, we consider systems ap-
proaching dynamical arrest, such as supercooled liquids
and glasses [5]. These systems are characterized to mani-
fest slow dynamics as the volume fraction increases, a be-
havior governed by disordered structural configurations
at the microscopic level. Indeed, the structural relax-
ation time τα, involving the complete relaxation of the
system, increases at the characteristic length scale q in
which the static structure factor S(q) develops a peak.
The increase of τα indicates that glasses, despite having
the disordered structure typical of liquids, exhibit solid-
like behavior. Similarly, diffusion may occur at longer
timescales, or even be completely suppressed.

In order to summarize, in Section II we describe the nu-

merical model and present the different quantities mea-
sured throughout the study to characterize both static
and dynamic properties. In Section III, we discuss the
results obtained, beginning with the approach to slow dy-
namics and continuing with the introduction of variations
in particle elasticity. We conclude this section rationaliz-
ing how these variations affect the dynamical properties.
Finally, in Section IV, we summarize the main findings
and outline future modifications aimed at deepening our
understanding of how specific particle activities can in-
duce a decoupling between static and dynamic proper-
ties.

II. METHODS

A. Simulation details

We perform two-dimensional Molecular Dynamics sim-
ulations of a 50:50 binary mixture with N = 10000 Brow-
nian particles of mass m = 1 and diameters σA = 1.2 and
σB = 0.8, in order to avoid crystallization. Thus, these
particles obey the equation of motion [6]

0 = F⃗C + F⃗D + F⃗R , (1)

where F⃗C = −∇⃗UH (r) represents the conservative forces
coming from the particle-particle interaction. Addition-

ally, F⃗D = −ξv⃗ corresponds to the drag force, where ξ is
the friction coefficient

ξ =
kBT

D
, (2)

where D is the translational diffusion coefficient. Fi-
nally, F⃗R captures the fluctuation force associated with
the thermal noise called the random force. In particu-

lar, this random force is characterized by ⟨F⃗R⟩ = 0 and

⟨F⃗R
i (t) F⃗R

i (t′)⟩ = 2ξkBTδ(t−t′) [6]. The equation of mo-
tion is solved using the Euler–Maruyama algorithm [6],



Static-Dynamics Decoupling in Responsive Matter Suspensions Berta Gómez Peinado

which is commonly employed to integrate stochastic dif-
ferential equations, as described in Section A of the Sup-
plementary Material.
The particle interaction, which defines the conservative

forces, is described by a harmonic potential:

UH = ϵij(rc − rij)
2 ; rij < σij , (3)

with ϵij =
√
ϵiϵj being the particle elasticity, σij =

0.5 (σi + σj) the particle diameter and rij the distance
between two particles. In our simulations, length, mass,
and energy are measured in units of ⟨σ⟩, m and ϵ, re-
spectively. Thus, time is measured in units of τ =√

m ⟨σ2⟩ /kBT . In the following, we will consider kBT
and D = 10σ2/τ . Additionally, we vary the packing
fraction ϕ, which determines the volume that occupies
the particles of the system, and is defined as

ϕ =
NAparticles

A
=

π

4

〈
σ2

〉 N

A
, (4)

where A = L2 is the area of the simulation box being L
the box length. We apply periodic boundary conditions.
All simulations are performed with LAMMPS [7].

B. Calculated observables

We analyze the static properties by computing the ra-
dial distribution function g(r), which represents the prob-
ability of finding particles at a distance r. This function
is related to the local density around a particle and is
defined as [8]

g(r) =
⟨ρ(r)⟩

ρ
=

A

N2

〈∑
i=1

∑
j ̸=1

δ(r⃗ − r⃗ij)

〉
, (5)

where r⃗ij is the distance between particle i and particle
j and ⟨...⟩ is the average over different configurations.
To obtain information about static correlations at long

range, we compute the static structure factor S(q), de-
fined as [9]

S(q) =
1

N b2(q)

〈∑
j,l

bj(q)bl(q) exp (−iq⃗ · r⃗jl)

〉
, (6)

where q⃗ = 2π
L m⃗ (with m ∈ Z2) is the wavevector, bi(q)

indicates the scattering amplitudes of one particle, and
b2(q) is for all particles. Adding bi(q) we are taking into
account the polydispersity; in monodisperse systems, this
variable would be bi(q) = 1.
We also focus on the dynamic properties. In particu-

lar, we compute the mean squared displacement ∆r2(t),
which measures the average square distance made by a
particle with respect to the initial position [8]:

∆r2(t) =

〈
1

N

∑
i

[r⃗i(t+∆t)− r⃗i(t)]
2

〉
, (7)

where r⃗i represents the position of the i-th particle and
∆t is the elapsed time.
Finally, we compute the collective intermediate scat-

tering function Fc(q, t) which relates the distance trav-
eled by a particle relative to another particle in a ∆t,
providing information about density fluctuations [8]:

Fc (q
∗, t) =

1

N

〈
N∑
j,l

exp
[
iq⃗∗ · (r⃗j (t+∆t)− r⃗l (t))

]〉
,

(8)
at q∗ vector corresponding to the length scale in which
the S(q) develops a main peak. This function allows us
to study the dynamic correlations.

III. RESULTS

A. Approaching to slow dynamics

Our starting point is to bring the system close enough
to the supercooled liquid state to observe characteristic
slow dynamics. We approach a dynamical arrest state
by increasing ϕ, and fixing the strength of interaction
between all particles to be ϵAA = ϵBB = 200kBT . The
resulting interaction is illustrated by the gray curve in
Fig. 1(a).
We proceed as follows: we start at a low packing frac-

tion, close to dilute conditions, with particles initially

(a) (b)

FIG. 1: (a) Harmonic potential interaction between particles
for different elasticities. ϵij = 200kBT is the elasticity among
stiff particles whereas ϵij = 50kBT is the elasticity among
soft particles and ϵij =

√
ϵiϵj is the elasticity among stiff (ϵi)

and soft particles (ϵj). (b) Snapshots depict the particles
of simulation box with a different packing fractions ϕ. The
colors indicate the particle type; small particles are yellow
(σB = 0.8) and large particles are blue (σA = 1.2).
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(c) (d)

(a) (b)

FIG. 2: Static and dynamic properties as a function of the
packing fraction ϕ in equilibrium. (a) Radial distribution
function g(r). The data has been shifted up to improve vi-
sualization. (b) Static structure factor S(q). The data has
been shifted up to improve visualization. (c) Mean squared
displacement ∆r2(t). The discontinuous line highlights that
the system diffuses at long times, and the arrow indicates
where the packing fraction increases. (d) Intermediate scat-
tering function Fc(q

∗, t). The arrow indicates where the pack-
ing fraction increases and the horizontal gray line represents
Fc(q

∗, τα) = 1/e.

placed at random positions. The system is then allowed
to equilibrate, reaching a steady state where particles can
explore the available space. After equilibration, we com-
pute both the static and dynamic properties. To achieve
higher packing fractions, we progressively compress the
simulation box starting from the last equilibrated con-
figuration to reach a desired new ϕ value. Snapshots of
the system at different packing fractions are shown in
Fig. 1(b). At each value of ϕ, we study the static and
dynamic properties developed by the system.

In Fig. 2(a), we show the radial distribution function
g(r). At short length scales, we observe three peaks cor-
responding to the most probable distance between par-
ticles and their nearest neighbors. These peaks are the
consequence of considering a binary mixture. Indeed,
their positions are determined by their respective particle
diameters, except for the middle peak which represents
the average distance. This can be seen more clearly by
computing the partial radial distribution functions gαβ ,
shown in Section B of the Supplementary Material. Mov-
ing to larger distances, we see that the probability of find-
ing particles beyond first neighbors tends to 1, resulting
in the loss of correlation between particles.

Then, we compute the static structure factor S(q), rep-
resented in Fig. 2(b), exhibiting two peaks. The presence
of a first peak whose height increases with ϕ indicates
the presence of static correlations at large scales. Sur-

prisingly, a second prominent peak is also observed at
intermediate q−values, indicating that a certain correla-
tion is emerging at shorter distances. To gain insight, we
also report the partial static structure factors Sαβ for the
largest (SAA) and the smallest (SBB) particles, shown in
Section C of the Supplementary Material. While at low
ϕ both functions develop a peak around q = 2π/σi, with
i ∈ [A,B], the second peak exhibited by S(q) is related
to static correlations coming from σA particles. Indeed,
the snapshots in Fig. 1(b) reveals that increasing ϕ leads
to the aggregation of same-sized particles, indicative of
microphase separation.
Next, we focus on the dynamic properties. Fig. 2(c)

shows the mean squared displacement ∆r2(t). While
for small ϕ values the dynamics is roughly diffusive
throughout the entire time window, at higher packing
fractions and in intermediate times, we can see a loss
of the diffusive behavior because the dynamics becomes
much slower. This slowdown arises from the increased
frequency of particle collisions, which hinder the parti-
cle displacement and reduce diffusion, thereby lowering
the overall dynamics. Thus, the system reaches a dif-
fusive regime again at longer times (highlighted by the
dashed line). Similarly, the collective intermediate scat-
tering function Fc(q

∗, t) is computed at q∗ value in which
static correlations are observed. As shown in Fig. 2(d),
Fc(q

∗, t) reveals slower dynamics with increasing ϕ, evi-
denced by the longer time required to reach decorrelation.
This decay is associated with the α-mechanisms related
to the system relaxation. We extract the corresponding
structural relaxation time τα by imposing the condition
Fc(q

∗, τα) = 1/e. As reported in Section D of the Sup-
plementary material, τα increases with ϕ, consistent with
expectations when approaching a supercooled state [8].
Although a more detailed study would be required to

accurately identify the dynamic transition from a liquid
to a supercooled liquid, for our purposes, the system at
ϕ = 0.95 is sufficiently close to a dynamical arrest state.
Therefore, in what follows, we focus on this packing frac-
tion.

B. Responsive particle elasticity

Once the value of ϕ at which the system begins to
exhibit slow dynamics has been identified, we investigate
the evolution of the system when particle elasticity varies
over time. In particular, we focus on the larger particles
(diameter σA), and set their elasticity to switch between
two fixed values: ϵAA = 200kBT and ϵAA = 50kBT , as
shown in Fig. 3(a). The gray and orange curves repre-
sented in Fig. 1(a) show the shape of the harmonic inter-
action when particles are stiffer and softer, respectively.
In contrast, the elasticity of the smaller particles, i.e.
those with diameter σB , remains fixed at ϵBB = 200kBT .
The blue curve in Fig. 1(a) illustrates the resulting in-
teraction strength between particles of different elastic-
ity when large particles are softer. We study scenar-
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ios where we modify the fraction of larger particles nA

that can vary their elasticity. In particular, we focus on
nA = 10%, 20%, 25%, 50% and 100%, and investigate the
resulting changes in the static and dynamic properties,
comparing them with one where elasticity is uniform, i.e.
nA = 0%.

To illustrate the effects of elasticity changes in our sys-
tem, we report two snapshots in Fig. 3 at different time
intervals. The first snapshot, displayed in Fig. 3(b) shows
particles with uniform elasticity, while Fig. 3(c) depicts a
scenario where nA = 100% becomes softer. Clear differ-
ences are evident between the two images. For situations
where the elasticity is uniform, a more compact structure
is observed. In contrast, when large particles are softer,
they undergo significant deformation and the distance
between particles decreases.

Then, we explore the effects of elastic changes on the
static properties. In particular, we focus on S(q) as a
function of nA, shown in Fig. 4(a). We observe that as
nA increases, the main peak slightly shifts toward large
q. This shift indicates a decrease in the average inter-
particle distance, which we attribute to particle deforma-
tion. Nevertheless, the first peak remains stable across
all simulations, exhibiting consistent height and position.
Thus, we see that the structural correlation length at
large scales does not depend on nA. In contrast, the sec-
ond peak progressively diminishes, indicating that the
microphase separation is removed.

We now turn our attention to dynamic properties.
Fig. 4(b) shows ∆r2(t) as a function of nA. A gradual
presence of softer particles leads to faster dynamics. In-
deed, the characteristic plateau developed at intermedi-
ate times begins to disappear. This observation indicates
that softer particles can escape from microscopic regions
at high local concentration, thereby enhancing the overall

(a)

(b)

(c)

(b)

(c)

FIG. 3: (a) Elasticity as a function of time where the graph
above represents the small particles (type B, yellow parti-
cles) and the graph below represent the large particles (type
A, blue particles). (b) Zoom of a snapshot that depicts the
configuration when particles have the same elasticity value
(ϵAA = ϵBB = 200kBT ). (c) Zoom of a snapshot that dis-
plays a configuration when all the larger particles become
softer (ϵAA = 50kBT, ϵBB = 200kBT ). The colors represent
the particle size.

(c)

0% 50%20% 25%10% 100%

(a) (b)

FIG. 4: Static and dynamic properties of the system as
a function of the fraction of responsive particles nA. The
black line represents a simulation where the elasticity is uni-
form (nA = 0%). (a) Static structure factor S(q). (b)
Mean squared displacement ∆r2(t). (c) Intermediate scat-
tering function Fc(q

∗, t). The horizontal gray line represents
Fc(q

∗, τα) = 1/e.

system dynamics. This enhanced microscopic mobility is
also consistent with the reduction observed in the second
peak of S(q). Furthermore, we compute Fc(q

∗, t), shown
in Fig. 4(c). Similarly to the mean square displacement,
larger nA induces faster decay, as observed through the
decrease in the relaxation time. As in the previous sec-
tion, we extract τα reported in the Section D of the Sup-
plementary material. We see that τα decreases as well as
nA increases. Therefore, we can see that by tuning the
particle elasticity and the fraction of responsive particles,
it is possible to accurately control the system dynamics
while preserving static properties.

C. Impact on the dynamics

So far, we have shown that responsive particles en-
able us to modify dynamic properties while the static
properties at large length scales remain unaffected. We
therefore ask whether it is possible to rationalize these
observations by establishing a mapping that compares
the diffusion coefficient exhibited by the system at nA =
0%, defined as Dϕ, with the diffusion coefficient that
the system shows as a function of nA, defined as Dn.
We access the diffusion coefficient by considering that
limt→∞ ∆r2(t) = 4Dt.
In Fig. 5(a), we represent Dϕ as a function of ϕ (blue

line, left axis) versus Dn as a function of nA (green line,
right axis). As previously discussed, an increase in ϕ
leads to slower system dynamics, which is clearly cap-
tured by a decline in Dϕ. In contrast, an increase in
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nA results in faster system dynamics, manifested by an
enhancement in Dn. Then, to establish the mapping,
we compare different systems that exhibit the same dif-
fusion coefficients, i.e. Dϕ = Dn. This allows us to
identify what systems with a specific dynamic behavior
as a function of nA correspond to systems with an ef-
fective packing fraction ϕeff . The mapping is shown in
Fig. 5(b). As a result, varying nA promotes that the
system experiences lower ϕeff values, even though the
overall geometric packing fraction of the system remains
constant at ϕ = 0.95, since the particle sizes are not mod-
ified (see Eq. 4 for the definition of packing fraction).
Note that this mapping could be performed by consid-
ering the structural relaxation time, yielding to similar
conclusions.

(a) (b)

FIG. 5: (a) The diffusion coefficient Dϕ as a function of the
packing fraction ϕ (blue line) versus the diffusion coefficient
Dn as a function of the fraction particles changing elasticity
nA (green line). (b) Mapping between nA and the effective
packing fraction ϕeff .

IV. CONCLUSIONS

In this work, we propose a simple model to study the
effects that the particle elasticity has on the static and
dynamic properties of a binary mixture. We have ob-

served that systems with the same packing fraction ϕ
can exhibit different dynamical behaviors, although their
static properties related to long-range correlations re-
main unaffected. Note that restoring the uniform elastic-
ity, we recover the characteristic slow dynamics for a sys-
tem with ϕ = 0.95, and hence, same static and dynamic
properties. From the experimental point of view, this
scenario could be reproduced using polymeric colloidal
particles such as microgels [9]. These colloidal particles
exhibit Brownian dynamics. Nevertheless, the internal
polymer structure provides degrees of freedom to make
them responsive to external stimuli such as temperature,
pH or external fields [10].
In the future, we will extend this investigation by

studying the dynamical properties of the system within
time windows where multiple elastic changes are con-
sidered. This approach will offer a pathway to explore
active matter, which refers to systems composed of par-
ticles that transform energy into work. This work typi-
cally results in motion and is observed across scales, from
microscopic entities like cells and artificial microswim-
mers to macroscopic systems such as flocking birds or
humans [11]. In our case, we plan to assume that active
particles consume energy to modify their internal elastic-
ity. Furthermore, it would be interesting to explore the
effects of randomly varying the number of particles that
change their elasticity over time.
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Resum: Els sistemes sensitius autoadapten les seves caracteŕıstiques generals gràcies a la
presència de part́ıcules que modifiquen les seves propietats individuals en resposta a est́ımuls externs.
Inspirats en la matèria viva i els avenços recents en la ciència de materials, realitzem simulacions
numèriques per estudiar suspensions de dinàmica lenta on es pot ajustar l’elasticitat de les part́ıcules.
En particular, estudiem l’evolució de les propietats estàtiques i dinàmiques en dos estats d’elasticitat
diferents, observant que és possible accelerar la dinàmica de les part́ıcules sense alterar les propietats
estàtiques generals del sistema.
Paraules clau: Matèria sensitiva, dinàmica lenta, elasticitat, part́ıcules Brownianes.
ODSs: Aquest TFG està relacionat amb els Objectius de Desenvolupament Sostenible (SDGs)

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables X

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius X

9. Indústria, innovació, infraestructures X

Aquest TFG està relacionat amb diferents ODS. La primera seria l’ODS 4, concretament la fita 4.7, ja que s’està
cursant un grau universitari. També ho podem relacionar amb l’ODS 9, concretament les fites 9.5 i 9.7, i amb l’ODS
12, amb la fita 12.6, perquè una investigació sobre la matèria activa pot proporcionar coneixements per millorar nous
materials o tecnologies sostenibles. Per últim, l’intercanvi de coneixement proporcionat per la bibliografia es podria
relacionar amb l’ODS 17, amb les fites 17.16 i 17.17.
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SUPPLEMENTARY MATERIAL (OPTIONAL)

A. Euler-Maruyama

In order to determine the displacement of the particles in our system, we need to solve our equation of motion (Eq.
1) explained in Section II. The method used to do this is the Euler-Maruyama algorithm. This method is obtained
by using an enhanced Euler [6]

r⃗i(t+∆t) = r⃗i(t) + F⃗C
i ∆t+ F⃗R

i (t)
√
∆t. (9)

where ∆t is the timestep. This algorithm is typically used to study Brownian motion, which arises from Langevin
dynamics in the overdamped limit, i.e. ξ → ∞.

B. Partial radial distribution functions gαβ (r)

In Fig. 6 we represent the partial radial distribution functions gαβ(r) as a function of the packing fraction ϕ, defined
as [8]

gαβ(r) =
A

NαNβ

〈
Nα∑
i

Nβ∑
j

δ(r⃗ − r⃗ij)

〉
. (10)

(a) (c) (e)(b) (d)

FIG. 6: Partial radial distribution function gαβ(r) for the two different types of particles at different packing fractions. The
blue color represent the largest particles (σA = 1.2) and the yellow color represents the smallest particles (σB = 0.8).

We observe a main peak related to particles’ size for each particle. The other oscillations at larger distances are
different regarding to a liquid, due to our system being polydisperse with some particles’ aggregation. These defects
are observed in the total radial distribution function. Additionally, an increase in the intensity of the peaks is observed
since as the distance between particles decreases (the packing fraction increases), the probability of finding particles
increases.

C. Partial static structure factors Sαβ (q)

Fig. 7 shows the partial static structure factors Sαβ(q) as a function of ϕ, defined as [8]

Sαβ(q) =
1

Nαβ b2(q)

〈
Nα∑
j

Nβ∑
l

bj(q)bl(q) exp (−iq⃗ · r⃗jl)

〉
. (11)

We observe a double contribution for the largest particles and a simple contribution for smallest ones. At q −→ 0
there is some noise which may be due to particles’ agglomerations. This group of particles can lead to small-scale phase
separation, as observed in two-dimensional experiments. Moreover, the main peak shifts at larger q by increasing ϕ,
highlighting that the particles are more closely packed.
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(a) (c) (e)(b) (d)

FIG. 7: Partial static structure factors Sαβ(q) for the two different types of particles at different packing fractions. The blue
color represent the largest particles (σA = 1.2) and the yellow color represents the smallest particles (σB = 0.8).

D. Structural relaxation time τα

The structural relaxation time can be computed by fitting our data with a stretched exponential function [8]:

f(t) = A exp

(
−
(
B

τα

)α)
, (12)

where A, B and α are fitting parameters. Similarly, we can estimate τα by imposing that Fc(q
∗, τα) = 1/e represented

in Fig. 2(d) and Fig. 4(c). Table I reports the different structural relaxation times.

TABLE I: Structural relaxation time τα as a function of the packing fraction ϕ (on the left), and as a function of the population
that shifts their elasticity nA (on the right).

ϕ τα[τ ]

0.60 1.74

0.70 2.84

0.80 5.71

0.90 32.77

0.95 177.33

nA [%] τα[τ ]

10 42.16

20 27.82

25 18.96

50 8.38

100 3.94
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