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Abstract: Efficiently extracting information from quantum systems is a key challenge in quan-
tum computing. This thesis explores the combination of two complementary techniques—classical
shadows and grouping—to improve quantum measurement strategies under resource constraints.
Classical shadows enable the prediction of many properties of a quantum state from a small number
of measurements, while grouping strategies reduce the number of measurements needed by exploit-
ing commutativity among observables. We implement a hybrid method, Shadow–Grouping, that
unifies both approaches to enhance measurement efficiency on current quantum devices. We also
demonstrate its effectiveness by estimating the ground state energies of H2 and LiH molecules: com-
pared to standard classical shadows, our results show that Shadow–Grouping achieves up to 18-fold
gains in accuracy and reaches chemical precision using orders of magnitude fewer measurements.
Keywords: Quantum computing, classical shadows, grouping, many-body Hamiltonians.
SDGs: 7, 9, 13.

I. INTRODUCTION

Predicting the physical properties of a system based
on empirical observations lies at the heart of scientific
progress, and quantum physics is no exception. In this
discipline, observables of a quantum state are of vital
importance, as their expectation values encode crucial
information about the state, such as its energy.

However, the nature of quantum mechanics is
probabilistic—governed by Born’s rule—and destructive
due to wavefunction collapse. As a consequence, in prac-
tical settings, expectation values have to be estimated
from many experiments on independent and identically
prepared quantum states—a resource-intensive process.

The earliest method for learning the properties of
quantum systems was quantum state tomography, which
attempts to reconstruct the full state from measurement
data. Unfortunately, this approach becomes infeasible
for large systems, as the number of parameters required
to describe an n-qubit state scales exponentially as 2n.

To circumvent this scalability barrier, classical shad-
ows [1, 2] emerged as a powerful alternative, and showed
that full-state reconstruction is often unnecessary for con-
crete tasks, such as estimating expectation values. This
method allows us to predict many properties of a quan-
tum state from a small number of measurements, without
requiring full-state reconstruction.

A complementary strategy is that of observable group-
ing [3], which clusters commuting observables—such as
terms in a Hamiltonian—so that they can be measured
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simultaneously. As a consequence, this technique reduces
the number of distinct measurements required and thus
improves measurement efficiency.
These two ideas—classical shadows and grouping—

are especially valuable in estimating the energy of
quantum many-body Hamiltonians. However, on to-
day’s noisy intermediate-scale quantum (NISQ) hard-
ware, state preparation is imperfect and measurements
are limited. Thus, performing this task accurately and
efficiently poses a major challenge.
In this work, we follow the recent trend of efforts to

unify these two approaches under a Shadow–Grouping
framework [4, 5]. We numerically implement such a hy-
brid method using the PennyLane library [6] and demon-
strate its effectiveness by estimating the ground state en-
ergies of the H2 and LiH molecules [7]. Our results show-
case a significant improvement in measurement efficiency
over previous measurement strategies.

II. THEORETICAL FRAMEWORK

A. Grouping Techniques

A common bottleneck in quantum computing arises
when estimating the expectation values of a set of ob-
servables {Oi}Mi=1: typically, each observable must be
measured individually. For example, if a many-body
Hamiltonian H =

∑
iHi is expressed as a sum of mea-

surable terms, estimating ⟨H⟩ generally requires separate
measurements to estimate each term Hi. Grouping tech-
niques [3] aim to mitigate this inefficiency by identifying
sets of commuting observables that can be measured si-
multaneously, thus reducing the number of distinct mea-
surements that have to be performed.
As an example, let O1 and O2 be two commuting ob-

servables. Then, they share a common eigenbasis {|ψi⟩}i,
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satisfying Ok|ψi⟩ = λ
(k)
i |ψi⟩ for k = 1, 2. Given a state

|Ψ⟩, the expectation value of each Ok in this state is

⟨Ψ|Ok|Ψ⟩ =
∑
i

λ
(k)
i |⟨ψi|Ψ⟩|2.

Therefore, if the eigenvalues λ
(k)
i are known, performing

a single measurement of the probabilities |⟨ψi|Ψ⟩|2 in the
common eigenbasis allows us to calculate the expectation
value of both observables O1 and O2 simultaneously.
In practice, one does not consider full commutativity

of the observables, but rather qubit-wise commutativity,
which is a stronger condition and thus more restrictive.
For two tensor product operators A = A1 ⊗ · · ·⊗An and
B = B1 ⊗ · · · ⊗ Bn on an n-qubit system, we say that
they qubit-wise commute (QWC) if [Ai, Bi] = 0 for all
i = 1, . . . , n. For instance, X ⊗ Y and X ⊗ I do QWC,
where I is the identity operator. If two operators QWC,
then they commute, but the converse is not true; for
example, X ⊗X and Y ⊗ Y commute but do not QWC.

Given a set {Oi}Mi=1 of observables, we aim to parti-
tion it into subsets such that all members of each subset
pairwise QWC. The fewer the subsets required, the fewer
distinct measurements will be needed to estimate all ex-
pectation values. However, qubit-wise commutativity is
a reflexive and symmetric relation, but not transitive,
meaning that such a partition is generally not unique.

To find such a partition, it is useful to reformulate
the problem in terms of graphs. Each node of the graph
will represent an observable of our collection, and we will
connect two such nodes if and only if their correspond-
ing observables QWC. In this representation, finding an
optimal grouping is reduced to a well-known problem
in graph theory known as the Minimum Clique Cover
(MCC) problem. A clique is a subset of nodes in the
graph that are all connected to each other. Figure 1 il-
lustrates this idea, where each color represents a clique.
The cover (c) uses three cliques, whereas (b) uses two
and is an MCC, since no one-clique cover exists (because
not all nodes of the graph are connected to each other).

(a)

(b)
(c)

Figure 1: A graph (a) and two clique covers of it ((b), (c))
with a different number of cliques ((b): 2, minimal; (c): 3).

The MCC problem is generally NP-hard [3], and thus
we rely on heuristic techniques to find approximate solu-
tions. Accordingly, finding an optimal grouping from a
collection of observables is also NP-hard.

B. Classical Shadows

While grouping techniques reduce the total number of
measurements needed by combining QWC observables,
classical shadows [1] aim to estimate many properties of
a quantum state using as few measurements as possible,
without full tomography or prior grouping being needed.
Given a fixed (but unknown) quantum state ρ of an

n-qubit system and a collection {Oi}Mi=1 of observables,
the goal is to estimate the expectation values oi(ρ) :=
Tr(Oiρ), which are linear functions of the state. Classi-
cal shadows provide a framework for efficiently estimat-
ing these quantities using randomized measurements and
classical post-processing.
To create a classical shadow of a state ρ, fix a collection

U of unitary matrices. Then, randomly select a unitary
U ∈ U and evolve the state by U , thus obtaining UρU†.
Performing a measurement in the computational basis
yields a n-bit string outcome b ∈ {0, 1}n. We can then
apply the inverse of U to the resulting computational ba-
sis state and store the resulting density matrix U†|b⟩⟨b|U
in classical memory, which is called a snapshot of the
state. The expected value of these snapshots over both
the randomness of U and the measurement outcomes b
defines a quantum channel M that acts on the state ρ:

M(ρ) := E
U∈U

∑
b∈{0,1}n

⟨b|UρU†|b⟩U†|b⟩⟨b|U.

If the operators in U form an operator basis of the sys-
tem’s Hilbert space—i.e., the ensemble U is tomograph-
ically complete—then this channel M is invertible. The
original state can then be recovered in expectation as

ρ = E
outcomes |b⟩

[
M−1

(
U†|b⟩⟨b|U

)]
.

Repeating this process N times results in N snapshots
of ρ, which together form the classical shadow of ρ:

S(ρ;N) =
{
ρ̂k = M−1

(
U†
k |bk⟩⟨bk|Uk

)}
k=1,...,N

.

With this approximation of the state, we can esti-
mate the expectation values of the observables Oi as
ôi = Tr(Oiρ̂k), for each snapshot ρ̂k of the state, and
then use empirical mean estimation to approximate oi.
In this work, we fix U to be the set of single-qubit Clif-

ford unitaries. These unitaries are defined as the ones
that map Pauli matrices to Pauli matrices under conju-
gation. Thus, applying a single-qubit Clifford unitary U
is equivalent to measuring the qubit in the X, Y , or Z
Pauli basis, which we will denote by PU . In this setting,
Huang et al. [1] show that the inverted channel has a
simple tensor product form:

ρ̂ = M−1
(
U†|b⟩⟨b|U

)
=

n⊗
j=1

(
3U†

j |bj⟩⟨bj |Uj − I
)
, (1)

where U = U1 ⊗ · · · ⊗ Un ∈ U is the randomly cho-
sen single-qubit Clifford gate applied to ρ and b =
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(b1, . . . , bn) ∈ {0, 1}n is the n-bit string resulting from
the computational basis measurement.

Suppose that the observable O we want to estimate is
a Pauli word, i.e., it has the form O = P1 ⊗ · · · ⊗ Pn,
where each Pj ∈ {I, X, Y, Z} is a Pauli operator acting
on the qubit j. Using Eq. (1), the expected value of O in
the snapshot state ρ̂ is given by

Tr(Oρ̂) =

n∏
j=1

Tr
(
3PjU

†
j |bj⟩⟨bj |Uj

)
=

∏
j:I̸=Pj=PUj

3(1−2bj), (2)

where PUj denotes the Pauli basis in which qubit j was
measured. Therefore, calculating the expectation value
of a Pauli word in a snapshot state reduces to counting
the number of matches between the Pauli operators in the
word and the measurement bases in the shadow, and then
multiplying by the appropriate factor of 3(1−2bj) = ±3.

C. Shadow–Grouping

In the classical shadows framework, we are often in-
terested in estimating the energy of a quantum state ρ
with respect to a given Hamiltonian H, i.e., computing
⟨H⟩ = Tr(Hρ). In practice, however, one is constrained
by a limited number N of measurements—commonly re-
ferred to as the measurement budget or the number of
shots. Furthermore, for many-body Hamiltonians, direct
energy measurement is not feasible. Instead, H is ex-
pressed as a weighted sum of Pauli words:

H =

M∑
i=1

hiO
(i), with O(i) ∈ {I, X, Y, Z}⊗n (3)

and hi ∈ R. Without loss of generality, we assume that
O(i) ̸= I⊗n for all i. The computation of this decomposi-
tion of H is beyond the scope of this work, but we remark
that it is typically obtained via Hartree–Fock methods
followed by fermion-to-qubit mappings, such as Jordan–
Wigner (JW) or Bravyi–Kitaev transformations.

A known limitation of the classical shadows method is
that for a given Pauli word O = P1 ⊗ · · · ⊗ Pn, only the
snapshots whose measurement bases match that of O can
be used to estimate ⟨O⟩ using Eq. (2). All other measure-
ments are effectively discarded, which is inefficient (this
was addressed by Huang et al. in [2]).

In this context, grouping the terms O(i) from Eq. (3)
into qubit-wise commuting subsets improves the effi-
ciency of classical shadows. However, two challenges
arise: (1) finding an optimal QWC-based grouping is NP-
hard, and (2) some terms in (3) contribute more strongly
to ⟨H⟩ and should therefore be prioritized in measure-
ment to obtain an accurate estimation of the energy. This
is particularly relevant in quantum chemistry, where high
precision in energy estimates is required.

To address these challenges, the Shadow–Grouping
strategy offers a way to incorporate grouping into the

classical shadows framework. The key idea is to deter-
mine, for each shot k, a Pauli word Q(k)—called a mea-
surement setting—that QWC with as many terms O(i)

as possible. Then, we measure in the basis defined by
Q(k). Because both Q(k) and O(i) are Pauli words, QWC
ensures that the basis used in the classical shadows pro-
cedure is compatible with O(i), and hence allows for an
estimation of ⟨O(i)⟩ using Eq. (2) without discarding the
shot.
To prioritize important terms in the Hamiltonian, we

assign a weight wi to each O(i) subject to the following
conditions:

(i) It should increase with the magnitude of hi to re-
flect the importance of the term in the Hamiltonian.

(ii) It should decrease with the number of times O(i)

has already been measured, to promote diversity.

These criteria are satisfied by the following weight func-
tion proposed by Gresch et al. [4]:

wi := |hi|
√
Ni + 1−√

Ni√
Ni(Ni + 1)

,

where Ni is the number of times O(i) has been estimated
so far. Initially, all weights are set to wi = |hi|. Note that
after each shot k, Ni either remains unchanged—if the
measurement setting Q(k) does not QWC with O(i)—or
increases by one otherwise.
To construct the measurement setting Q(k), we follow

the greedy algorithm proposed in [4]: in the k-th shot, we
initialize Q(k) = I⊗n and iterate through the list of Pauli
terms O(i) in (3) sorted in decreasing order of weight. At
each step, if O(i) QWC with the current Q(k), we update
Q(k) by replacing its identity components with those of
O(i). This process continues until either all observables
have been considered or Q(k) contains no more identity
components. Each measurement setting Q(k) is guaran-
teed to be compatible with at least one term, namely the
one with the largest weight at the given shot. The final
set of measurement settings {Q(k)}Nk=1 defines the mea-
surement scheme. The pseudocode for this procedure is
provided in Algorithm 1.
This approach presents three main advantages over

previous methods. First, the weight function from the
algorithm is highly adaptable, and it need only provide
a hierarchy for the terms in the Hamiltonian decomposi-
tion. Second, since each measurement setting QWC with
at least one term of H, no measurements are discarded
during the classical shadows estimation. Lastly, unlike
traditional grouping strategies [3], this procedure avoids
solving the MCC problem in the preprocessing step.

III. CODE IMPLEMENTATIONS

One of the primary goals of this thesis was to imple-
ment the algorithms for: computing the classical shadow
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of a quantum state, constructing measurement schemes
tailored to a given Hamiltonian decomposition (3), and
estimating the energy ⟨H⟩ using the Shadow–Grouping
procedure. All code and data generated in this work are
publicly available at [8].

The pseudocode for obtaining the measurement setting
at each shot, adapted from [4], is given in Algorithm 1:

Algorithm 1 Measurement setting at shot k.

Require: Hamiltonian in Pauli word representation as in (3)

Require: Previous measurement settings {Q(1), . . . , Q(k−1)}
Require: Weight function w
1: Q(k) ← I⊗n ▷ Initialize as identity on n qubits
2: wi ← w(O(i)) for all i ▷ Compute weights

3: while Q(k) has identity components and maxi wi > 0 do
4: j ← argmaxi wi ▷ Select index of maximum weight

5: R←
{
i : O

(j)
i ̸= I and Q

(k)
i = I

}
6: if O(j) and Q(k) QWC then

7: Q
(k)
i ← O

(j)
i for all i ∈ R ▷ Update meas. setting

8: end if
9: wj ← 0 ▷ Mark O(j) as processed

10: end while
11: return

{
Q(1), . . . , Q(k)

}
To illustrate the behavior of this procedure, consider

the following toy Hamiltonian on three qubits:

H = h1X1Z2 + h2Y1Z3 + h3Z2Z3 + h4X1Y2Z3, (4)

with increasing positive coefficients hi, i.e., hi < hj
for i < j. The evolution of the weights across multi-
ple shots is shown in Figure 2. Since the term X1Y2Z3

has the largest initial weight, the first measurement set-
ting Q(1) is made to QWC with it. However, doing so
exhausts all degrees of freedom in Q(1), and no addi-
tional terms are compatible in this shot. The weight of
X1Y2Z3 is then updated—and decreases—because it has
already been measured. For the next shot, Q(2) begins
as the identity and is first aligned with Z2Z3, produc-
ing Q(2) = I1Z2Z3. The next highest-weight compati-
ble term is Y1Z3, which updates the remaining identity
component of Q(2)—which is the one acting on the first
qubit—yielding Q(2) = Y1Z2Z3.
The complete Shadow–Grouping procedure, which in-

tegrates the classical shadows framework with grouping
techniques, is summarized in Algorithm 2.

Algorithm 2 Shadow–Grouping.

Require: Hamiltonian in Pauli word representation as in (3)
Require: Weight function w
Require: Measurement budget N
1: for each shot k = 1, . . . , N do
2: calculate measurement setting Q(k) using Algorithm 1

3: b← measure each qubit i in the basis Q
(k)
i

4: for all O(i) QWC with Q(k), estimate ⟨O(i)⟩ using (2)
5: end for
6: return estimated energy ⟨H⟩

1 2 3 4 5

Shot

h1

h2

h3

h4

W
ei

gh
t

X1Z2

Y1Z3

Z2Z3

X1Y2Z3

Figure 2: Evolution of weights in Algorithm 1 for the toy
Hamiltonian (4) with a measurement budget of N = 5 shots.

IV. METHODOLOGY

We evaluated the performance of Algorithms 1
and 2—implemented using the PennyLane library [6]—in
the context of quantum chemistry. Specifically, we used
the Shadow–Grouping protocol to estimate the ground
state energies of the hydrogen (H2) and lithium hydride
(LiH) molecules. These molecules serve as standard
benchmarks, since quantum chemistry applications re-
quire high precision for energy estimates: a prediction
is considered chemically accurate when it falls within
εchem = 1.6 mHa of the true value [4].
The quantum circuit that prepares the ground state

of the qubit JW-representations of the corresponding
molecular Hamiltonians was obtained from open-access
databases [7]. We denote by EH2 and ELiH the exact
ground state energies for H2 and LiH, respectively.
For each molecule, we conducted L = 100 independent

estimations Ê(1), . . . , Ê(L) using the Shadow–Grouping
algorithm. Each estimation used a fixed measurement
budget of N shots. We then computed the mean es-
timated energy Ê and the root-mean-square deviation
(RMSD) as a measure of statistical error.

V. RESULTS

Hydrogen molecule (H2): The JW-decomposed Hamil-
tonian for H2 is encoded in 4 qubits and contains 15 Pauli
terms. As shown in Figure 3, the Shadow–Grouping
method consistently outperforms classical shadows across
all tested budgets. On average, the energy discrepancy
obtained with Shadow–Grouping is 2.6 times smaller
than that of classical shadows, with relatively low vari-
ability (standard deviation of 0.4). Moreover, Shadow–
Grouping achieves chemical accuracy with fewer than 105

measurements, whereas classical shadows require two or-
ders of magnitude more.
Lithium hydride molecule (LiH): The Hamiltonian for

LiH is encoded in 12 qubits and includes 631 Pauli terms,
making it significantly more complex than that of H2.
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Figure 3: Error decay for H2 ground state energy estimate.
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Figure 4: Error decay for LiH ground state energy estimate.
Large error bars in classical shadows below 103 shots arise
from an insufficient sampling of the many terms in the LiH
Hamiltonian. Beyond this point, estimations stabilize.

Despite the increased dimensionality, Shadow–Grouping
again demonstrates a clear advantage, as shown in Fig-
ure 4. Although chemical accuracy is not reached on
average, the method consistently achieves it within the
uncertainty bounds. Notably, the Shadow–Grouping al-
gorithm is on average 18 (±5) times more precise than
classical shadows and requires approximately three or-
ders of magnitude fewer measurements to reach εchem.

These results are summarized in Table I, where we dis-

play the number of qubits n and terms M in the JW-
encoding of H, the average discrepancy ratio (CS/S–G),
and how many shots are needed to achieve chemical ac-
curacy N(εchem).

Table I: Performance comparison of classical Shadows (CS)
and Shadow–Grouping (S-G) for H2 and LiH.

Molecule (n, M) Method CS/S–G N(εchem)

H2 (4, 15)
S–G

2.6± 0.4
< 105

CS > 106

LiH (12, 631)
S–G

18± 5
∼ 105

CS ∼ 108

Moreover, our method scales effectively with system
size: despite the 40-fold increase in Hamiltonian size
from H2 to LiH, Shadow–Grouping outperforms classical
shadows. This reveals its potential for larger quantum
systems, especially under limited measurement budgets.

VI. CONCLUSIONS

In this thesis, we have explored the intersection of two
powerful techniques in quantum information—classical
shadows and grouping—and implemented a Shadow–
Grouping method, which unifies both approaches and
improves measurement efficiency on NISQ devices.
On top of this, through numerical experiments on

the H2 and LiH molecular Hamiltonians, we showed
that Shadow–Grouping significantly outperforms stan-
dard classical shadows in both accuracy and resource
usage. Notably, Shadow–Grouping achieved up to an
18-fold reduction in estimation error and reached chemi-
cal precision with two to three orders of magnitude fewer
measurements, highlighting its advantage over larger and
more complex quantum systems.
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Resum: Extreure informació dels sistemes quàntics de manera eficient és un dels grans reptes de
la computació quàntica. Aquesta tesi se centra en la combinació de dues tècniques complementàries
—les ombres clàssiques i l’agrupació d’observables— per millorar l’aprenentatge quàntic. Les ombres
clàssiques permeten predir propietats d’un estat quàntic a partir d’un nombre redüıt de mesures
aleatòries, mentre que les estratègies d’agrupació minimitzen el cost de mesura aprofitant la com-
mutativitat entre observables. S’implementa un enfocament h́ıbrid, anomenat Shadow—Grouping,
que integra ambdues tècniques per millorar l’eficiència de mesura en els dispositius quàntics actuals.
També es mostra la seva eficàcia mitjançant l’estimació de les energies de l’estat fonamental de les
molècules d’H2 i LiH. En comparació amb les ombres clàssiques estàndard, els resultats obtinguts
mostren que Shadow–Grouping pot arribar a millorar la precisió fins a un factor de 18, tot requerint
diversos ordres de magnitud menys mesures per assolir una precisió qúımica.
Paraules clau: Computació quàntica, ombres clàssiques, agrupació, Hamiltonians de molts cossos.
ODSs: 7, 9, 13.

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat 13. Acció climàtica X

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible X 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures X

El contingut d’aquest TFG es relaciona amb l’ODS 7, fita 7.3, per la promoció d’un ús sostenible i eficient dels
recursos energètics. També connecta amb l’ODS 9, fita 9.5, per a millorar les capacitats de les tecnologies quàntiques.
Finalment, amb l’ODS 13, fita 13.3, per a reduir l’impacte del consum energètic en el canvi climàtic.
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