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A multi-layered integrative analysis reveals a cholesterol metabolic
program in outer radial glia with implications for human brain
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ABSTRACT

The definition of molecular and cellular mechanisms contributing to
brain ontogenetic trajectories is essential to investigate the evolution of
our species. Yet their functional dissection at an appropriate level of
granularity remains challenging. Capitalizing on recent efforts that have
extensively profiled neural stem cells from the developing human
cortex, we develop an integrative computational framework to perform
trajectory inference and gene regulatory network reconstruction,
(pseudo)time-informed non-negative matrix factorization for learning
the dynamics of gene expression programs, and paleogenomic
analysis for a higher-resolution mapping of derived regulatory variants
in our species in comparison with our closest relatives. We provide
evidence for cell type-specific regulation of gene expression programs
during indirect neurogenesis. In particular, our analysis uncovers a key
role for a cholesterol program in outer radial glia, regulated by zinc-finger
transcription factor KLF6. A cartography of the regulatory landscape
impacted by Homo sapiens-derived variants reveals signals of
selection clustering around regulatory regions associated with GL/3, a
well-known regulator of radial glial cell cycle, and impacting KLF6
regulation. Our study contributes to the evidence of significant changes
in metabolic pathways in recent human brain evolution.

KEY WORDS: Indirect neurogenesis, Brain evolution, Homo sapiens,
KLF®6, Cholesterol

INTRODUCTION

Many studies have unveiled genetic, molecular and cellular features
that contribute to species-specific mechanisms of corticogenesis
in the primate lineage. These comprise, but are not limited to,
transcriptomic divergence, emergence of novel genes, substitutions
in regulatory elements, control of the timing of neural proliferation
and differentiation, or progenitor diversity and abundance (some
recent comprehensive reviews include Pinson and Huttner, 2021,
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Libé-Philippot and Vanderhaeghen, 2021; Pollen et al., 2023
Vanderhaeghen and Polleux, 2023). In addition, following the
availability of genomes from extinct species most closely related to
us, the elucidation of the molecular underpinnings of unique aspects
of brain organization in Homo sapiens, going beyond sheer brain
size, is now on the research horizon (Paébo, 2014), and suggestive
evidence for developmental differences is already available (Mora-
Bermudez et al., 2022; Pinson and Huttner, 2021; Stepanova et al.,
2021; Trujillo et al., 2021).

The large scale and high resolution afforded by single-cell
sequencing technologies, coupled with increasingly powerful
computational approaches, have significantly contributed to our
understanding of the identity, heterogeneity and developmental
progression of neural progenitors. Yet, substantial gaps exist in our
knowledge of the regulatory mechanisms implicated in neural
progenitor proliferation and differentiation during corticogenesis,
and how these mechanisms may have been modified over the
course of human evolution.

During neurogenesis, two main proliferative regions can be
identified in the dorsal telencephalon. The ventricular zone is
populated by ventricular radial glia (VRG), which serve as a scaffold
for the growing neocortex as well as a stem cell pool capable of self-
renewal and differentiation (Silbereis et al., 2016). And, the
subventricular zone (SVZ), which subsequently emerges and
expands due to the asymmetric division of VRG and the self-
renewal capacity of basal progenitors sustained over a prolonged
period (Silbereis et al., 2016). Two main types of basal progenitors
can be distinguished: outer radial glial cells (0RG), which retain
similar features to VRG, present distinctive morphologies linked to
their self-renewal capacity and typically express markers such as
HOPX (Kalebic and Huttner, 2020, Pollen et al., 2015); and
intermediate progenitor cells (IPCs), short-lived progenitors with
characteristic multipolar morphologies and that express EOMES
(Pebworth et al., 2021, Pollen et al., 2015).

Neurogenesis from basal progenitors, as opposed to the direct
route from vRG to neuron, is referred to as indirect neurogenesis, and
is thought to be responsible for the generation of the vast majority of
upper layer neurons (Lui et al., 2011). Indeed, the developmental
period for supragranular layer neuron generation coincides with the
appearance of a discontinuous radial glia scaffold where the SVZ
remains as the main proliferative niche (Nowakowski et al., 2016).
There is growing evidence that the neocortical expansion in the
primate lineage that most dramatically affected cortical upper layer
neurons, and species-specific features of brain organization, are
intimately connected to the regulatory mechanisms that govern the
behavior and modes of division of neural progenitor cells (Kriegstein
et al., 2006; Rakic, 1995).

Here, we seek to provide a high-resolution characterization of
gene regulatory networks (GRNs) at play during indirect
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neurogenesis and ask whether there is evidence of evolutionary
modifications of the (semi)discrete gene expression programs
emerging from the modular nature of the regulatory networks we
identified. To do so, we leverage an integrative computational
framework in which to perform (1) trajectory inference and GRN
reconstruction, (2) inference of the dynamics of gene expression
programs via the implementation of a new (pseudo)time-informed
non-negative matrix factorization method, and (3) a paleogenomic
analysis yielding a higher-resolution mapping of the regulatory
landscape in which our species acquired derived single nucleotide
mutations in comparison with our closest relatives, both extinct and
extant, for which high-coverage genomes are available.

Using this framework, we resolve the bifurcation tree defining
apical progenitor differentiation towards either oRG or IPCs and
characterize waves of gene expression programs activated
differentially among the neural lineages leading to each basal
progenitor subtype. Among cell type-specific transcription factor
(TF)-gene interactions, we uncover a role for TF, KLF6, as a putative
master regulator of a cholesterol metabolic program specific to the
differentiation route leading to oRG. An analysis of TF binding site
(TFBS) disruptions leads to the hypothesis of a human-specific
regulatory modification of the KLF6-mTOR signaling axis in oRG,
with an important role played by TF GLI3, for which we identified
changes associated with signals of positive selection in our species.

RESULTS

Inferring neural progenitor states during indirect
neurogenesis from the developing human cortex

Exploiting the potential of high-throughput single-cell sequencing to
capture intermediate cellular states during neural cell differentiation,
we first sought to characterize the main axis of variation of neural
progenitor cells from the developing human cortex at around mid-
gestation (Trevino et al., 2021) (Fig. 1A). Principal component
analysis (PCA) revealed a marked distinction among cell clusters: the
first principal component discriminates among progenitor types, that
is, radial glial cells and intermediate progenitors, whereas the second
principal component captures the differentiation state, from vRG to
basal progenitors (see Fig. 1B). Among genes that contribute the most
to each axis, we found markers of progenitor subtypes: e.g., VIM and
FOS for vRG, HOPX and PTPRZI for oRG, or EOMES and SSTR2
for IPCs (see Fig. 1C). Coherently, a differential expression analysis
on a coarse clustering identified well-known markers for each
subtype (Fig. S1). Samples from different batches intermixed in the
low dimensional space, confirming the absence of a significant
contribution of technical artifacts (Fig. S1A).

To test our ability to reconstruct the apical-to-basal neural lineage
trajectories, we performed principal graph learning and computed a
force-directed graph where we projected the inferred tree of
principal points (Materials and Methods). We obtained a
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Fig. 1. Resolving the tree of neural progenitor cell differentiation during human corticogenesis. (A) Schematic of analyses implemented in this paper:
single-cell trajectory reconstruction of basal progenitor generation, for the inference and recovery of gene regulatory networks and expression programs,
illuminated by paleogenomic analysis. (B,C) Identifying the main axis of variation using principal component analysis (PCA) is a powerful strategy to
characterize the heterogeneity and transcriptional dynamics of progenitor cells [as shown for example in a comprehensive study in mice (Mukhtar et al.,
2022)]. Here, we performed PCA on a single-cell dataset of human neural progenitors, which allowed the discrimination of radial glia and intermediate
progenitor cell subtypes (coarse clustering, B). Top gene loadings with known markers of neural progenitor subtypes are shown in C. (D,E) Inferred tree of
principal points and associated dendrogram capturing the hierarchy of neural cell lineage relationships as inferred from single-cell data. (F) Expression
trajectory along pseudotime of three marker genes for ventricular radial, outer radial glia and intermediate progenitor cell clusters. (G) Heatmap with
representative genes, the trajectories of which significantly change as pseudotime progresses.
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bifurcating tree that resolves the molecular continuum describing
the progression of VRG and branching into either oRG or
intermediate progenitor fates (Fig. 1D,E). The expression of the
aforementioned marker genes recapitulated the expected dynamics
along pseudotime (Fig. 1F) as well as that of genes for which the
expression trajectories significantly changed along the inferred tree
(see Fig. 1G), confirming the differentiation progression through
intermediate cellular states. We obtained similar results when an
independent dataset was projected into the low dimensional space
obtained before via PCA (Polioudakis et al., 2019; Fig. SIC-F).
This provides an ideal setting in which to test the validity of our
results with time-matched samples around post-conception week
16, a developmental stage with active proliferation in both germinal
zones and around the transition from continuous to discontinuous
radial glia scaffold (Nowakowski et al., 2016).

A pseudotime-informed non-negative matrix factorization to
identify dynamic gene expression programs

We next sought to characterize how gene expression programs
unfold as indirect neurogenesis takes place. A key analytical
challenge associated with high-throughput single cell profiling is
the ability to extract meaningful patterns from high-dimensional
datasets. To overcome this obstacle, we developed a two-step

computational strategy aimed at recovering the dynamics of gene
expression programs during neural progenitor cell differentiation
(Materials and Methods; Fig. S2). Our approach consists of: (1) a
pseudotime-informed non-negative matrix factorization (piNMF)
as the core algorithm to capture the underlying structure of a high-
dimensional dataset, explicitly accounting for the continuous nature
of gene expression trajectories through pseudotime, building on
recent computational advances on NMF using parametrizable
functions (Hautecoeur and Glineur, 2020); and (2) an iterative
strategy where stable gene expression programs are recovered by
performing K-means clustering over multiple replicates of the
matrix factorization core algorithm (following the strategy in
Kotliar et al., 2019), thereby addressing the non-uniqueness
problem of matrix factorization approximation methods.

Our strategy departed from the standard NMF (hereafter,
stdNMF), where matrix decomposition is achieved through a
linear combination of vectors that does not model continuous
signals, such as dynamically changing gene expression trajectories.
We evaluated the performance of both piNMF and stdNMF
approaches on four dominant gene expression programs inferred
across cell types and datasets (Materials and Methods; Fig. 2A-C;
Fig. S2). Both approaches recovered programs linked to cell cluster
identities, which is expected as cell type signatures significantly
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Fig. 2. Pseudotime-informed non-negative matrix factorization recovers a sequential activation of gene expression programs. (A) Comparatively in
PCA plots, piNMF is able to resolve expression programs transiently activated for the lineage branch leading to the outer radial glial cell (0RG) cluster [same
for the intermediate progenitor cell (IPC) branch, see Fig. S4], whereas stdNMF does not recover such clear patterns from the data. The scale 0 to 1 denotes
activation of each gene expression program in each cell. (B) Genes assigned to modules at the extreme of the lineage tree [ventricular radial glia (vRG) and
either oRG or IPC] are shared in higher percentage when compared with modules 2 and 3, confirming that the main differences among non-negative matrix
factorization (NMF) algorithms pertain to the transient activation of expression programs along the tree. (C) The high values on the Euclidean distance
among the four gene expression programs supports, along with the stability and error measures (see Fig. S4), the factorization rank selection. (D) Heatmap
depicting the sequential activation of expression programs in the radial glia branch, with marker genes for each module and, for module 4, representative GO

terms highlighted in the main text.
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contribute to the variation detected in single-cell data. However, we
observed that expression programs at intermediate states towards
basal progenitor clusters were not clearly defined by stdNMF,
whereas piNMF finely resolved a sequential activation of
expression programs (Fig. 2A). A comparison of statistically
significant genes associated to each expression program using
multiple least squares regression revealed a higher congruence in
gene module membership for programs linked to vVRG and oRG cell
clusters (especially for oRG, with 79% overlap; 0.35% for IPC) than
for transient expression programs (<25%; see Fig. 2B). In line with
this, we found that exclusive, top-significant Gene Ontology (GO)
terms in transient expression programs captured by piNMF provided
a better characterization of key biological processes, with terms that
are directly relevant, such as neuroepithelial differentiation,
neurogenesis or cerebral cortex, absent in the stdNMF analysis
(stdNMF instead returned more generic terms related to cell-cycle
and chromatin organization; see Fig. S3).

A cholesterol metabolic program activated in the radial glial
branch

A comparison of expression modules between oRG or IPC clusters
inferred via piNMF revealed neural cell biology-specific features.
Congruently with the reported roles of gap junctions in coupling
radial glial cells (Lo Turco and Kriegstein, 1991), we found GO
terms related to cell adhesion and gap junction in the radial glia
branch (hypergeometric test; corrected P-value<0.05). Similarly,
exclusively for the late expression programs (modules 3 and 4) of
the radial glia branch, we observed terms related to glia identity such
as glia cell projection or glial cell differentiation, as well as terms
related to extracellular matrix, crucial for radial glia stemness
(corrected P-value<0.05; Fietz et al., 2012; Pollen et al., 2015).
Among the exclusive terms overrepresented in the IPC branch we
found G1 phase, including a key regulator of basal progenitor G1
phase-length cyclin D1 (Lange et al., 2009), cell-cell signaling and
Notch signaling (Kawaguchi et al., 2008), as well as axon and cell
projection terms [in agreement with a reported activation of
axogenesis-related genes in basal progenitors in mouse (Bedogni
and Hevner, 2021); all significant P-values can be found in
Table S1]. These results indicate that the piNMF implemented here
successfully captured relevant molecular processes during neural
cell differentiation.

Prominently, the module that is activated last in pseudotime and that
pertains to the acquisition of oRG identity returned an
overrepresentation of genes involved in cholesterol metabolism
(corrected P-value<0.01; Fig. 2D). For example, we observed the
activation of the expression of several enzymes of the cholesterol
biosynthesis pathway, such as the 3-hydroxy-3-methylglutaryl-
coenzyme A (HMG-CoA) synthase 1, which participates in a
condensation reaction before production of the cholesterol precursor
mevalonate, or the mevalonate pyrophosphate decarboxylase (MVD),
which catalyzes the production of isoprenes for cholesterol synthesis.
Although the interplay of cholesterol metabolism and neural
progenitor cells still awaits systematic exploration (Namba et al.,
2021), previous studies using mice have revealed important roles for
cholesterol in the context of cortical radial thickness and neural stem
cell proliferation and differentiation (Corbeil et al., 2010; Nourse et al.,
2022; Saito et al., 2009).

The prominence of cholesterol metabolism in the oRG cluster,
absent from IPC cluster gene expression modules, was replicated
when analyzing an independent dataset (Polioudakis et al., 2019)
and additionally cross-validated by GO terms that were also
captured by the standard NMF despite gene module composition

differences (Tables S1 and S2). To further strengthen our results, we
integrated our reference dataset with an openly available atlas of
neocortical development (Bhaduri et al., 2021) that allowed us to
widen our analysis on spatiotemporally matched prefrontal cortical
samples to also encompass the visual cortex (Fig. S5A). We
recapitulated the apical-to-basal progenitor bifurcation trajectory
(Fig. S5B,C) and, in line with the above, significant GO categories
related to acquisition of oRG fate in the integrated dataset were
related to lipid, fatty acid transporters and membrane organization
(corrected P-value<0.05; Table S2).

A KLF6-centered regulatory network for the activation of a
cholesterol metabolism program in human radial glia
We next proceeded to the identification of key regulators of gene
expression programs active during neural progenitor cell fate
dynamics. We performed a GRN reconstruction using the
CellOracle software (Kamimoto et al., 2023). First, we identified
replicated signals across single-cell ATAC-seq studies on the
developing human brain in order to create a brain atlas of open
chromatin regions (Materials and Methods). Second, we retained
confident TF-target gene links from the open chromatin region atlas
for each cell cluster, based on a machine learning-based regression
analysis on the single-cell gene expression data (Materials and
Methods). We evaluated the prominence of TFs and genes within
the reconstructed networks for each progenitor subtype cluster
according to the following network connectivity measures [as
proposed in Kamimoto et al. (2023)]: eigenvector centrality, for
overall relevance of a given gene in a network according to the
quality of'its connections to other genes, and betweenness centrality,
i.e. the influence of a given gene in the transfer of information
within a network. Consistently across network measures and
comparatively among cell clusters, we found the zinc finger-
containing TF KLF6 as one of the top-ranked genes in radial glial
cells (Fig. 3A,B; Fig. S7A). This is consistent with the association
of the gene to a super-interactive promoter in radial glia (Song et al.,
2020), but not in IPCs. Within radial glia, KLF6 occupies a more
prominent position in the oRG cluster [these results were replicated
in an independent dataset (Polioudakis et al., 2019); Fig. S7TA,B].
To gain further insight into the cell cluster-specific regulatory
network associated with KLF6, we compared its target genes in VRG
and oRG cell clusters. KLF6 targets in VRG are most significantly
related to biological processes that include responsiveness to abiotic
stimulus and organic substances, regulation of apoptosis,
neurogenesis or cell migration (corrected P-value<0.01). By
contrast, in the oRG cluster, the KLF6 transcriptional network is
significantly over-represented in genes linked to cholesterol and
steroid biosynthesis, as indicated by GO terms such as cholesterol
metabolism, regulation of cholesterol biosynthesis by SREBF and
steroid biosynthesis or steroid metabolic process (corrected P-
value<0.01; Fig. 3C,D; Table S3). To test for temporal differences in
gene expression, we compared early and late radial glia at neurogenic
stages and did not identify KLF6 or KLF6 cholesterol-related genes
as statistically significant differentially expressed genes (Fig. S4D).
We performed a similar analysis on an independent dataset
(Polioudakis et al., 2019) and, although we did not obtain a clear
discrimination for KLF6 roles in radial glia cell subtypes (with few
terms related to steroids in radial glia; Table S3), when we examined
the KLF6 transcriptional network reported in Polioudakis et al.
(2019), an enrichment for cholesterol metabolism emerged
(corrected P-value<0.01; Table S3). Additionally, we observed a
recapitulation of the statistically significant GO terms related to
oRG fate (cholesterol biosynthesis pathway, or cholesterol
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Fig. 3. Gene regulatory network reconstruction from human neural progenitor single-cell data. (A) Pairwise comparisons of eigenvector centrality
values among single-cell progenitor cell clusters, highlighting top 10 genes in each cluster. Some differentially expressed genes for the ventricular radial glia
(VRG) cell cluster retain some level of expression in basal progenitors and are indeed present among top ten genes for different gene regulatory network
(GRN) connectivity measures across clusters (see also Fig. S7); this is the case for EGR1, FOS or JUN. In addition to KLF6 for outer radial glial cells (0RG),
other genes that are more prominently associated with specific clusters include ASCL1, SOX9, TFAP2C for vRG when compared with oRG, or neuron
differentiation-related basic helix-loop-helix transcription factors NEUROD1, NEUROD2 and NHLH1 between intermediate progenitor cell (IPC) and radial glia
clusters, consistent with the closer transcriptomic similarity of IPCs to excitatory neurons (Bhaduri et al., 2021). (B) KLF6 network measures across single-cell
clusters, with a marked contrast between IPC and RG clusters, and most prominently as central node in oRG (eigenvector centrality). Below, KLF6
expression along pseudotime, showing upregulation in oRG and downregulation in IPC. (C) Top representative genes by network weight among KLF6 target

genes. (D) Top GO terms associated with KLF6 targets in oRG and vRG, with prominence of cholesterol metabolism in oRG. Cholesterol metabolism GO
terms only appear for VRG cluster KLF6 targets if relaxing the P-value threshold above 0.01 (see also Table S3). (E) A vector field represents the predicted
bifurcation trajectory from apical (low pseudotime values) to basal (high pseudotime values) progenitors. The in silico perturbation of KLF6 predicts a

depletion of both oRG and VRG, with a cell fate shift towards IPC.

metabolism; corrected P-value<(.05) when analyzing the integrated
dataset [reference dataset with prefrontal and visual cortical samples
from Bhaduri et al. (2021)]. However, in this case, we found a more
similar profile in VRG as well (Table S3).

We found KLF6 target genes across the four sequentially
activated gene expression programs detected by piNMF, and
specifically enzymes of the cholesterol biosynthetic pathway in
the latest-activated module in oRG (corrected P-value<0.01). As
expected, KLF6 targets present in piNMF modules were enriched in
cholesterol metabolism exclusively in the latest oRG module
(Table S4). Lastly, in agreement with the reported roles of KLF6 as a
regulator of cholesterol metabolism via activation of mTOR
signaling and sterol regulatory element binding TFs (Syafruddin
et al.,, 2019), we detected the mTOR signaling-related platelet-
derived growth factor receptor PDGFRB and insulin-like-growth
factor binding protein IGFBP2 as well as the GO term ‘activation of
gene expression by SREBF' in the late piNMF module 4 (corrected
P-value<0.01; Table S4; see also Table S5).

To further test the central roles of KLF6 regulatory programs on
radial glia, we leveraged the GRN modeling from CellOracle
framework to perturb KLF6 expression in silico (Fig. 3E). This
KLF6 knockout simulation reveals a prominent impact on radial glia
fate, with a shifting in cell state trajectories towards IPs. Taken

together, our results reveal a TF, KLF6, acting as a central node for
the activation of a cholesterol metabolic program in human radial
glia.

A paleogenomic interrogation of regulatory regions active
during human corticogenesis

In light of recent work mentioned in the introduction showing how
some protein-coding mutations (virtually) fixed across contemporary
human populations but absent in closely related extinct species affect
various aspects of neural progenitor cell behavior, and especially
metabolic programs, we decided to take advantage of our
comprehensive atlas of open chromatin regions active during
human corticogenesis presented above and an extensive catalog of
derived changes in our lineage (Kuhlwilm and Boeckx, 2019) to
focus on the still less well studied mutations in the regulatory regions
of the genome, aiming to identify any points of divergence among
closely related species that achieved similar brain sizes (VanSickle
et al., 2020), but likely via distinct ontogenies (Hublin et al., 2015),
reflected in different neurocranial shapes.

To do so, we first isolated a set of regulatory regions that contain
high-frequency Homo sapiens-derived variants but, crucially, for
which the Neanderthals/Denisovans carry the ancestral allele
[following the criteria in Kuhlwilm and Boeckx (2019)]. We call
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these ‘regulatory islands’, and defined such regions in terms of a
genomic window of 3000 base pairs around each variant where the
Neanderthal/Denisovan homolog regions did not acquire species-
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specific, derived variants (Fig. 4A; Materials and Methods). This
led to the identification of a total of 4836 regulatory islands linked to
4797 genes, complementing and extending recent efforts on
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regulatory variants derived in our lineage (McArthur et al., 2022
preprint; Moriano and Boeckx, 2020; Weiss et al., 2021).

Next, we tested whether regulatory regions associated with genes
found in either oRG- or IPC-lineage gene expression modules
identified in our above analysis were statistically associated to
regulatory islands more often than by chance (Materials and
Methods). An enrichment for regulatory regions of genes in the IPC
lineage in regulatory islands was detected (permutation test,
P-value<0.01), although this was not the case for the oRG lineage
(P-value=0.24). We caution, however, that the genes tested (highly
variable genes) are only a subset of those expressed by neural
progenitor cells. In terms of relative proportions, we observed a
more pronounced abundance of genes associated with regulatory
islands in late, relative to early, modules in the oRG branch, whereas
a more even distribution is observed in the IPC branch [Fig. 4A; for
both datasets studied here, Trevino et al. (2021) and Polioudakis
et al. (2019); see also Table S6]. Among the genes linked to
regulatory islands we found key oRG markers such as HOPX,
PTPRZI, LIFR, MOXD1, and indeed KLF6, to which we return in
the next subsection.

We then evaluated whether regulatory islands are enriched in two
genomic regions of special relevance for the recent evolution of
Homo sapiens: genomic regions depleted of archaic introgression
(so-called large ‘introgression deserts’) (Chen et al., 2020) and
regions under putative positive selection (Peyrégne et al., 2017). We
detected a significant enrichment for regulatory islands within
positively-selected regions ( permutation test, P-value<(0.01), in line
with previous results indicating that putative positively-selected
regions in our genome are enriched in regulatory regions
(enhancers) (Peyrégne et al., 2017). No such result was found for
regulatory islands and deserts of introgression (under-representation
with P-value<0.01). These intersections bring to relevance
predicted direct targets of KLF6 present in deserts of
introgression, PTPRZI and RBICCI, as well as interacting
regulators for cholesterol biosynthesis (Sun et al., 2005; Yang
etal., 2002), such as SCAP [with a fixed derived missense mutation
in Homo sapiens; Kuhlwilm and Boeckx, (2019)] and SEC24D,
exhibiting signals of positive selection in our species (Table S6).

Differential transcription factor binding analysis

Differential TF binding plays a key role in the divergence of gene
regulation across species (Villaretal., 2014; Zhang et al., 2023), and
indeed Homo species-specific regulatory variants have been
associated with differential gene expression in cell-line models
(Weiss et al., 2021). We performed a systematic evaluation of TF
motifs that are found in regulatory islands by implementing the
motifbreakR predictive tool (Coetzee et al., 2015). Specifically, we
tested whether variants at TFBS are responsible for TF differential
binding affinity, and asked whether an overall reduced, increased or
unchanged binding affinity is detected.

After filtering the results based on the distribution of affinity
difference scores, out of 400 TFs in the Hocomoco collection, we
found 27 with overall increased affinity and four with reduced
affinity, and 322 TFs showed both an increase and a decrease in
binding affinity at different sites (Fig. 4B). To functionally interpret
the biological roles of TFs whose binding sites are impacted by
Homo sapiens-derived mutations, we performed a GO term
enrichment analysis and observed, among the top significant
biological processes (P<0.05), lipid metabolism and also
inflammation-related signaling pathways (Fig. 4C; Table S7).

Interestingly, a rank of TFs with highest number of increased
binding affinity sites revealed statistically significant GO terms

related to the regulation of the adaptive response to hypoxia and
various metabolic processes including lipid metabolism (HIFIA4,
ARNT), and included a prominent downstream target of KLF6 in the
regulation of cholesterol metabolism, BHLHE40 (Syafruddin et al.,
2019), prominently so in regulatory islands associated with signals
of positive selection. Here, it is noteworthy that regulatory islands
affected by differential BHLHE40 binding include target genes
such as GLI3 as well as ITGBS, implicated in PI3K-AKT-mTOR
signaling in (outer) radial glia (Mora-Bermudez et al., 2016; Pollen
et al., 2019). Another TF controlling cholesterol homeostasis,
SREBF2, exhibits differential binding affinity for a regulatory
island linked to PALMD, which plays a specific role in basal
progenitor proliferation (Kalebic et al., 2019).

Next, we decided to focus on differential binding affinity sites
impacting KLF6, given its prominence in our previous results. Our
analysis predicts a KLF6-associated regulatory variant altering a
GLI3 TFBS (chr10:3936512-G-C, hg38 genome version), with
higher affinity in Homo sapiens when compared with the ancestral
variant found in Neanderthal/Denisovan genomes (Fig. 4D;
Table S8). Given the mutual regulation of cholesterol and sonic
hedgehog signaling (Blassberg and Jacob, 2017; Wang et al., 2016),
we found this differential binding affinity by GLI3 particularly
intriguing: GLI3 is a crucial regulator of the dorsoventral cell
fate specification and the switch between proliferative and
differentiative radial glia divisions [in different model systems
(Fleck et al., 2023; Hasenpusch-Theil et al., 2018)].

We found two regulatory islands under positive selection linked
to GLI3, which is one of the genes for which the expression
trajectory significantly changes through pseudotime. In fact, our
piINMF analysis placed GLI3 prominently at the juncture between
carly and late radial glia modules (program 2; indeed, the beginning
of the late oORG piNMF modules includes GO term ‘hedgehog
offstate’; Table S4). In addition, regulatory islands linked to GLI3
and associated with positive selection already mentioned above are
associated with increased binding affinity for mTOR signaling
related genes STAT2, a cytokine regulator implicated in cell
proliferation control and inflammation response (Ho et al., 2016),
ARID3A4 and LHX?2, both modulators of the cell cycle and the tempo
of cortical neurogenesis (Hsu et al., 2015; Saadat, 2013; Suresh
et al., 2024) (Fig. 4E; Table S8).

Finally, it is noteworthy that the GLI3 variants within regulatory
islands under putative positive selection have ClinVar-associated
phenotypes (Landrum et al., 2018), with the minor (ancestral) allele
linked to Greig cephalopolysyndactyly syndrome (OMIM: 175700)
and Pallister Hall syndrome (OMIM: 146510), which affect brain
size and craniofacial traits among other clinical features. Validating
the impact of these changes in an experimental setting is an important
research direction emerging from this analysis. We observe in this
context that within the KLF6 transcriptional networks in our analysis
one finds prominent GLI3 targets relevant for the specification of
dorsal telencephalic progenitors (Fleck et al., 2023), such as HES],
HES4 or HESS, as well as CTNNBI. In addition, experimental
perturbation of GSK3p, a kinase that integrates multiple signaling
pathways (including hedgehog and WNT-B-catenin signaling in mice
neural progenitors; Kim et al., 2009), specifically affects cholesterol
metabolism and indeed KLF6 expression coincident with the
emergence of the oRG lineage in human cortical organoids
(Lépez-Tobon et al., 2019).

DISCUSSION
Previous large-scale single-cell studies have extensively

characterized neural cells from the developing human brain.

7

DEVELOPMENT


https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.202390
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.202390
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.202390
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.202390
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.202390
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.202390

RESEARCH ARTICLE

Development (2024) 151, dev202390. doi:10.1242/dev.202390

However, the molecular definition of the lineage tree relating apical
progenitors to basal progenitor populations, as part of an intricate
web of complex lineage relationships, has remained elusive. By
implementing an integrative computational framework for the joint
investigation of different biological layers of the cell using high-
throughput single-cell data, we characterized gene expression
programs sequentially activated during progenitor cell progression
and identified key transcriptional regulators, shedding light onto
central processes of neural progenitor cell fate dynamics and
evolutionary modifications thereof.

Our findings uncover KLF6 as a central node in human radial glia
transcriptional networks. KLF6 is a member of the zinc finger-
containing family of TFs resembling Drosophila protein Kriippel
(Dang et al., 2000), but its role in human neurogenesis has to date
remained largely undescribed. KLF6 has been associated with a
‘super-interactive’ promoter specifically in radial glia (Song et al.,
2020) and its targets during neocortical development have been
reported to be enriched in oRG (Polioudakis et al., 2019), consistent
with our findings based on GRN reconstruction and piNMF. We
identified several enzymes implicated in cholesterol biosynthesis
under the KLF6 transcriptional control, prominently during the
acquisition of oRG identity. However, given the expression and
centrality of KLF6 in VRG, the cell type-specific functional roles of
KLF6 requires further investigation. Previous studies in other model
systems have also reported similar gene expression programs
regulated by KLF6 related to lipid homeostasis (Syafruddin et al.,
2019; Wang et al., 2018).

Future work is required to elucidate the roles of cholesterol
metabolism in oRG proliferation and neurogenesis, particularly in
light of clinical association of KLF6 to glioblastoma (Masilamani
etal., 2017), in which sustained cholesterol synthesis impacts tumor
cell growth (Kambach et al., 2017). We suspect it will be
particularly productive to examine the role of cholesterol
biosynthesis in the context of immune/inflammation regulation.
oRG are known to have specific energetic demands related to
aerobic glycolysis that are reminiscent of inflammation phenotypes
(Soto—Heredero et al., 2020) (also associated with hyperactivation
of the mTOR pathway; Allan, 2008). Several key oRG markers,
such as STAT3, IL6ST and LIFR (Pollen et al., 2015) have a well-
established role in immunity/inflammation control. Interestingly,
several of the genes related to cholesterol biosynthesis highlighted
in our analysis, such as SREBF2, BHLHE40 and indeed KLF'6 have
been shown to be involved in immune modulation by cholesterol
and its regulation of the endothelial response to cytokines (Fowler
etal., 2023) (a significant GO term in our analysis of TF binding site
modifications; Fig. 4).

The metabolic control of neural progenitor cell behavior
significantly contributes to species-specific features of brain
evolution (Iwata and Vanderhaeghen, 2021; Namba et al., 2021),
and experimental evidence already points to significant changes
impacting various metabolic pathways in our recent evolution (after
the split from our closest extinct relatives) (Pinson et al., 2022;
Stepanova et al., 2021). Our evolutionary-informed analysis of TFBS
disruptions contributes to this emerging picture by highlighting
modifications clustering around cholesterol metabolism. In addition,
our study highlights the relevance of mutations affecting GL/3. Not
only did we infer a differential regulation of KLF'6 by GLI3, we also
uncovered regulatory islands associated with signals of positive
selection predicted to impact GLI3 expression during cortical
development. Previously, a study on cortical organoids identified a
human differentially accessible region linked to GLI3 when compared
with chimpanzee organoids (Kanton et al., 2019).

We find it noteworthy that some of the variants defining the
regulatory island around GLI3 are among the most recent derived
high-frequency GLI3 changes in our lineage (Kuhlwilm and
Boeckx, 2019), and are predicted to have emerged between 200
and 300 kilo years ago (kya; Andirké et al., 2021 preprint), a
significant period in our recent evolutionary history (Hublin et al.,
2017; Schlebusch et al., 2017; Skoglund et al., 2017). Also, in light
of our findings, future research may explore further the promising
interplay between the primary cilia and GLI3 activity in the
regulation of cell cycle length and cortical size (Wilson et al., 2012),
considering as well the evolutionarily relevant role of mTOR
signaling in ciliary dynamics, impacting basal progenitors in
particular (Heurck et al., 2023), and between cholesterol
accessibility and the regulation of hedgehog signaling in the
membrane of the primary cilium (Kinnebrew et al., 2019).

Our approach illustrates the relevance of paleogenomes in adding
temporal precision to important differences that comparisons
between humans and other great apes already revealed (Pollen
etal., 2023), in particular here the role of mTOR signaling in human
cortical development (Pollen et al., 2019). At a more general level,
our work adds to the mounting evidence for the importance of
regulatory regions in modifying developmental programs in the
course of (recent) human evolution (Gokhman et al., 2020; Kaplow
etal., 2023; Keough et al., 2023; Mangan et al., 2022; Moriano and
Boeckx, 2020; Peyrégne et al., 2017; Weiss et al., 2021).

Our work also shows how paleogenomics offers the potential to
probe questions about brain evolution that go beyond traits that may
be recoverable from the (traditional) fossil record, such as overall
adult brain size or shape. Our evolution-oriented analysis invites the
hypothesis that important modifications impacting upper-layers of
the neocortex took place relatively recently in our history. The
evidence presented here involving differential regulation of
cholesterol signaling in oRG, together with independent evidence
concerning changes affecting genes specifically involved in basal
progenitor proliferation [such as PALMD (Kalebic et al., 2019,
Kuhlwilm and Boeckx, 2019) or TKTLI (Pinson et al., 2022)], as
well as upper-layer neuron markers like SATB2 (Weiss et al., 2021),
points to the need to probe the nature of associative, cortico-cortical
connections characteristic of upper-layer neuronal ensembles further.

MATERIALS AND METHODS

Single-cell RNA-seq data processing

Raw single-cell RNA-seq datasets from selected studies were processed
using Seurat 4.2.0, guided by best practices of single cell analysis (Butler
et al., 2018; Luecken and Theis, 2019; Stuart et al., 2019). Seurat objects
were created from raw count matrices and retention of high quality cells was
based on the following cell attributes: total counts, expressed genes,
percentage of mitochondrial gene counts and percentage of zero counts,
requiring a distribution of values within three median absolute deviations for
each attribute and per batch. Actively dividing cells were filtered out based
on TOP2A4 expression. To jointly analyze samples from different batches, as
well as data from Trevino et al. (2021), Polioudakis et al. (2019) and Bhaduri
et al. (2021), in a shared low dimensional space, we performed data
normalization with Seurat dedicated function SCTransform, and then
followed strategy presented in Stuart et al. (2019) to identify a set of anchor
cells (‘FindIntegrationAnchors’ function) for the integration of datasets
(‘IntegrateData’ function), before computing PCA. A common processing
was implemented for inferring the branch trajectories and for GRN
reconstruction (see below): retaining genes with expression in at least 50
cells, normalization of cell counts to equal median of counts per cell before
normalization, selection of 4000 highly variable genes based on Seurat
variance-stabilizing transformation algorithm (Hafemeister and Satija,
2019), followed by re-normalization and log-transformation. Coarse
clustering was performed using Leiden algorithm and resolution
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parameter to 0.1. Logistic regression was used to identify differentially
expressed genes. Cell cluster annotation was based on both differential
expression analysis and available annotations from the original publications.
A synthetic dataset was generated using dynverse trajectory inference tool
(Cannoodt et al., 2021) for a bifurcating model with number of cells set to
1000, 2000 features and dropout probability factor 1000. Differential
expression analysis was performed using a Wilcoxon rank rum test as
implemented in Seurat, setting a log fold-change threshold of 1.25, genes
detected in at least 0.25% of cells in each cluster, and a minimum gene
detection difference between clusters of 0.5; differences were considered
significant if adjusted P-value<0.01.

Complementarily, we performed single-cell trajectory reconstruction
using python package scFates (Faure et al., 2023) on normalized, log
transformed count matrices. A force-directed graph was drawn using our
previously computed PCA coordinates for initialization. Then we used the
Palantir software (Setty et al., 2019) included in the scFates toolkit to
generate a diffusion space for tree learning using the EIPiGraph algorithm.
Pseudotime was calculated using FOS gene expression for root selection and
the genes that significantly changed in expression along the inferred tree
were identified using the scFates cubic spline regression function.

Gene regulatory network inference and analysis

GRN reconstruction was performed following the computational framework
of CellOracle software (Kamimoto et al., 2023), combining single-cell
ATAC-seq and RNA-seq data modalities for TF-target genes inference.

In order to build an atlas of open chromatin regions active during human
cortical development, we selected as reference the singleome ATAC-seq
dataset from Trevino et al. (2021), containing the highest number of ATAC-seq
peaks, and required a minimum of 50% overlap with open chromatin signals
from one of the following datasets: multiome ATAC-seq data from Trevino
et al. (2021) or ATAC-seq datasets from Markenscoff-Papadimitriou et al.
(2020) and de la Torre-Ubieta et al. (2018). As the reference dataset does not
contain signals for the X and Y chromosomes, we included these data as
available in Markenscoff-Papadimitriou et al. (2020) and de la Torre-Ubieta
et al. (2018). A total of 392,961 regulatory regions (hg38 genome version)
were used for downstream analyses. We then built regulatory region-gene
associations based on genomic proximity and literature curated regulatory
domains (McLean et al., 2010). Next, we scanned each regulatory region for
TF motifs using the Hocomoco database version 11 (Kulakovskiy etal., 2018).
The resulting TF-regulatory region-gene associations represent the raw GRN
for the machine learning-based regression analysis to impute cluster-specific
GRNs (Kamimoto et al.,, 2023). Of the two algorithms available in the
CellOracle software, we chose the bagging ridge regression model, as it
consistently reported better scores for network degree distribution (Fig. S6).
Cluster-specific TF-target gene interactions were obtained by filtering by a P-
value threshold 0f 0.001 for connection strength and a maximum of 2000 links
per cluster. An evaluation of such GRNs was performed on the basis of the
centrality measures, including betweenness centrality and eigenvector
centrality, as proposed in Kamimoto et al. (2023). GO enrichment analysis,
as for evaluating NMF results (see below), was performed using python
package of g:Profiler (Kolberg et al., 2023). Results were considered
significant if hypergeometric tests reported corrected P-value<0.05.

Pseudotime-informed non-negative matrix factorization

Matrix factorization techniques aim to infer the underlying structure of a high
dimensional dataset and to provide interpretable meaningful components,
thus with diverse applications on high throughput data, including the
inference of gene expression programs (Stein-O’Brien et al., 2018).
Specifically, we implemented a matrix factorization analysis to learn the
dynamics of gene expression programs dependent on pseudotime from
single-cell data. We applied a non-negative matrix factorization that
comprises the decomposition of a matrix of n vectors with non-negative
values into two lower rank, non-negative matrices: the pattern matrix
containing basis vectors and the coefficient matrix with the coefficients of the
non-negative linear combination of the basis vectors, aiming to minimize:

d(Y,4X), (1)

where d is the distance (by a given measure) between the original matrix and the
reconstruction AX. As our inquiry deals with cellular differentiation events, we
sought to decompose a high dimensional single cell dataset accounting for the
dynamic nature of gene expression trajectories through pseudotime. As the core
algorithm, we computed the matrix factorization following the original work of
Hautecoeur and Glineur (2020), where the approximation is now:

»ilt) = Y a0 )
J

where each vector of y is a function dependent on time #, a contains a set of
non-negative functions, and x contains the non-negative coefficient values, for
a given factorization rank » and 1<j<r, 1<i<n. As with other factorization
methods, there is no a priori knowledge of the factorization rank (i.e. expected
number of patterns in the data), and thus » must be provided by the user;
measures of stability and error (see below) can guide this selection. Here, we
chose four expression programs as a neat balance between stability across
branches and datasets and resolution of semi-discrete modules along
pseudotime (see Fig. 2 and Fig. S4). We used degree 3 splines as the set of
functions to model gene expression trajectories, selecting the number of knots
(obtaining intervals where to fit trajectories) to 4 (a low number avoids
overfitting and better captures global trends). The algorithm to solve the
factorization problem is based on Hierarchical Alternating Least Squares
[implemented in Hautecoeur and Glineur (2020)], and a maximum number of
iterations of 10* and tolerance 107! were set as stopping criteria.

Given that NMF is a matrix approximation method, we followed the iterative
and clustering strategies presented in Kotliar et al. (2019) as an extended
algorithm to recover stable gene expression modules. Matrix decompositions
from the core algorithm presented above were computed over 750 iterations per
factorization rank to obtain replicates that were then clustered via KMeans
clustering based on Euclidean distance to obtain consensus values for the
pattern and coefficient matrices. Measures of stability and error of the matrix
reconstruction were calculated using silhouette scores and the Frobenius norm
of approximation, respectively, following Kotliar et al. (2019). Additionally, in
order to statistically associate genes to gene expression programs, marker genes
for each module were identified using the normalized z-score gene expression
value of each gene for multiple least squares regression against the programs in
the pattern matrix, as implemented in Kotliar et al. (2019). We refer to
(semi)discrete modules to indicate that genes might be present in more than one
module to the extent the association is statistically significant (higher
expression than the rest of genes in cells with activation of the given
expression module).

Paleogenomic analysis

We made use of a paleogenomic dataset (Kuhlwilm and Boeckx, 2019) that
catalogs segregating sites between Homo sapiens and high quality genomes
from two Neanderthals and one Denisovan individual (Meyer et al., 2012,
Priifer et al., 2017; 2014), where ancestrality was inferred from publicly
available multiple genome alignments (Paten et al., 2008) or, when this
information was not available, from the macaque reference genome (Yan et al.,
2011). Allele frequency was determined from the dbSNP database build 147
(Sherry et al., 2001) and a 90% allele frequency threshold was set to retain
high-frequency variants for further analyses. In the search for regulatory
regions that might have been under selection in recent Homo sapiens evolution
and that differentially impact gene expression, we intersected the regulatory
regions from our open chromatin region brain atlas with Homo sapiens-derived
variants where the Neanderthals/Denisovans carry the ancestral allele (using
the bedtools suite; Quinlan and Hall, 2010). Additionally, to identify genomic
regions that may encapsulate Homo-specific regulatory mechanisms, we
required for each variant to be contained within a genomic window of at least
3000 bp where the Neanderthal/Denisovan homolog regions did not
accumulated lineage-specific derived changes. A total of #»=4836 regulatory
islands were identified and associated to 4797 genes. To detect signals of
selection, we intersected genome coordinates of regulatory islands with
putative positively-selected regions identified by Peyrégne et al. (2017) as
unusually long genomic regions that contain variants that reach high or even
fixation in our species after our divergence from the Neanderthal/Denisovan
lineage. A similar approach was used to identify regulatory islands within
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regions that are significantly depleted of Neanderthal/Denisovan ancestry
(Chen et al., 2020). Permutation tests were performed using R package
regioneR (Gel et al., 2016), setting number of iterations to 10,000 and using
random genomic regions of similar size as control for each test.

To evaluate disruptions of TFBS, we generated a set of genomic coordinates
of variants sitting within regulatory islands using a unique identifier based on
genomic coordinates and allele information. Differences in TF binding affinity
were computed, applying the information content method from the
motifbreakR package (Coetzee et al., 2015) and using position weighted
matrices annotated in the Hocomoco motif collection (Kulakovskiy et al.,
2018) (consistent with our GRN reconstruction analysis). A significance
threshold was set to 1e-4 and an even background nucleotide distribution was
assumed. The P-values were then adjusted for multiple testing using the
Benjamini-Hochberg method. Redundant motifs were dropped and the
resulting TF-variant associations further filtered by retaining only those with
a predicted affinity difference falling in the fourth quantile of the distribution.
Finally, a frequency score was computed for each TF based on the number of
strong over total hits identified. GO enrichment analyses were performed on the
TF identified as described above (using the same Hocomoco motif collection as
custom reference set). Analyses were performed with the TopGO package
(Alexa et al., 2006) using the following parameters: ‘weight01’ as algorithm,
‘Fisher’ as statistics, 8 as ‘nodeSize’ and 3 as ‘minTerms’; a P-value<0.05 and
an enrichment>1 were set as thresholds to select significant GO terms.

Limitations

The (pseudo)temporal ordering of gene expression states from single-cell data
presented here allows us to interpret cell differentiation as a molecular
continuum, but it remains to be seen how closely this recapitulates the
transcriptional dynamics of lineage progression in vivo. Additionally, the process
of indirect neurogenesis studied here idealizes away from what is a much more
complex network of lineage relationships among neural progenitor subtypes.
The reconstruction and recovery of regulatory networks and expression programs
rely on the identification of a set of TFs and highly variable genes that only
partially represent the higher complexity of the cells. This complexity is even
more manifest when the temporal differences among neural progenitors during
the long human gestational period is taken into account. Lastly, future
experimental work is required to validate the predictions derived from the
paleogenomic interrogation of regulatory variants presented here.
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