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Introduction

Obsessive–compulsive disorder (OCD) is a common 
psychiatric disorder characterized by persistent intrusive 
thoughts (obsessions), repetitive ritualistic overt or covert 
behaviours (compulsions), or both.1 Typical obsessive 
thoughts concerning contamination, harm, sexual or reli-
gious ideas, and exactness are accompanied by anxiety or 
distress, which may, in turn, incite compulsions such as 
excessive cleaning, checking, ordering and arranging, and 

counting.2 In the adult population, OCD has a lifetime 
prevalence of 1.9%–2.5%, with strong negative effects on 
occupational and social functioning.3 In many cases, OCD 
is comorbid with other disorders, including major depres-
sive disorder (MDD) and anxiety disorders.3,4 Addition-
ally, differences in symptom severity likely contribute to 
OCD heterogeneity.5–7

Neuroimaging studies suggest that OCD is associated 
with structural or functional changes in the cortico–striato–
thalamo–cortical loops.8,9 However, emerging evidence 
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Background: Although it has been suggested that the hippocampus and amygdala (HA) are involved in the neurobiology of obsessive–
compulsive disorder (OCD), volumetric findings have been inconsistent, and little work has been undertaken on the volumetry of the 
heterogeneous anatomic units of HA, with their specific functions and cytoarchitecture, in OCD. We sought to explore potential sources 
of heterogeneity in brain volumes by performing a separate analysis for people with and without psychotropic medication use, as well as 
the association of subfield volumes with OCD symptom severity. Methods: We segmented T1-weighted images from people with OCD 
and healthy controls in the OCD Brain Imaging Consortium to produce 12 hippocampal subfields and 9 amygdala subfields using Free-
Surfer 6.0. We assessed between-group differences in subfield volume using a mixed-effects model adjusted for age and quadratic ef-
fects of age, sex, site, and whole HA volume. We also performed subgroup analyses to examine subfield volume in relation to comorbid 
anxiety and depression, medication status, and symptom severity. We corrected all analyses for multiple comparisons using the false 
discovery rate (FDR). Results: We included images from 381 people with OCD and 338 healthy controls. These groups did not signifi-
cantly differ in HA subfield volumes. However, medicated people with OCD had significantly smaller volumes in the hippocampal dentate 
gyrus (pFDR = 0.04, d = –0.26) and molecular layer (pFDR = 0.04, d = –0.29), and larger volumes in the lateral (pFDR = 0.049, d = 0.23) and 
basal (pFDR = 0.049, d = 0.25) amygdala subfields, than healthy controls. Unmedicated people with OCD had significantly smaller vol-
umes in the hippocampal cornu ammonis sector 1 (pFDR = 0.02, d = –0.28) than controls. We did not detect associations between any 
subfield volume and OCD severity. Limitations: We used cross-sectional data, which limits the interpretation of our analysis. 
Conclusion: Differences in HA subfields between people with OCD and healthy controls are dependent on medication status, in line 
with previous work on other brain volumetric alterations in OCD. This emphasizes the importance of considering psychotropic medication 
in neuroimaging studies of OCD.
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suggests that OCD involves additional brain circuits, in-
cluding the cerebellar, frontoparietal, and frontolimbic 
circuits.9 Meta-analysis of whole-brain resting-state func-
tional magnetic resonance imaging (fMRI) indicates hypo-
connectivity within certain regions in OCD, specifically in 
the frontoparietal and salience networks, and between the 
salience, frontoparietal, and default mode networks.10 
There has also been interest in investigating the hippo-
campal formation and amygdala in OCD, given the estab-
lished roles of these brain structures in anxiety11–13 and 
fear conditioning.14 Indeed, an fMRI study suggested that, 
during fear conditioning, the hippocampus has reduced 
activation among people with OCD,15 and a meta-analysis 
indicated increased amygdala activation during emotional 
processing among people with OCD, compared with 
healthy controls (HCs).16

However, structural MRI studies in OCD have yielded 
inconsistent findings, reporting both increases and de-
creases in HA volumes.17–19 Such inconsistency could be 
attributable to small sample sizes, the presence of comor-
bidities, or medication use. Medication status is an im
portant factor, as psychotropic medications may influence 
brain volumes, highlighting the need to consider medica-
tion use when interpreting volumetric findings in OCD. 
Additionally, previous studies have investigated total HA 
volumes rather than subfield volumes, which may mask 
subtle OCD-related differences in volume that vary be-
tween the individual subfields. Work from the Enhancing 
Neuroimaging Genet ics  through Meta- Analysis 
(ENIGMA) OCD Consortium (ENIGMA-OCD) found 
smaller hippocampal volumes among people with OCD 
than among HCs, but only among those on medication or 
with adult-onset OCD.20 These findings were corroborated 
by work from the multisite OCD Brain Imaging Consor-
tium (OBIC), which demonstrated that smaller hippo-
campi were associated with medication use.21,22 In a post 
hoc analysis, Ivanov and colleagues23 found smaller hip-
pocampi and thalami and larger pallida among medicated 
than among unmedicated people with OCD across differ-
ent age groups.

The HA comprises anatomically complex structures, 
consisting of multiple interconnected nuclei that can be 
segmented according to their cytoarchitecture, histochem-
istry, and connectivity profile.24 Little, however, is known 
about HA subfield volumes in OCD. Recent developments 
in structural MRI segmentation techniques have allowed 
for the robust delineation of HA subfields using a Bayes-
ian algorithm that is based on the transformation of 
manual segmentation to an automated atlas.25 Indeed, a 
previous study showed that pediatric individuals with 
OCD have larger hippocampal subfields — namely in the 
left subiculum body, left cornu ammonis (CA) 4, left gran-
ule cell layer of the dentate gyrus (DG), left molecular 
layer (ML), and right parasubiculum — than HCs.26 Recent 
reports indicate that medication-free people with OCD 
have smaller volumes in the hippocampal subiculum, pre-
subiculum, CA 2/3, and tail,27 and smaller volumes in the 
basolateral and central amygdala subfields.28 However, 

these studies involved small samples and did not include 
people using psychotropic medication.

We set out to address inconsistencies in previous reports 
of volume differences in OCD by analyzing data from a 
large and diverse sample. We specifically aimed to explore 
potential sources of heterogeneity in brain volumes by per-
forming a separate analysis for people with and without 
psychotropic medication use, and we studied the effect of 
comorbid anxiety and depression as well as the association 
of subfield volumes with OCD symptom severity.

Methods

Participants and magnetic resonance imaging

We obtained sociodemographic and neuroimaging data 
from 6 research sites as part of OBIC. Collaborating sites 
and participant details have been described in a previous 
publication.29 Briefly, people with OCD were recruited 
through local outpatient clinics, whereas HCs were sourced 
through local advertisements. All participants were 
screened for Diagnostic and Statistical Manual of Mental Dis­
orders Fourth Edition Axis I disorders. For the patient group, 
the primary diagnosis had to be OCD, but comorbidity 
with mood and anxiety disorders was allowed. To be in-
cluded, HCs were required to be without current Axis I 
psychiatric disorders. Participants were excluded if they 
were younger than 18 years or older than 65 years; had a 
current psychotic disorder; or had a history of substance 
use disorder, intellectual disability, or severe organic or 
neurologic pathology. Additional data were collected on 
age of OCD onset, medication status, and symptom sever-
ity, assessed with the Yale–Brown Obsessive–Compulsive 
Scale (Y-BOCS).2

Image analysis and segmentation

All participants underwent 1.5 T structural T1-weighted 
MRI.29 Image analysis was performed on the high-
performance computing cluster at the University of Cape 
Town, South Africa. First, we applied the standard Free-
Surfer version 5.3 analysis pipeline using the recon-all 
function to initiate all cortical reconstruction processes 
(http://surfer.nmr.mgh.harvard.edu/). This function in
itiates bias-field correction to the T1-weighted images as 
well as registration to Talairach space, intensity normal-
ization, and skull stripping.30

Next, we performed subfield segmentation using the 
segmentHA_T1.sh script in FreeSurfer version 6.0. This 
script simultaneously segments the HA, thereby preventing 
structural overlap.31 The probability atlas applied by the 
script is based on the transformation of ex vivo manual seg-
mentation to an automated algorithm that segments in vivo 
MRI data in target space. The atlas was built using Bayesian 
inference based on a tetrahedral mesh spanning the amyg-
dala and neighbouring structures.25 For each participant, the 
model produces left and right volumes for the HA subfields, 
as well as whole HA volume and intracranial volume.
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The hippocampus was segmented into the following sub-
fields: parasubiculum, presubiculum, subiculum, CA sectors 
(CA1, CA2–3, CA4), DG, ML, hippocampus–amygdala tran-
sition area, fimbria, hippocampal tail, and hippocampal fis-
sure.31 The hippocampal subfields were grouped according 
to the FreeSurfer 6.0 hippocampal module without head–
body subdivision, and the ML was not absorbed to the near-
est DG layer (https://surfer.nmr.mgh.harvard.edu/fswiki/
HippocampalSubfieldsAnd​NucleiOfAmygdala). We seg-
mented the amygdala into 7 nuclei (lateral, basal, accessory 
basal, central, medial, cortical, paralaminar nucleus) and 
2  transition areas (anterior amygdaloid area and cortico–
amygdaloid transition). Studies suggest that the amygdala 
can be grouped in the basolateral (lateral, basal, accessory 
basal, paralaminar nucleus), centromedial (central and med
ial), and superficial area (cortical, anterior amygdaloid area, 
and cortico–amygdaloid transition) regions.32 Figure 1 pro-
vides an illustration of a typical Freesurfer segmentation of 
the HA.

Quality control by visual inspection

We used a combination of visual inspection and quantitative 
measures to identify inaccurate subfield segmentation. To 
visually identify segmentation failures, we used an adapta-
tion of the ENIGMA Consortium Quality Control protocol 
for subcortical and hippocampal subfields (https://enigma.
ini.usc.edu/protocols/imaging-protocols/). In brief, 3 in
dependent raters (Z.N., A.R., T.S.) examined each scan, slice 
by slice, within an HTML-based image gallery for partial or 
atypical segmentation. A list of questionable cases was gener-
ated for 3-dimensional inspection, using the Freeview utility 
included with FreeSurfer.35 We identified additional cases 
2 ways. First, we z-standardized each subfield and excluded 
participants whose score exceeded plus or minus 5 standard 
deviations (SDs) from the mean for any subfield.36 Next, we 
generated automated outliers using an R script provided by 
the ENIGMA-MDD working group (https://enigma.ini.usc.
edu/ongoing/enigma-hippocampal-subfields). For the latter, 

Figure 1: (A) Lateral and (B) medial visualization of amygdala–hippocampal Freesurfer subfield segmentation from right hemisphere of a 
single representative healthy control, using 3DSlicer (https://www.slicer.org/). The hippocampal fimbria was not included in our analysis.33,34 
CA = cornu ammonis; GC ML DG = granule cells in the molecular layer of the dentate gyrus; HATA = hippocampus–amygdala transition area.
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participants flagged as outliers for 5 or more subfields were 
added to the list for 3-dimensional inspection.

Statistical analysis

In addition to adjusting for age, sex, and scanner site across 
all analyses,37–40 we included quadratic effects of age in the 
linear mixed-effects model to account for the nonlinear rela-
tionship between age and brain volumes.41,42 In addition, we 
used site as a random effects variable to minimize site-related 
variability in MRI acquisition and patient evaluations. Al-
though recent harmonization protocols such as ComBat43 are 
increasingly popular, the use of site as a random effects vari-
able in a mixed-effects linear regression framework has pre-
viously been demonstrated as yielding comparable results to 
these protocols, while avoiding the risk of potentially remov-
ing variance from factors of interest that differ by site, a 
known shortcoming of ComBat. Initial exploration of the 
data revealed a sex by age and sex by age-squared interaction 
for specific subfields, warranting inclusion of these terms in 
the mixed-effects models.

We conducted all statistical analyses in R (https://www.r​
-project.org/). We used the lme4 package to perform our 
analysis and used mixed-effects d effect sizes, as calculated 
using the t values from linear mixed-effects models,44 which 
included a random intercept for scan site. To reduce the sta-
tistical penalty associated with correction for multiple com-
parisons in the main analysis, we averaged the left and right 
volumes to produce a single value per participant.20 In this 
analysis, a total of 21 separate subfield tests were per-
formed. In an exploratory analysis, we examined the left 
and right subfields separately, conducting 42 separate tests. 
The hemisphere-specific findings are reported in 
Appendix 1, available at www.jpn.ca/lookup/doi/10.1503/
jpn.230119/tab-related​-content. We corrected all models for 
the total subfield volume using the combined HA volume 
(as recommended in the FreeSurfer manual; https://surfer.
nmr.mgh.harvard.edu/fswiki/HippocampalSubfieldsAnd​
NucleiOf​Amygdala). We corrected all analyses for multiple 

comparisons using the false discovery rate (FDR). To explore 
the potential effects of sex and age on subfield volume differ-
ences between participants with OCD and HCs, we analyzed 
the interaction between diagnosis and sex, as well as diagno-
sis and age (Appendix 1, Note 1). We performed separate 
analyses where we compared subgroups of interest to HCs, 
including participants with OCD with anxiety comorbidity, 
those without anxiety comorbidity, those with MDD, and 
those without MDD. We also included those with a history of 
psychotropic medication use and those without medication 
use. In light of preliminary evidence for subfield differences 
between medicated participants and HCs, we tested the ro-
bustness of these findings to the inclusion of education in the 
model, as a potential confound.

Ethics approval

Ethics approval was obtained for each site from all local eth-
ics review boards. Written informed consent was provided 
by each participant. In addition, for multisite pooling of data, 
approval was obtained from the medical ethical committee of 
the Amsterdam University Medical Center.

Results

Sample characteristics

We excluded 55 participants from the main analysis, of 
which we identified 40 from visual quality control, 9 based 
on visual quality control after outlier flags, and 6 whose z 
scores exceeded plus or minus 5 SD from the mean of any 
subfield (Table 1). The final sample consisted of 381 partici-
pants with OCD and 338 HCs (Table 2). In the full sample, 
participants with OCD were significantly older (32.0 [SD 9.4] yr 
v. 30.2 [SD 9.3] yr; t = –2.5, p = 0.01) and had less education 
(13.7 [SD 2.8] yr v. 14.6 [SD 3.4] yr; t = 3.6, p < 0.001) than 
HCs. Moreover, both age and education level were signifi-
cantly associated with volume across the entire sample for a 
number of HA subfields (Appendix 1, Table S4). There were 

Table 1: Number of scans provided and excluded for participants with obsessive–compulsive disorder and healthy controls after 
quality checking

Initial no. of scans* Excluded for missing data Excluded after visual QC Reasons for exclusion

Site OCD HC Total OCD HC Total OCD HC Total Segmentation†
QC + 

outlier‡ z score§

Amsterdam 53 49 102 1 1 2 4 1 5 4 1 0

Barcelona 86 102 188 0 0 0 9 6 15 9 4 2

Brazil 58 40 98 1 1 2 6 2 8 13 2 1

Japan 88 48 136 2 5 7 5 3 8 12 0 2

Korea 87 97 184 0 0 0 5 9 14 0 0 0

London 44 33 77 0 0 0 2 3 5 2 2 1

Total 416 369 785 4 7 11 31 24 55 40 9 6

HC = healthy control; OCD = obsessive–compulsive disorder; QC = quality control.
*Reported in previous publication.29 
†Participants excluded based on visual screening for partial or atypical segmentation using an adaptation of the Enhancing Neuroimaging Genetics through Meta-Analysis Consortium 
Quality Control protocol for subcortical and hippocampal subfield (https://enigma.ini.usc.edu/ongoing/enigma-hippocampal-subfields/). 
‡Participants excluded based on R script flag for abnormalities on more than 5 subfields and flagged for visual QC. 
§Participants excluded based on exceeding plus or minus 5 standard deviations from the z-standardized mean of any of the subfields.
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no significant group differences in sex and whole HA volume. 
The mean Y-BOCS score in the OCD group was 24.9 (SD 6.2).

We performed separate analyses of subgroups of interest 
to HCs, including participants with OCD with comorbid anx-
iety (n = 74), those without comorbid anxiety (n = 356), those 
with MDD (n = 95), and those without MDD (n = 286). We 
also included those with a history of psychotropic medica-
tion use (n  =  161), and those without medication use 
(n = 220). Table 3 provides details on demographic and clin
ical characteristics of subgroups.

Group difference in subfield volumes

We conducted between-group comparisons of all partici-
pants with OCD and HCs. There were no significant differ-
ences in HA subfield volumes (pFDR < 0.05) after adjusting for 
age and quadratic effects of age, sex, site, and whole HA vol-
ume (Figure 2A and Table 4). In the exploratory analysis, 
there were no significant differences in left or right HA sub-
field volumes (pFDR < 0.05) after adjusting for age and quad
ratic effects of age, sex, site, and whole left and right HA vol-
ume (Appendix 1, Table S1B).

Association of subfields volume and clinical factors

Medicated participants with OCD (n = 161) had significantly 
smaller hippocampal DG volumes (pFDR = 0.04, d = –0.26) and 
ML (pFDR  =  0.04, d  =  –0.29), and larger lateral (pFDR  =  0.049, 
d = 0.23) and basal (pFDR = 0.049, d = 0.25) amygdala volumes, 
compared with HCs (n = 291) (Figure 2B). Unmedicated par-
ticipants with OCD (n = 220) had significantly smaller hippo-
campal CA1 subfield volumes (pFDR  =  0.02, d  =  –0.28) than 
HCs (n = 220). There were no significant subfield volume dif-
ferences between medicated and unmedicated participants 
with OCD (Appendix 1, Note 1 and Table S3).

In an additional sensitivity analysis that included education 
as a covariate, none of the significant differences in subfield 
volumes between medicated participants with OCD and HCs 
(DG, ML, lateral amygdala, and basal amygdala), or between 
unmedicated participants and HCs (CA1) remained signifi-
cant after adjusting for multiple comparisons. Nevertheless, 
all of these findings were significant when using unadjusted 
p values (p < 0.05) and demonstrated relatively large effect 
sizes (d > ± 0.2). Moreover, in models comparing medicated 
participants with OCD versus HCs that included education 
with those that did not, we observed comparable effect size 

Table 2: Demographic and clinical characteristics of participants with obsessive–compulsive disorder and healthy controls

No. (%) of participants*

t df p valueCharacteristic
Participants with OCD 

n = 381
HC 

n = 338

Age, yr, mean ± SD 32.0 ± 9.4 30.2 ± 9.3 –2.5 708.7 0.01

Education, yr, , mean ± SD 13.7 ± 2.8 14.6 ± 3.4 3.6 653 < 0.001

Y-BOCS total score, mean ± SD 25 ± 6.2 –

Age at onset of OCD, yr, mean ± SD† 20.3 ± 8.8 –

Total hippocampal volume, mean ± SD 3544.4 ± 340.4 3587.5 ± 361.6 1.6 694.4 0.1

Total amygdala volume, mean ± SD 1770.3 ± 187.9 1783 ± 198.1 0.8 696.3 0.4

Sex, male 186 (48.8) 179 (52.9) –1.1 707 0.3

Right-handed 327 (85.8) 303 (89.6)

Medication use at time of scan 161 (43.6) –

df = degrees of freedom; HC = healthy control; OCD = obsessive–compulsive disorder; SD = standard deviation; Y-BOCS = Yale–Brown Obsessive Compulsive Scale.
*Unless indicated otherwise.
†As measured by the Y-BOCS symptom checklist.

Table 3: Demographic and clinical characteristics of subgroups

Characteristic

No. (%) of participants

Comparison

A: With OCD 
on medication 

n = 161

B: With OCD not 
on medication 

n = 220

C: With OCD 
with anxiety 

n = 74

D: With OCD 
without anxiety 

n = 356

E: With OCD 
with MDD

n = 95

F: With OCD 
without MDD 

n = 286
G: HC

n = 338

Age, yr, mean ± 
SD

32.89 ± 9.13 31.33 ± 9.54 32.27 ± 8.67 31.81 ± 9.39 34.99 ± 9.56 30.99 ± 9.14 30.2 ± 9.3 A > G
C > G
D > G

Education, yr, 
mean ± SD

12.90 ± 2.88 14.33 ± 2.62 13.40 ± 2.97 13.63 ± 2.81 13.48 ± 2.92 13.78 ± 2.79 14.6 ± 3.4 A > G
D > G
E > G
F > G

Sex, male 83 (51.55) 103 (46.81) 32 (43.24) 179 (50.28) 32 (33.68) 154 (53.84) 179 (52.9) C > G
E > G

HC = healthy control; MDD = major depressive disorder; OCD = obsessive–compulsive disorder; SD = standard deviation.
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Figure 2: (A) Mixed effect size estimates (d) for hippocampal and amygdala subfield volumes between participants with obsessive–
compulsive disorder (OCD; n = 381) and healthy controls (n = 338) and (B) between medicated participants with OCD (n = 161) and healthy 
controls (n  =  291). Data presented with standard errors (SEs). *p  <  0.05. AAA = anterior amygdaloid area; CA = cornu ammonis; CAT = 
corticoamygdaloid transition area; DG = granule cell layer of dentate gyrus; HATA = hippocampus–amygdala transition area; ML = molecular 
layer. Supporting data are presented in Table 4 and Appendix 1, Tables S1.1a and S1.7a.
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estimates (lateral amygdala: –0.21 v. 0.23; basal amygdala: 
–0.23 v. 0.25; DG: –0.26 v. –0.26; ML: –0.27 v. –0.30). The same 
pattern was observed with respect to the model comparing 
unmedicated participants with HCs (CA1: –0.25 v. –0.28). Per-
haps most importantly, education was not a statistically sig-
nificant predictor of subfield volume (all unadjusted p > 0.05) 
in the mixed-effects model for any of the 5 models for which 
group effects were observed, indicating that much of the vari-
ability in subfield volume explained by education in the bi-
variate analyses (Appendix 1, Table S4) was shared with other 
covariates included in the models.

There were no significant differences in HA subfield vol-
umes between HCs (n = 338) and participants with OCD with 
(n = 95) or without (n = 286) MDD, nor those with OCD with 
(n = 74) or without anxiety comorbidity (n = 356).

We also tested whether subfield volumes were influenced 
by OCD symptom severity. We found no significant associa-
tion between the volume of subfields and Y-BOCS scores 
(Appendix 1, Table S2).

Discussion

We report findings from a large neuroimaging study of HA 
subfield volumes in OCD. We did not detect any significant 
differences between participants with OCD and HCs in HA 
subfield volumes after correction for multiple comparisons. 
We did observe an apparent medication effect, however, in 

that compared with HCs, medicated participants with OCD 
had both smaller volumes in the DG and ML of the hippo-
campal formation and larger volumes in the lateral and basal 
amygdala. Unmedicated participants with OCD, on the other 
hand, had smaller hippocampal CA1 volume than HCs. Our 
findings affirm previous work demonstrating medication 
effects on subcortical brain volumes in OCD, suggesting that 
medication status is a robust confounding factor that may 
influence the ability to detect neuroanatomical abnormalities 
in OCD.20,45,46

Our finding that volumes in the hippocampal DG and 
ML subfields were significantly smaller among medicated 
participants with OCD than among HCs is consistent with 
previous ENIGMA-OCD studies showing smaller hippo-
campi among medicated people with OCD.20,21,23 The find-
ing that medicated participants demonstrated smaller vol-
umes in the hippocampal subiculum, presubiculum, and 
tail is not consistent with the literature. However, this dis-
crepancy may be partially explained by previous studies 
that employed smaller sample sizes and did not account for 
clinical characteristics.27

Although cross-sectional structural MRI has limited cap
acity to identify the underlying mechanisms associated with 
our observations, there are a few possible explanations to be 
considered. In rodent studies, the DG supports hippocampal-
based neurogenesis, which in turn influences hippocampal 
plasticity.47–50 Adult neurogenesis — the ability of the adult 

Table 4: Mixed effect size estimates for hippocampal and amygdala subfield volumes between individuals with obsessive–
compulsive disorder (n = 381) and healthy controls (n = 338)

Subfield Mixed effects d SE p value (uncorrected) p value (corrected)*

Hippocampal subfields

   Parasubiculum 0.051 0.075 0.443 0.664

   Presubiculum 0.152 0.075 0.037 0.156

   Subiculum 0.039 0.075 0.540 0.756

   CA1 –0.196 0.075 0.006 0.063

   CA3 –0.096 0.075 0.164 0.353

   CA4 –0.111 0.075 0.104 0.353

   DG –0.155 0.075 0.023 0.150

   ML –0.207 0.075 0.003 0.060

   HATA –0.049 0.075 0.363 0.636

   Fimbria 0.108 0.075 0.122 0.353

   Hippocampal fissure 0.012 0.075 0.864 0.955

   Hippocampal tail 0.030 0.075 0.681 0.841

Amygdala subfields

   Lateral nucleus 0.095 0.075 0.168 0.353

   Basal nucleus 0.102 0.075 0.149 0.353

   Accessory basal nucleus 0.017 0.075 0.802 0.935

   Central nucleus 0.036 0.075 0.631 0.828

   Medial nucleus –0.076 0.075 0.296 0.564

   Cortical nucleus 0.004 0.075 0.956 0.979

   Paralaminar nucleus 0.154 0.075 0.029 0.150

   CAT 0.002 0.075 0.979 0.979

   AAA –0.050 0.075 0.419 0.664

AAA = anterior amygdaloid area; CA = cornu ammonis; CAT = corticoamygdaloid transition area; DG = granule cell layer of dentate gyrus; HATA = hippocampus–amygdala transition 
area; ML = molecular layer; OCD = obsessive–compulsive disorder; SE = standard error. 
*Corrected for for multiple comparisons using the false discovery rate.
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brain to form new neurons — has been shown to be modu-
lated by various antidepressants.51 Early work involving ro-
dents demonstrated that antidepressants increased prolifera-
tion in hippocampal-based neurogenesis, which is suggested 
to be essential for the behavioural effects of antidepressants51,52 
These findings are in contrast to our observation of smaller 
DG and ML hippocampal volumes among people with OCD. 
Possible explanations for our findings include the (not mu
tually exclusive) possibilities that prolonged exposure to 
psychopharmacological agents may be neurotoxic, or that in-
dividuals with OCD who have brain abnormalities or more 
severe OCD may be more likely to receive treatment with 
medication. It should be noted, however, that in our sample, 
we were unable to detect an association between OCD symp-
tom severity and volume for any of the subfields.

There is also evidence that the human amygdala may be 
involved in postnatal neurogenesis with cell turnover rates 
that are comparable to the hippocampus.53,54 Rodent studies 
indicate that the lateral and basal amygdala contain 
immunoreactive neural cell adhesion molecules that could 
allow for the amygdala to participate in neuronal plasticity.55 
Additional work involving rodents and nonhuman primates 
demonstrates that antidepressant-modulated neurogenesis 
enhances neuronal and glial cell growth in the amygdala.56,57 

Although some research has shown an association between 
OCD and marked levels of proinflammatory cytokines58 and 
neuroinflammation,59 cell culture studies demonstrate that 
psychotropic medication inhibits microglial activation and 
subsequent release of proinflammatory cytokines, suggest-
ing that psychotropic medication may offer neuroprotective 
benefits by reducing neuroinflammation.60 Although it is 
tempting to interpret the larger subfield volumetric differ-
ences that we observed in medicated individuals as support-
ing a neuroprotective effect of treatment for OCD, it was not 
possible to exclude the possibility that the observed reduc-
tion in volumes reflects neuronal cell death resulting from 
treatment with medication. Further investigation is required 
to elucidate the effects of medication on subcortical volumes 
in OCD.

Another finding was that unmedicated participants with 
OCD had smaller hippocampal CA1 volumes than HCs. In 
contrast, other studies comparing medication-free people 
with OCD to HCs have typically observed smaller volumes in 
the hippocampal subiculum, presubiculum, and CA2/3 in 
OCD.27 We speculate that smaller CA1 volumes may be a re-
sponse to stress, as the CA1 is susceptible to stress-induced 
atrophy.61,62 Indeed, chronic stress has been shown to reduce 
the volume of the CA1 in rodents.63

Prolonged exposure to stress hormones like cortisol may 
lead to a reduction in hippocampal volume by suppressing 
neurogenesis and enhancing neuronal atrophy.64 Our find-
ings are more consistent with greater atrophy, as opposed 
to inhibited neurogenesis, playing a mechanistic role, as ro-
dent studies demonstrate that inhibiting neurogenesis re-
duces the volume of the DG and CA3, with no evidence of 
comparable effects for the CA1.63 Chronic stress in rodents 
has been shown to increase anxiety-like behaviours and re-
duce the expression of metabotropic glutamate receptor 5 

in the CA1. The modulation of glutamate receptors in CA1 
pyramidal neurons was observed to alter stress-induced 
anxiety-like behaviour.65 However, in our study, we had in-
sufficient data to confirm that unmedicated people experi-
enced greater stress than those taking medication.

Other rodent studies using the quinpirole sensitization 
model of OCD showed a downregulation of neurons ex-
pressing activity-regulated cytoskeleton-associated protein 
(a marker of plasticity-related neuronal activity) in the CA1 
during stereotypical checking behaviour. Moreover, con
focal imaging showed that the CA1 was less active during 
stereotypical checking in sensitized rats compared with con-
trols. Taken together, these findings suggest that the hippo-
campus may be more involved in OCD than previously 
thought.66

Limitations

Even with automated segmentation, the small size of the 
amygdala poses challenges in accurately identifying its bor-
ders.67 We also note that there is some evidence of poor 
test–retest reliability in segmentation of some hippocampal 
structures, including the medial, paralaminar nucleus, 
hippocampal fissure, and fimbria.33 These factors may limit 
power to detect group differences for these structures, even 
with the relatively large sample employed in this study. 
The cross-sectional nature of our study limits our inter
pretation of the effects of medication on subcortical vol-
umes in OCD, as these findings require validation using 
longitudinal studies. Given a lack of detailed information 
on medication history, we were unable to further investi-
gate the effects of medication type, dosage, and duration on 
subfield volumes. Additionally, although our main analysis 
identified significant differences between people with OCD 
and HCs, when the former were stratified by medication 
status, these findings did not remain significant when edu-
cation was included as a covariate in the mixed-effects 
model. This is likely related to loss of power and highlights 
the need for future research with well-matched subgroups 
and comprehensive data on potential confounders. We 
could not account for heterogeneity in the clinical presenta-
tion of OCD in our models, particularly in light of pub-
lished evidence that suggests an association between OCD 
symptom profile and hippocampal volume.68 Lastly, since 
our study used secondary data, we had access to only 
1.5 T  MRI, which is lower in resolution than 3 T MRI and 
may have further hindered attempts to detect group differ-
ences in what are relatively small structures.

Conclusion

The association between medication status and volumetric 
alterations in OCD is consistent with previous work and em-
phasizes the importance of considering medication use as an 
important confounder in neuroimaging findings. Further in-
vestigation is required to elucidate the association between 
medication type, dosage, and duration and brain volumes in 
OCD over time.
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