UNIVERSITAT ve
i+ BARCELONA

Facultat de Matematiques
i Informatica

UNIVERSITAT DE BARCELONA

FUNDAMENTAL PRINCIPLES OF DATA SCIENCE MASTER’S THESIS

Explaining Word Interactions Using
Integrated Directional Gradients

Author: Supervisors:
Marc BALLESTERO RIBO Dr. Daniel ORTIZ-MARTINEZ

Prof. Dr. Petia RADEVA

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamental Principles of Data Science

in the

Facultat de Matematiques i Informatica

June 17, 2025

http://www.ub.edu
https://srmarcballestero.github.io
about:blank
about:blank
http://mat.ub.edu

1ii

UNIVERSITAT DE BARCELONA

Abstract

Facultat de Matematiques i Informatica
MSc

Explaining Word Interactions Using Integrated Directional Gradients

by Marc BALLESTERO RIBO

Explainability methods are key for understanding the decision-making processes behind
complex text models. In this thesis, we theoretically and empirically explore Integrated
Directional Gradients (IDG), a method that can attribute importance to both individual fea-
tures and their high-order interactions for deep neural network (DNN) models. We intro-
duce evaluation metrics to quantitatively assess the quality of the generated explanations,
and propose a framework to adapt word-level evaluation methods to high-order phrase-
level interactions. Applying IDG to a BERT-based hate speech detection model, we com-
pare its performance at the word level against well-established methods such as Integrated
Gradients (IG) and Shapley Additive Explanations (SHAP). Our results indicate that, while
IDG’s word-level attributions are less faithful than those of IG and SHAP, they are the best-
scoring ones in terms of plausibility. On the other hand, IDG’s high-order importance at-
tributions exhibit high faithfulness metrics, indicating that IDG can consider hierarchical
dependencies that traditional methods overlook. Qualitative analyses further support the
interpretability of IDG explanations. Overall, this thesis highlights the potential of high-
order explanation methods for improving transparency in text models.

HTTP://WWW.UB.EDU
http://mat.ub.edu

Acknowledgements

Marc Aureli (26 d’abril del 121, Roma — 17 de marg¢ del 180, Vindobona, 1’actual Viena)
comenga les seves Meditacions amb una evocacié dels aprenentatges rebuts de les seves fi-
gures familiars, seguint una férmula anaforica concisa pero efectiva: “Del meu avi Ver, la
bondat i el caracter tranquil. De la reputacié i el record del meu progenitor, la discreci6 i
la fermesa [...]” [1]. Aqui, em proposo adaptar I’anafora aureliana per expressar el meu
agraiment.

D’una banda, aquest treball marca la fi d"una etapa formativa a Barcelona; de l’altra, repre-
senta I'inici d"un nou capitol vital i académic a l’estranger. Es per aixd que voldria fer ex-
tensiu aquest agraiment no només a aquells que m’han acompanyat en 1’elaboracié d’aquest
treball concret, sin6 també a totes les persones que, al llarg dels darrers anys, han estat un
suport inestimable i constant en el meu cami de creixement académic i personal.

k%%

A la Petiaia en Dani, pel suport, els bons consells i ’escolta activa constants durant el temps
que he estat treballant en aquest projecte.

Alamareiel pare, per ser-hi sempre per recordar-me que la vida s’ha d’afrontar amb aplom,
els peus a terra i la il-lusi6 als ulls.

A la Clara, per les hores diaries que ens passem rient —que mai sén massa—, i per la virtut
de sempre saber-me arrencar una riallada, tant en els moments placids com en els més durs.

Als amics de sempre —I'Ona, en Jan, en Pol, en Pau, la Mireia, en Jordi i en Biel— per
recordar-me que per passar una bona tarda només cal una taula i una baralla de cartes.

Als amics de la Universitat —en Neil, la Meritxell, I’Alba i I’Arnau, entre d’altres—, per les
hores compartides de converses académiques i extraacadémiques; per ser-hi i haver-hi estat.

Alameva estimada cosineta, 1’ Ares, per les hores i hores de consells, guiatge i suport al’hora
de sol'licitar una posici6é doctoral; per fer-me veure que, encara que jo no m’ho cregués, hi
havia possibilitats.

A la resta de la meva familia —de sang i politica—, per ser el refugi de pau i sobrietat que
sovint necessitem els que ens dediquem a I’acadeémia.

A Can Vilaré (Carrer del Comte Borrell, 61, Barcelona), per servir-me religiosament cada
divendres al migdia un plat de cap-i-pota amb tripa al forn acompanyat d"una copa de vi de
Gandesa —l’al-licient perfecte per acudir a classe un divendres a la tarda.

A la Mineta, la meva gata, per fer-me companyia —sempre des de la inherent distancia
emocional del feli— durant les hores que he passat estudiant tancat a 1’habitaci6.

Contents

Abstract

Acknowledgements

Contents

1 Introduction

2 Integrated Directional Gradients
2.1 The Feature Group Attribution Problem
211 Problem Formulation

2.2

212
2.1.3

Axiomatic Requirements 0oL
TheIDGSolution

IDG Applied to Text Classification

221
222
223

Choosing aBaselineb
The Family of Meaningful Feature Subsets M.
Output Data: Visualization and Interpretation

3 Validation Metrics
3.1 Word-level Attributions e

3.1.1

3.1.2

Agreement with Human Rationales: Plausibility
3111 Agreement@k
3.1.1.2 Area under the Precision-Recall Curve
Agreement with Model Behavior: Faithfulness
3.1.21 Comprehensiveness
3122 Sufficiency o oo

3.2 High-order Interactions o L.
3.3 Global QualitativeInsights

4 IDG Applied to Hate Speech Detection
4.1 Materialsand Methods Lo Lo

4.2

411

4.1.2
4.1.3

Results
421
422

Dataset e
4.1.1.1 DatasetOverview
41.1.2 Data Selection and Preprocessing
Model Selection
Explainability oo o
41.3.1 Generation of Explanations
4.1.3.2 Quantitative Evaluation.
4.1.3.3 Qualitative Evaluation
Model Performance
Explainability o

vii

viii

4221 Quantitative Evaluation.
4222 Qualitative Evaluation
4.3 DiscuSSION o i e e e e e e e

5 Conclusions and Future Work
5.1 Conclusions e
52 Future Work e

Bibliography
List of Figures
List of Tables

List of Algorithms

Appendices

A Computational Environment and Hardware Specifications
Al Hardware Specifications L 0 L.
A2 PythonEnvironment

B Supplementary Figures
B.1 Dataset Descriptive Statistics
B.2 Model Training Curves
B.3 Hierarchical Explainability Trees

C Code Availability

41

44

46

47

53

53
53
53

59
59
61
62

67

Chapter 1

Introduction

One of the reasons behind the unprecedented predictive power of deep neural networks
(DNNSs) is their ability to capture high-level interactions between features [2, 3]. In the field
of linguistics, the principle of compositionality states that the meaning of a complex expres-
sion is determined by the meanings of its constituents and the rules used to combine them.
This principle, albeit highly debated, remains as a foundational concept in the study of nat-
ural language [4, 5]. Consequently, to understand how semantic and syntactic structures
contribute to a model’s predictions, it is essential for explainability methods in natural lan-
guage processing (NLP) to quantify the importance of feature interactions. For instance, in
a sentiment classification task, the phrase “not bad” carries an entirely different sentiment
than what one would infer by looking at the words “not” and “bad” separately. Captur-
ing the interactions encoded in such combinations is essential for robust and interpretable
explanations.

Traditional feature attribution methods, such as Local Interpretable Model-Agnostic Expla-
nations (LIME) [6], Shapley Additive Explanations (SHAP) [7, 8] or Integrated Gradients
(IG) [9], explain a model’s prediction by assigning an importance value to each input fea-
ture depending on how much it has influenced the output. Although these approaches are
helpful to understand which features are important, they fail to account for high-order de-
pendencies and interactions.

There exist several approaches to explain the importance of feature interactions for a predic-
tor which have been applied to NLP models:

* Murdoch et al. [10] propose Contextual Decomposition (CD), a method to explain the
predictions of long short-term memory units (LSTM). Nonetheless, its application to
state-of-the-art models, such as the ones based on self-attention layers, is not straight-
forward.

 Singh et al. [11] introduced a variation of CD, namely Agglomerative Contextual De-
composition (ACD), that can hierarchically quantify interaction importance for feed-
forward and convolutional neural networks (CNN). However, as CD, it cannot be
straightforwardly applied to more recent and powerful models.

e Lundberg et al. [8] introduced SHAP interaction values as a natural high-order exten-
sion of SHAP values, being inspired on the game-theoretical concept of the Shapley
interaction index, first formalized by Grabisch and Roubens [12]. These are originally
designed to quantify the contribution of the interaction between pairs of features to a
model’s prediction, and their extension to arbitrary groups of features is straightfor-
ward. Nevertheless, as with standard SHAP values, the exact computation of SHAP
interaction values is NP-hard [13], and even approximate computations are typically

2 Chapter 1. Introduction

very resource-intensive. This computational limitation turns them infeasible for cer-
tain applications.

¢ Chen et al. [14] propose HEDGE, a method based on the SHAP interaction value to
generate hierarchical explanations specifically for text classification models. Despite
its interpretability, the method emerges from a non-axiomatic formulation, and thus
fails to fulfil certain assumptions that are considered essential for feature importance
attribution methods.

e Janizek et al. [15] introduce Integrated Hessians (IH), a second-order extension of In-
tegrated Gradients (IG) designed to quantify pairwise feature interactions. While this
method has been tested in the NLP context, from this author’s perspective, its utility
is limited by the fact that it can only explain interactions between pairs of features. In
language models, predictions often rely on more complex, higher-order dependencies
across multiple tokens, such as syntactic structures or discursive patterns. Therefore,
limiting the analysis to pairwise interactions may fail to account for the full extent of
the model’s reasoning.

In this thesis, we explore and adopt Integrated Directional Gradients (IDG) [16] as the
method for interaction-based explainability. IDG addresses many of the inherent limita-
tions of the previously discussed approaches. In particular, it enables the attribution of im-
portance to arbitrary feature groups, rather than being restricted to individual or pair-wise
interactions. Moreover, it is computationally efficient when working with differentiable pre-
diction functions, and thus well-suited to be applied to DNN based models.

Hate speech represents a challenging and troubling threat on online social media platforms,
often leading to real-life consequences such as increased crimes against minority groups [17].
Thus, there is a growing interest in developing automated models capable of detecting such
kinds of discourses. Numerous research efforts have addressed this problem by proposing
various combinations of datasets and modeling approaches. Nevertheless, persistent issues
remain, such as biased predictions against particular protected groups and lack of explain-
ability [18-25].

To provide researchers with a standardized dataset to evaluate hate speech detection mod-
els, Mathew et al. [26] introduced the HateXplain dataset. This dataset covers multiple di-
mensions of hate speech, with data collected from different social media platforms. Most
relevantly, each text sample is paired with a set of human-provided rationales, i.e. anno-
tations which indicate the snippets of text that support the categorization of a sequence as
being constitutive of hate speech. This feature is crucial because it not only enables the
development of more sophisticated models, but also allows for the quantitative evaluation
of explainability techniques by measuring how well the generated importance scores agree
with the human annotated rationales.

The primary goals of this thesis are to provide a thorough theoretical description of IDG
and to apply and evaluate it on a hate speech detection model. We explore and implement
appropriate validation metrics to quantitatively assess the performance of IDG in explain-
ing model predictions on a specific dataset. In particular, we develop a modified version of
explanation quality metrics adapted for the evaluation of higher-order attributions. Subse-
quently, we develop a hate speech detection model trained on the HateXplain dataset, and
then adapt and apply IDG to generate interaction-based explanations for its predictions.

Chapter 1. Introduction 3

Using this approach, we investigate how effectively IDG can capture complex feature in-
teractions in the context of hate speech classification and evaluate the interpretability and
reliability of these explanations.

Report Structure

This thesis report is structured as follows:
¢ Chapter 1 introduces the context and motivation for the thesis work.

¢ Chapter 2 develops the theoretical framework of IDG and discusses its specific appli-
cation to text classification models.

* Chapter 3 defines the metrics used to quantitatively evaluate the quality of the expla-
nations generated by IDG, and introduces an adaptation of existing metrics to assess
higher-order importance attributions.

¢ Chapter 4 reports the methodology and empirical findings derived from the applica-
tion of IDG to a hate speech detection model on the HateXplain dataset.

e Chapter 5 summarizes the conclusions and outlines the future research lines that arise
from this thesis.

Additionally, appendices are included to provide supplementary information, such as the
computational environment used to run the project code, the public availability of the code-
base and additional figures supporting the main text.

Notational Conventions

Throughout this thesis, we assume the existence of a feature space X C RY and a target
space for a classification problem with M labels, denoted by J C [O, 1]M. Given a deep
neural network (DNN), we denote by f : X —) the predictor function that, for a given
input vector, returns a probability distribution over the target classes. Unless otherwise
specified, for any x € &', we denote by [f(x)]; the probability that the model assigns to
instance x belonging to class j.

Disclaimer Regarding Harmful or Offensive Content

This thesis involves the use of the HateXplain dataset, which contains real-world examples
of hate speech and offensive language. Such instances cannot be avoided due to the nature
of the work. As a result, some examples included in this report contain explicit, offensive, or
harmful content. These excerpts are presented for the unique purpose of scientific analysis
and do not reflect the views of the author or affiliated institutions. Reader discretion is
advised.

Chapter 2

Integrated Directional Gradients

This chapter is devoted to providing an exhaustive theoretical description of integrated di-
rectional gradients, a method for computing hierarchical feature group attributions, and dis-
cussing the particularities of its application to text sequence classification models.

2.1 The Feature Group Attribution Problem

2.1.1 Problem Formulation

Integrated Directional Gradients (IDG) [16] is a method designed to attribute importance
scores to groups of features, computing their relevance to the output of a DNN given an
input. Formally, the method aims at solving the feature group attribution problem.

Definition 2.1. The feature group attribution problem is defined as follows:

Given an input x = (x1,...,x,) € X, abaseline b € X, a predictor (DNN func-
tion) f : X —) and a family of meaningful subsets M C P({x1,...,x,}), assign
to every meaningful subset of features S € M an importance score v(S).

The main challenge for solving the problem is, then, the design of an interpretable and well-
behaved importance function v : M — IR. This function should attribute a real value to each
meaningful subset of features in M that is a direct proxy of its importance for the predictor
with respect to a baseline input b, which represents the absence of contribution from any
feature.

This problem formulation goes along the line of previous research on computing feature
importance values using game theory-inspired approaches, the most relevant of which be-
ing Shapley Additive Explanations (SHAP) [7, 8]. These approaches consider features to
be players of a cooperative game, which collectively collaborate to reach the output of the
DNN. Individual feature importances are then calculated using Shapley values, assuming
the existence of a value function that represents the alteration in model output when some
features values are known by the model and others are considered unknown and equal to
some baseline value.

The IDG approach to computing feature importances is fundamentally different from pre-
vious game theory-derived schemes, but its axiomatic formulation takes inspiration from
them, while its implementation framework stems from Integrated Gradients (IG) [9].

The family of meaningful subsets M captures the notion that, in some applications, not all com-
binations of features represent meaningful parts of the input. In other words, in some cases,

6 Chapter 2. Integrated Directional Gradients

to effectively interact, features need to form structured groups that respect inherent struc-
tural dependencies or coherence. Text analysis is one of such cases: according to composi-
tionality, when constructing explanations for NLP models, it is important to restrict them to
subsets of features that agree with the syntactic and semantic structure of language [4, 5].

2.1.2 Axiomatic Requirements

This section presents the properties that the solution v : M — R to the feature group attri-
bution problem should desirably fulfil. Axiomatic formulations are mainly based on [16].
Before that, an auxiliary definition is needed.

Definition 2.2. Given two features, with indices i and j, we can define the two following
notions of equivalence:

* Functional Equivalence. The i-th and j-th features are functionally equivalent if, for
every pair of input vectors x, y such that x; = yj, x; = y;, and xx = yx, Vk & {i,]}, then

f(x) = f(y)-

e Structural Equivalence. The i-th and j-th features are structurally equivalent regarding
a family of meaningful feature subsets M if, for all S € M and an arbitrary input vector
x,x; € Sand S # {x;} implies that x; € S and vice versa.

This definition is a variation of the notion of feature equivalence necessary for the axiomatic
formalization of IG [9]. The concepts presented here extend the ones reported in [9] intro-
ducing the necessary details to solve the feature group attribution problem.

Two features are said to be functionally equivalent if swapping the values of those features in
the input does not alter the output of the predictor. On the other hand, two features are said
to be structurally equivalent if they occupy equivalent positions in the structure derived from
the family of meaningful feature subsets M.

With this auxiliary definition, the desired properties of the solution to the feature group
attribution can be postulated.

Definition 2.3. Given a solution to the feature group attribution problem v : M — R, we
define the following properties.

(1) Non-negativity: The importance of any relevant feature subset should be non-negative.

VSeM, v(S) >0 (2.1)

(2) Normality: The value of the empty set of features is zero.

v(@) =0 (2.2)

(3) Monotonicity: The importance of a set of features is greater than or equal to the im-
portance of its subsets.

VS, TeM, SCT=v(S) <o(T) (2.3)

(4) Superadditivity: The value of the disjoint union of two feature subsets is greater than

or equal to the sum of values of the two subsets.

VS, TeM, SNT=g, v(SUT) >v(S)+v(T) (2.4)

2.1. The Feature Group Attribution Problem 7

(5) Sensitivity (a): Let there be a feature, with index i, such that f(x) # f(b) for every
input x and baseline b that only differ in the i-th feature. Then, v({x;}) > 0 and
v(S) > 0 for every set of features S containing the value of the i-th feature.

(6) Sensitivity (b): Let there be a feature, with index j, such that f(x) = f(b) for every
input x and baseline b that only differ in the j-th feature. Then, v({x;}) = 0 and
v(S) = v(S ~\ {x;}) for every set of features S containing the value of the j-th feature.

(7) Symmetry Preservation: If two features, with indices i and j, are both functionally
and structurally equivalent, and given an input x and baseline b such that x; = x; and
b; = bj, then, for every subset of features S C {x1,...,x,} \ {x;,x;}, we have that

v(SU{x;}) = v(SU{xj}).

(8) Implementation Invariance: Given two neural networks, DNN; and DNN», let us de-
note their corresponding predictors f; and f,. Let us also denote the solutions for the
feature group attribution problem applied to each network by vy, v2 : M — IR, respec-
tively. Assume that the two neural networks are functionally equivalent, i.e. f1(x) =
f2(x), Vx € X. Then, the solutions are implementation invariant if, for any input x, we
have that v1(S) = v2(S) forall S € M.

The non-negativity axiom comes from the fact that the importance of a feature subset should
be a directionless quantity. Other implementations of feature importance attribution ex-
plainers do not enforce this property and hence can attribute importances with negative
values. In classification tasks, such negative values typically indicate a tendency toward
predicting alternative classes rather than the one being explained or inferred [6-9]. The
view behind IDG is that feature importance should be a proxy of the amount of information
(statistical entropy) contained in the feature values that is effectively used by the model, and
thus a non-negative figure.

Properties 2 to 4 emanate from some of the foundational axioms of cooperative game the-
ory [27, 28]. Normality ensures that the importance of the empty set of features (that is, no
information at all provided to the model) should be null. Monotonicity captures the fact that
adding more features to a subset adds more information, therefore attributed importance
should not decrease. Finally, superadditivity represents the fact that, in the IDG framework,
feature collaboration is assumed to never be detrimental. Hence, collaboration among fea-
tures should not lead to a lower combined importance attribution.

Properties 5 to 8 are variations of the axioms for IG presented in [9]. Sensitivity (a) makes
sure that a feature that does effectively affect the output of a predictor is attributed a non-
zero importance. On the other hand, sensitivity (b) assures that any feature being irrelevant
for the predictor is attributed a null importance, and that does not alter the importance of
any feature group containing it. Symmetry preservation ensures that features that are both
functionally and structurally equivalent, apport the same amount of importance to all fea-
ture subsets there may be included in. Finally, the implementation invariance property is just
a guarantee that different implementations of a same predictor lead to equal importance
attribution functions.

The following result states that non-negativity together with superadditivity automatically
implies monotonicity. This will become important later in the theoretical development.

Lemma 2.4. A non-negative and superadditive solution of the feature group attribution
problem v : M — R is monotonic.

8 Chapter 2. Integrated Directional Gradients

PROOF: Let S, T € M, S C T. Then, we can construct T as a disjoint union
T=SU(T\S), SN(T\S)=2. (2.5)
By superadditivity, we have that
o(T) =0 (SU(T\S)) >v(S)+v(T\S), (2.6)
and, since non-negativity implies that v(T \. S) > 0, we conclude that
o(T) > 0(S), 27)

and hence v is monotonic. O

2.1.3 The IDG Solution

The authors of [16] present IDG as a solution for the feature group attribution problem,
mainly inspired by IG [9] and Harsanyi dividends [29]. Harsanyi dividends are a concept
in cooperative game theory that assigns a value to the marginal contribution of players,
reflecting the value uniquely attributable to their cooperation [29, 30].

The main idea behind IDG is to construct a value function in terms of the dividends gener-
ated by each meaningful feature subset. In this framework, any meaningful feature group
S € M contributes additional value to the model. This additional value is represented in the
dividend of the group, which is denoted by d(S) and satisfies 0 < d(S) < 1.

One of the first and simplest measures of the importance of a feature for a DNN model is the
partial derivative of the prediction function with respect to the input feature. This approach
is sometimes referred to in the literature as Vanilla Gradients [31-33]. Gradients are a natural
analog of the coefficients of a linear model for a DNN, therefore seem a good starting point
for feature importance attribution. Nonetheless, this simple formulation breaks the sensitiv-
ity properties, which are claimed to be essential for any attribution method [9]. The authors
of Integrated Gradients solve the issue by taking a path integral of the partial derivative of
the predictor with respect to the feature through the straight line path in the feature space
X connecting the input x to the baseline b. To compute the dividend of a single feature, IDG
takes an equivalent approach and computes the absolute value of the path integral of the
partial derivative connecting x and b.

The dividend of a group of features should measure the interaction between the features
present in the group. IDG considers the directional derivative of the predictor in the di-
rection of the given set of features as a representative surrogate of the importance of the
feature interactions, and the dividend is then computed as the normalized absolute value
of the path integral of this directional derivative over the straight path connecting x and b.
The sign of the path integral shall be further interpreted as the nature of the contribution,
positive or negative, to the output.

Let us mathematically formalize this high-level description of the IDG solution. Let x =
(x1,...,x,) be an input vector, b = (by,...,b,) the baseline, f the predictor, and S € M a
family of meaningful feature subsets. Let ¢ = argmax;[f(x)]; and fc(x) := [f(x)]., hence
fe(x) denotes the probability assigned by f to the predicted class for x.

2.1. The Feature Group Attribution Problem 9

The direction of the straight line path in the feature space connecting x and b, given the
features in S, is given by the vector

xi—b;, ifx; €S

, 1€{l,...n}. 2.8
0, otherwise { } (28)

5 = (zf,...zﬁ), with ziS = {

In other words, z° is a vector that has non-zero components only in the directions of the
features in the group S, representing the change from b to x along the subset of features S.

The directional derivative of the predictor in the direction given by z° can then be computed

as

75

Vsfo(x) = Vfo(x)T 25, where 25 = =T

2.9)

We now can define the integrated directional gradient, the dividend and the importance
value of the feature group S.

Definition 2.5. With the notation given in equations (2.8) and (2.9), we define the following;:

* The integrated directional gradient of the feature group S is defined as

IDG (5) = /01 Vsfe (b+a(x—b))da. (2.10)

That is, the path integral of the directional derivative of the predictor between the
baseline and the input in the direction given by the feature group S.

* The dividend of S is given by

DG (S)|
a(s) - { ifSeM

YremIDG (T)| (2.11)
0 otherwise

i.e., the normalized absolute value of IDG (S) over all the meaningful feature subsets
in M, such that the sum of dividends of all meaningful feature groups adds up to 1.

* The importance value of S is calculated as

o(S) =Y d(T). (2.12)

TCS
TeM

In other words, the value of a feature subset is the result of adding up the dividends
of all meaningful subsets contained in it, including itself.

The most important aspect of this solution is that it fulfils the eight desired properties stated
in definition 2.1.

Theorem 2.6. The IDG importance attribution function v, as defined in definition 2.5, fulfils
the properties of definition 2.3.

PROOF: We prove each property in turn.

(1) Non-negativity. Since the dividend of any meaningful feature group S is defined as
a non-negative value (either a normalized sum of absolute values or zero) and v(S) is
defined as a sum of dividends, v(S) > 0 for any S by construction.

10 Chapter 2. Integrated Directional Gradients
(2) Normality. We have that
(@) =) d(T) =d(@). (2.13)
TCo
TeM
Note that, following equation (2.8),
z7 =(0,...,0) = Vufe(x) = Vfu(x)T 27 =0, (2.14)
which leads to .
DG (2) = / 0da =0, 2.15)
0
which finally yields d(@) = 0.
Before proving monotonicity, we will prove superadditivity, and then use lemma 2.4.
(4) Superadditivity. Given S,T € M, SN T = &, we have that
o(SuT)= Y d[R)= Y} d(R)+ Y d(R)+) d(R), (2.16)
RCSUT RCS RCT RCSUT
ReM REM REM RNS#D, RNT#D
e e N—— ReM
v(S) o(T)
>0
since all meaningful subsets of S LI T can be decomposed into those that are subsets of
S, those that are subsets of T and those that intersect both S and T. Using the definition
of the dividend (2.11) and non-negativity, this yields that
v(SUT) > o(S) +0(T), (2.17)
as desired.
(3) Monotonicity. We have already proved non-negativity and superadditivity. Applying
lemma 2.4, we get that v is also monotonic.
(5) Sensitivity (a). Suppose that the i-th feature is such that f(x) # f(b) for an input x and
baseline b that only differ in the i-th component. It is sufficient to see that IDG ({x;}) #
0. Using equation (2.8), we have that
stih = (0,...,0,1,0,...,0). (2.18)
In this case, x; is the only feature that varies on the path connecting x and b, hence we
can write f. as a single-variable function: f.(x) = g¢(x;). Then,
. d
V{xi}fc(x) = dixig(xi), (219)
from where it follows that
DG ({x;}) = /1 A b+ alxi—by) da = — / A o) dy, =
if) = deig i i i _xi_bz‘ b, dxig i i=
_ 8(xi) —g(bi) _ f(x) - f(b)
=T — #0. (2.20)
(6) Sensitivity (b). Suppose that the j-th feature is such that f(x) = f(y) for every pair

of inputs x and y that only differ in the j-th component. It is sufficient to see that, for

2.2. IDG Applied to Text Classification 11

all S € M such that x; € S, then IDG (S) = IDG (S \ {x;}). By hypothesis, since f is
constant in the j-th component,

d
% fo(x) =0, (2.21)
which implies that
vSfC(x) = vS\{x,-} fC(x)r (2.22)

that finally leads to IDG (S) = IDG (S ~ {x;}). Moreover, equation (2.21) also implies
that V., f(x) =0, thus v({x;}) = 0.

(7) Symmetry Preservation. Assume that two features, with indices i and j are both
functionally and structurally equivalent. Let x and b be, respectively, an input and
a baseline such that x; = x; and b; = b;. Let S be a feature subset such that S C
{x1,..., 0} ~ {x, x;}. Functional equivalence implies that

0 0
BTclf(x) = E)Tc]f(x) (2.23)

Moreover, considering the equality condition between the i-th and j-th components of
x and b, it follows that

Visuga) fe(%) = Visupyy fe(x), (2.24)

which means that x; = x; on every point of the path connecting x and b, from where it
follows that IDG (S U {x;}) = IDG (S U {x;}).

(8) Implementation Invariance. The importance function v is defined in such a way that
depends entirely on the functional form of the gradients of the predictor and its eval-
uations, and not on the particular DNN architecture that is being considered. Hence,
v is implementation invariant.

O]

2.2 IDG Applied to Text Classification

This section is devoted to describing the application of IDG to explaining an embedding-
based deep model for text classification. The section delves into three challenges: (1) choos-
ing a baseline feature vector b, (2) determining the structure of meaningful feature subsets
M, and (3) visualizing and interpreting the output of IDG.

2.2.1 Choosing a Baseline b

The baseline input b should ideally represent the absence of any meaningful contribution
from the input features. In other words, it should correspond to an input such that the
model receives no relevant information for making a prediction. Most importantly, the base-
line choice is known to have an impact on the performance and reliability of the computed
attributions [34].

Aghababaei et al. [34] and Bastings et al. [35] propose the following options for the baseline
choice:

* Zero Baseline: the baseline embedding is filled with zero values.
* Mask Baseline: the baseline embedding is filled with [MASK] token embeddings.

¢ Padding Baseline: the baseline embedding is filled with [PAD] token embeddings.

12 Chapter 2. Integrated Directional Gradients

* Unknown Baseline: the baseline embedding is filled with [UNK] token embeddings.

* Mean Baseline: the baseline embedding is filled with the mean value calculated on
the whole set of the model input embeddings.

One of the most commonly used approaches is the padding baseline [14-16, 36], where the
input is replaced with the [PAD] token to simulate the absence of information. However,
recent work by Enguehard et al. [37] argues in favor of using a mask baseline instead.

Although this may seem counterintuitive (the [PAD] token is typically assumed to represent
a complete lack of content, while [MASK] is a trained token) the authors point out a key
aspect: the [PAD] token is untrained and therefore may be arbitrarily close in the embedding
space to any particular word. In contrast, the [MASK] token is trained to simulate random
absence of information, making it a more semantically consistent choice as a baseline input
for attribution methods.

Despite these arguments, comprehensive comparative studies such as Aghababaei et al. [34]
have found that a zero baseline is the most consistent and reliable option. Similarly, the
proponents of IDG also use the zero baseline in their approach. Accordingly, we adopt the
zero baseline for the attribution analyses conducted in this thesis.

It is worth noting that, in the case of BERT, the zero vector embedding corresponds to the
encoding of the [PAD] token. As a result, using a zero baseline is effectively equivalent
to employing a padding token baseline. A similar situation occurs with XLNet, where the
zero vector corresponds to the embedding of the [UNK] token, making these two approaches
interchangeable in practice for that model as well.

2.2.2 The Family of Meaningful Feature Subsets M

As defined in §2.1.1, the family of meaningful subsets M should account for the fact that not all
combinations of features represent meaningful parts of the input. In the case of text analysis,
it is important to restrict explanations to subsets of features that agree with the syntactic and
semantic structure of language [4, 5].

Common linguistic formalisms, such as Chomskyan Principles and Parameters (P&P) [38]
and Head-Driven Phrase Structure Grammar (HDPS) [39] are based on the rule of composi-
tionality [5], which materializes in the idea that the semantics of a sentence can be read off
its constituency parse tree [40].

Syntactic constituency is the idea that groups of words can behave as single units or con-
stituents [41]. Constituency parse trees are hierarchical structures that represent the syn-
tactic structure of a sentence according to phrase structure rules. Each node in the tree
corresponds to a syntactic constituent and reflects a semantically meaningful span of text.
Figure 2.1 shows an instance of such a tree.

2.2. IDG Applied to Text Classification 13

S
The bright cheerful colors clash against the dull shadows

T T

NP VP
The bright cheerful colors clash against the dull shadows

I

PP
against the dull shadows

[

NP
the dull shadows

[1 T

DT 1)] NN VBZ IN DT I} NN
The bright cheerful colors clash against the dull shadows

FIGURE 2.1: Example of the constituency tree for the sequence “The bright cheerful col-
ors clash against the dull shadows”, generated using the Stanza constituency parser
[42]. Part-of-speech (POS) and syntactic tags for the different constituents are indicated
above the words. Abbreviations are according to the Penn treebank [43] (DT = deter-
miner, JJ = adjective, NN = noun, VBZ = verb in the 3rd person of singular present, IN =
preposition, NP = noun phrase, PP = prepositional phrase, VP = verb phrase, S = simple
declarative clause).

In our framework, the family of meaningful subsets M will be therefore defined as the col-
lection of all text spans corresponding to internal nodes in the constituency parse tree of
a given sentence. This will enable the attribution method to focus on linguistically mean-
ingful substructures, thus ensuring that the resulting explanations are interpretable from a
syntactic and semantic perspective.

2.2.3 Output Data: Visualization and Interpretation

Recall that the output of IDG is precisely a map v : M — R that assigns an absolute impor-
tance score to each meaningful subset of features belonging to the family M. In our frame-
work, this corresponds to assigning an importance score to each part of the constituency
parse tree of a sentence.

Generally, constituency parse trees are generated as unbalanced trees, meaning that branches
can have arbitrary depths. To facilitate the visualization and interpretation of the explana-
tions, we have developed an algorithm to pad the tree and convert it into a depth-balanced
structure. This transformation allows the tree to be viewed as a structured aggregation pro-
cess, where a text sequence is systematically constructed from its constituents, as shown in
figure 2.2.

Algorithm 1 describes the pseudocode implementation! of a recursive procedure to depth-
balance a tree. We use the following notation: given a tree T and a node node, Children-
(node) denotes the set of children of node.

ISome standard Python functions and methods, such as zip or append have been used to simplify notation.

14 Chapter 2. Integrated Directional Gradients

Algorithm 1: Equalize Depths of a Tree.

Input: A tree T with its root node root.
Output: A depth-balanced tree T’ and its height h(T’)
Function EqualizeDepths(node):
if Children(node) = @ then
t return node, 1;

new_children < [];
heights < [J;

foreach child € Children(node) do
new_child, h ¢<— EqualizeDepths(chzld);
new_children.append(new_child);
heights.append(h);

max_height < max(heights);
padded_children < [];

foreach child, h € zip(new_children, heights) do
padded_child < child,
for © <~ 0to maz_hetght - h - 1do

t padded_child <— new node with padded_child as child;

padded_children.append(padded_child);
Children(node) < padded_children;

return node, max_height + 1;

To balance the tree: Call EqualizeDepths(root) for the root of the tree T.

Level 5 «{ The bright cheerful colors clash against the dull shadows }»-
I |
Level 4 { The bright cheerful colors clash inst the dull shad }»f
[] I L I
Level 3 «{ The bright cheerful colors clash H inst the dull shad }»f
[] I L T T
evel 2 «{ The bright cheerful colors clash ‘ against the dull shadows }»f

L+ 1 [1 1 |

Levc\l*{ The bright H cheerful H colors against H the dull H shadows }»-

clash ‘

FIGURE 2.2: Depth-balanced constituency tree for the sequence displayed in figure 2.1,
obtained applying algorithm 1.

The visualization of scores in the depth-balanced constituency parse tree provides an intu-
itive understanding of how different parts of a text contribute to a model’s prediction. Each
node in the tree is assigned a normalized importance score, where the root (which repre-
sents the entire sentence) always receives a score of 1, indicating that it contains 100% of the
information necessary for the prediction.

2.2. IDG Applied to Text Classification 15

To further enhance interpretability, for a given set of features S € M within the tree, each
score v(S) is represented multiplied by the dividend direction of S, defined as the sign of
IDG (S). This accounts for the fact that nodes can have positive or negative contributions.
Specifically, a positive score indicates that the corresponding text segment supports the pre-
dicted class, while a negative score suggests that it opposes the prediction. The magnitude
of the score captures the strength of this influence.

By visualizing these signed scores on the padded, depth-balanced tree, the hierarchical
structure of the sentence and the relative impact of each constituent become easily apparent.
Branches that accumulate higher scores (positive or negative) can be visually identified as
critical for the model’s decision-making process. This balanced representation ensures that
all branches are displayed at a uniform depth, making it easier to compare the contributions
of different segments and understand how the model processes the text.

Figure 2.3 shows an example of the visualization of the IDG output as described above. A
color map is used to represent the value of the product between the dividend direction and
the attribution score for each text span.

positive

+1.000
Level 5 The bright cheerful colors clash against the dull shadows - '*0‘75
T T L +0.50

<
S
el s +0.452 +0.547 @
eve The bright cheerful colors clash against the dull shad B S
[+025 3
2
I | | T | :
<
| +0.020 +0.138 +0.160 +0.076 +0.065 +0.498 000 X
SVE2T The bright cheerful colors clash the dull shad - S
o
[1 T T T] I
2
el 5 | #0020 +0.138 +0.160 +0.076 +0.065 -0.099 -0.396 3
Level 29 The bright cheerful colors clash against the dull shadows - 050 2
T | [T T [1 T
cvel 1 | #0020 +0.138 +0.160 +0.076 +0.065 -0.099 +0.019 || -0.157 -0.256
Ve The bright cheerful colors clash against the dull shadows -

-1.00

negative

FIGURE 2.3: Results given by IDG on a sentiment classification task. Note how the
different text constituents interact, with “bright cheerful colors” suggesting positivity
while “dull shadows” introduces negative connotations, illustrating how the model bal-
ances these interactions to reach its final decision.

17

Chapter 3

Validation Metrics

This chapter defines the metrics used to evaluate the quality of the explanations generated
by IDG, and introduces extensions of existing faithfulness metrics to assess importance at-
tributions. These metrics are further adapted for global evaluation of high order feature
importance attributions through a bias-corrected aggregation process.

3.1 Word-level Attributions

This section is centered on the evaluation of the feature attributions generated by an impor-
tance attribution method applied to a text classification model at the word-level.

We focus the evaluation on two different aspects of interpretability, following the line of
DeYoung et al. [44] and Jacobi and Goldberg [45]:

¢ Agreement with Human Rationales or Plausibility. Assuming a rationalized dataset,
i.e., a dataset where the importance of each word in a text sequence has been manually
annotated by a human, we measure how well the importance scores produced by the
explainability method align with these human-provided scores.

e Agreement with internal Model Behavior or Faithfulness. Here, we want to evalu-
ate how well the importance scores provided by the explainability method reflect the
internal behavior of the model. In other words, we want to capture to which extent
tokens marked as important actually influenced the model output.

3.1.1 Agreement with Human Rationales: Plausibility

To compute plausibility metrics, we assume the availability of a rationalized dataset. That
is, given a text sequence s = (w1, ..., w,), where w;, i € {1,...,n} are words, there exists a
vector ¥ = (rq,...,r,) that encodes feature importance scores according to human annota-
tors.

Often, human-annotated rationales are sparse and consist of hard importance scores. For
instance, a rationale may take the form of a binary vector, where each component is either
1 or 0, indicating whether a word is considered important or not by the annotator. When
multiple annotators have scored the same sequence, soft rationales can be computed by av-
eraging their individual annotations. This results in a continuous-valued importance score
that captures the degree of agreement among annotators.

We will define two distinct metrics to evaluate plausibility: agreement@k and the area under
the precision-recall curve (AUPRC).

18 Chapter 3. Validation Metrics

3.1.1.1 Agreement@k

There are studies that evaluate feature importance attribution as a ranking task [35, 46],
restricting the evaluation to the top k ranking features. However, there is no consensus
about how k should be selected. In fact, selecting a fixed value of k is that it can result in
excluding tokens with scores close to the top-k and including tokens with low scores, not
accounting for high importance gaps [47].

Kamp et al. [47] address the issue by introducing agreement @k as a metric to concurrently
evaluate plausibility across multiple values of k. Before defining agreement @k, we need to
introduce relevance @k as an auxiliary concept.

Definition 3.1. Lets = (wy,...,w,) be a sequence of words, r = (r4,...,r,) be a vector of
soft-scored human rationales for s, and ¢ = (¢1,...,¢n) be a vector of feature importance
attributions generated by some explainability method. We shall assume that both r and ¢
are (!-normalized!. Let top, (v) denote the set of the k highest scoring component indices in
avector v = (vy,...,0v,). We define the relevance@k of a word feature w; as

1
relevance @k (w;) = 5 []l{ietopk @)} T Liictop, (,)}} . (3.1)

In other words, relevance @k(w;) is equal to the ratio of methods (explainability method or
human scoring) that include w; in the top k scoring features.

Definition 3.2. Lets = (wy,...,w,) be a sequence of words, r = (r1,...,r,) be a vector of
soft-scored human rationales for s, and ¢ = (¢1,...,¢,) be a vector of feature importance
attributions generated by some explainability method, both /!-normalized. We define the
agreement@k of the sequence s relative to the attributions of ¢ and r as

i relevance @k (w;)
agreement @k(s) = = . (3.2)

n

'Zl 1 {relevance @k(w;)>0}
i=

By including the term in the denominator, we ensure that features not included neither in
top, () nor top, (¢) are not considered in the calculation of agreement @k(s) and thus the
metric is not artificially inflated by having high agreement on irrelevant tokens.

Definition 3.3. Let X = {s1,...,sx} be a dataset of sentences. The agreement @k of the
whole dataset X is calculated by averaging the sentence-level scores:

agreement @k(X') = %) | agreement @k(s;). (3.3)
i=1

This metric allows for the quantification of the agreement between an explainability method
and human annotators at a whole range of values of k. It is worth noting that it is expected
for the agreement score to increase the closer k gets to the length of the word sequence. This
is referred to as sentence length bias [47]. Thus, it is particularly interesting and insightful to
analyze the behavior of this metric at low to mid-range values of k.

LA vector v = (v1,...,vy) is £'-normalized if Y |vi] = 1.

3.1. Word-Ilevel Attributions 19

3.1.1.2 Area under the Precision-Recall Curve

While agreement @k captures how well an explainability method ranks tokens in alignment
with human rationales, it emphasizes ordinal agreement rather than raw identification abil-
ity. In other words, it does not directly assess whether the method is effective at identifying
any token that humans consider important, regardless of its exact position in a ranked list.

To address this, we complement the agreement @k evaluation with a precision-recall analysis
over token importance, following the approach proposed by DeYoung et al. [44].

Specifically, we treat human rationales binarized ground-truth relevance labels?. The attri-
bution scores produced by the explainability method are then treated as predictions. This
allows us to compute the Area Under the Precision-Recall Curve (AUPRC), by sweeping a
threshold over token scores. This provides a threshold-independent measure of the method’s
ability to identify relevant tokens according to human annotations.

A high AUPRC is an indication that the method assigns high importance scores to tokens
that humans also consider relevant, even if it does not rank them precisely in the same order.
Thus, this metric captures a complementary notion of explainability quality: the mere ability
to detect importance rather than ranking it correctly.

An AUPRC globalized across an entire dataset can be obtained by computing the mean of
the AUPRC for each of the instances belonging to the dataset.

3.1.2 Agreement with Model Behavior: Faithfulness

The computation of faithfulness metrics does not rely on the availability of a rationalized
dataset: importance scores are evaluated regarding their ability to reflect the true reasoning
process of the model. Measuring faithfulness beyond plausibility is important because an
explanation method might provide explanations that are agreeable to humans (plausible)
but are not functionally relevant for the model.

We adopt the notions of comprehensiveness and sufficiency as defined by DeYoung et al. [44],
which evaluate the faithfulness of explanations through input perturbation. Specifically,
comprehensiveness measures the drop in model confidence when the most important fea-
tures according to the explanation method are removed, while sufficiency measures how
much of the original confidence is conserved when only the most important features are
kept.

Nonetheless, these definitions rely on a fixed feature importance threshold to compute these
metrics. From this perspective, such a fixed-threshold approach may limit the ability to
assess how faithfulness varies across different levels of feature importance.

Variants that calculate a globalized metric have been proposed, such as the Area Over the
Perturbation Curve (AOPC). This metric, inspired by previous work in the computer vision
domain by Samek et al. [48], measures the average change in model output as top-ranked
input features are progressively removed according to their importance. It typically eval-
uates the effect of perturbation over a predefined set of bins for top-ranked features (e.g.,
top 1%, 5%, 10%, etc.), thus offering a more comprehensive view of explanation faithfulness
than single-threshold methods.

%In cases where the original rationales are soft scores, such as when they result from averaging multiple
annotators’ decisions, they are converted into binary labels through thresholding, effectively binarizing the
rationales for evaluation purposes.

20 Chapter 3. Validation Metrics

While AOPC provides a useful discretized approximation of attribution impact, it remains
limited by the choice and granularity of bins. To address this limitation, we introduce two
threshold-independent faithfulness metrics which integrate the effects of removing or re-
taining top-ranked features across all possible feature importance thresholds: area under
the comprehensiveness perturbation curve (AUCPC) and area over the sufficiency pertur-
bation curve (AOSPC).

We believe that, by treating comprehensiveness and sufficiency as continuous functions over
feature importance thresholds, these area-based metrics can provide a finer-grained view of
faithfulness, enabling a richer comparison between explanation methods.

3.1.2.1 Comprehensiveness

Comprehensiveness measures to which extent were all the features needed to make a predic-
tion marked as important by the explainability method. Let us define it formally.

Definition 3.4. Lets = (wy, ..., w,) be asequence of words, ¢ = (¢1,...,¢n) a -normalized
vector of feature importance attributions, and f : X —) the model predictor. Let t € [0, 1]
be a threshold value. We shall also assume a baseline input vector b = (by,...,b,) in the
sense of definition 2.1 and §2.2.1. We define a contrast example as 5 = (3,...,8!,) from s
given ¢ and t, with components given by

S b >
st — {b“ Bgi=t e,). (34)

s;, otherwise

Suppose the prediction of the sequence s favors class c. We define the comprehensiveness score
of ¢ for the sequence s and the threshold t as

comprehensiveness,(s) = [f(s)]. — [f(5")]., (3.5)

where [f(s)]. indicates the output probability assigned by the predictor for the sequence s
belonging to class c.

To compute comprehensiveness, given a sequence and its explanation, we construct a coun-
terexample where the tokens marked as relevant by the explanation (according to some
threshold) are removed and substituted by a baseline value. We then measure the drop in
the model’s confidence for the originally predicted class, computed as the difference be-
tween the model’s probability assigned to the predicted class on the original input and that
assigned to the same class on the counterexample input.

A large drop (i.e., a high comprehensiveness score) indicates that the removed tokens were
indeed influential in the prediction, and thus that the feature importance attributions were
faithful to the model’s behavior. A negative comprehensiveness score means that the model
became more confident in its prediction after the relevant tokens were removed, something
completely counter-intuitive if the tokens were indeed relevant for the prediction.

Previous approaches to comprehensiveness define a fixed importance threshold for its com-
putation. Here, to avoid relying on a specific threshold ¢ € [0, 1] for selecting relevant tokens,
we construct a comprehensiveness-threshold curve by sweeping t across its domain. Since the
x component of the curve corresponds to t and the y component to the comprehensiveness
score (i.e., the change in predicted probability), all points of the curve are contained in the
[0,1] x [—1, 1] rectangle of the plane.

3.1. Word-Ilevel Attributions 21

As a threshold-independent comprehensiveness measure, we then compute the signed area
under the comprehensiveness-threshold curve, which we will call the area under the compre-
hensiveness perturbation curve (AUCPC). Note that AUCPC is bounded between —1 and 1,
with higher values indicating greater overall comprehensiveness across all thresholds.

For a dataset consisting of several instances of text sequences, the global AUCPC can be
computed by computing the area under the average comprehensiveness-threshold curve
across all instances.

3.1.2.2 Sufficiency

Sufficiency measures to which extent the features marked as important by the explainability
method contain enough signal for the model to reach its prediction. It can be understood as
the complementary metric to comprehensiveness. Let us define it formally.

Definition 3.5. Lets = (wy, ..., w,) be asequence of words, ¢ = (¢, ..., $,) a £!-normalized
vector of feature importance attributions, and f : X —) the model predictor. Let t € [0, 1]
be a threshold value. We shall also assume a baseline input vector b = (by,...,b,) in the
sense of definition 2.1 and §2.2.1. We define a reduced example as 5' = (s,...,8!) from s
given ¢ and t, with components given by

542{5” Eg=t cn, . (3.6)

b;, otherwise

Suppose the prediction of the sequence s favors class c. We define the sufficiency score of ¢
for the sequence s and the threshold t as

sufficiency,(s) = [£(s)], — [f(s")]., (37)

where [f(s)]. indicates the output probability assigned by the predictor for the sequence s
belonging to class c.

To compute sufficiency, given a sequence and its explanation, we construct a reduced exam-
ple where the tokens not marked as relevant by the explanation (according to some thresh-
old) are removed and substituted by a baseline value. We then measure the drop in the
model’s confidence for the originally predicted class, computed as the difference between
the model’s probability assigned to the predicted class on the original input and that as-
signed to the same class on the reduced input.

A small drop (i.e., a low sufficiency score) indicates that the tokens identified as important
preserve most of the information needed by the model to reach its prediction, suggesting
that the explanation captures a minimal, but sufficient subset of important features. On the
other hand, a large probability drop indicates that the supposedly irrelevant tokens were
actually contributing to the model’s decision, hence undermining the faithfulness of the
explanation.

As before, to avoid relying on a specific threshold for selecting relevant tokens, we construct
a sufficiency-threshold curve by sweeping t across its domain. As with the comprehensiveness
-threshold curve, all are contained in the [0,1] x [—1,1] rectangle of the plane.

Then, as a global, threshold-independent sufficiency measure, we compute the signed area
under the sufficiency-threshold curve. Note that lower values of this area correspond to
globally lower sufficiency scores, and thus more faithful explanations. To construct a metric
such that higher values reflect greater faithfulness (consistent with the interpretation of the

22 Chapter 3. Validation Metrics

previously defined AUCPC), we define the area over the sufficiency perturbation curve (AOSPC)
as one minus the signed area under the sufficiency-threshold curve.

With this definition, AOSPC is bounded between —1 and 1, with higher values indicating
greater overall sufficiency across all thresholds.

For a dataset consisting of several instances of text sequences, the global AOSPC can be
computed by computing the area over the average sufficiency-threshold curve across all
instances.

3.2 High-order Interactions

We evaluate the importance attributions for higher order interactions from the faithfulness
perspective, as defined in §3.1, by introducing a multi-level approach for the computation
of AUCPC and AOSPC.

Recall that a solution to the feature group attribution problem (particularly IDG) assigns to
each meaningful subset of features an importance score, reflecting their contribution to the
underlying model prediction. In our framework, that means assigning an importance value
to each node within the constituency parse tree of a sentence.

As mentioned in §2.2.3, constituency parse trees are, in general, unbalanced trees. To facili-
tate high-order evaluation, we will use the procedure described in algorithm 1 to transform
the attribution trees to depth-balanced structures.

Once the tree is balanced, each level corresponds to a sequence of importance attributions
over the text spans represented by that level’s nodes. At this point, comprehensiveness and
sufficiency can be evaluated for the attributions at each level. Following the methodology
described in §3.1.2, AUCPC and AOSPC can be computed using the respective threshold
curves.

Global high-order AUCPC and AOSPC can be computed by averaging the level-wise thresh-
old curves that are first aggregated over the dataset at each tree level. However, this naive
averaging approach fails to account for two critical sources of bias:

* Support bias: The maximum height of a constituency parse tree is inherently tied to
the length of the sentence it represents. Consequently, at any given level, the num-
ber of instances that contribute to the faithfulness evaluation varies depending on the
distribution of sentence lengths in the dataset. Levels closer to the root may be under-
represented due to shorter sequences that do not reach such heights.

* Span coverage bias: Constituency tree nodes at higher levels correspond to longer text
spans. Feature attribution methods, particularly IDG, tend to artificially assign higher
importance scores to these spans, as they inherently contain more information and
thus more potential influence on the model’s output. This introduces an undesired
inflation in attribution values.

To address these biases, the averaging of perturbation curves must be performed in a weigh-
ted manner. Specifically, we introduce correction factors that account for uneven support
across levels and normalize for the inflated importance of longer spans. These adjustments
allow for the definition of global faithfulness metrics that better reflect the actual quality of
the attributions, regardless of structural imbalances in the dataset.

Let t € [0,1] be a threshold value and f;(t) be a faithfulness metric (either comprehensive-
ness or sufficiency) evaluated at level / and threshold ¢ (thus, f;(f) stands for either the

3.3. Global Qualitative Insights 23

comprehensiveness-threshold or sufficiency-threshold curve at level [). Let L be the maxi-
mum level reached by the sequences in the dataset. We then compute the corrected global
average curve as

L
F(t) = & Y wif(t) (38)

where wj is a correction factor accounting for the support and span coverage imbalances in
the datasetand Q = Y- | w;.

In practice, datasets generally contain a larger proportion of shorter sequences, which results
in lower-level tree nodes being more frequently represented than those lying at higher levels.
At the same time, nodes at higher levels in constituency trees correspond to longer text
spans, which are more likely to receive inflated attribution scores because they artificially
contain more information. Therefore, a correction factor that simultaneously adjusts for
these two imbalances can be defined as

tlevel /
W = support at leve

= , le{1,...,L}. 3.9
mean maximum span coverage at level [€{ ! (39)

The corrected curve F(t) can finally be interpreted as a global faithfulness curve that accu-
rately reflects the true quality of the high-order importance attributions, independently of
structural biases specific to the dataset. Using this curve, global AUCPC and AOSPC met-
rics for the high-order importance attributions can then be computed, which we will denote
AUCPCpp and AOSPChp.

3.3 Global Qualitative Insights

Beyond quantifying the method’s agreement with human annotators or model functional
dependencies, the generated explanations can also provide global qualitative insights. For
instance, Saeteros et al. [49] used word clouds [50] to visualize the tokens that were most
globally relevant for the model when classifying instances into specific classes.

Here, we adopt this approach by generating word clouds based on the mean importance
scores assigned to individual words, in order to represent their global relevance. To capture
the global importance of low-level interactions, we apply the same method to 2-grams (word
pairs).

25

Chapter 4

IDG Applied to Hate Speech
Detection

This chapter is devoted to explaining the procedure and results derived from the application
of IDG to a hate speech detection model trained on the HateXplain dataset.

4.1 Materials and Methods

4.1.1 Dataset

Our practical work focuses on the HateXplain dataset, a benchmark dataset for explainable
hate speech detection developed by Mathew et al. [26]. HateXplain is the first benchmark
dataset for the detection of hate speech with word annotations that capture the human ra-
tionales for labelling.

4.1.1.1 Dataset Overview
The data compiled in HateXplain was sourced from two social media platforms:

 Twitter'. The authors filtered posts from a 1% random sample of tweets in the period
from January 2019 to June 2020.

* Gab?. The authors use a previously curated dataset [52], which contains filtered hate-
ful posts.

Following the approach of previous studies on hate speech on social media platforms [18,
52-54], the authors behind HateXplain build a corpus of posts using lexicons of unigrams
and bigrams that are usually associated with hate.

Reposts and duplicates were removed, and it was ensured that posts did not contain links or
audiovisual materials, since they could carry additional information not available to anno-
tators. Emojis were not excluded, as they might be relevant for the labelling task. All posts
were anonymized by replacing usernames with the <user> token. Further text normaliza-
tion was applied to replace certain entities with abstract placeholders:

e <number>: numeric values.

® <percent>: percentages.

1Former name for the social network X. Link: https://x.com.

2Gab is a social media platform known for its far-right user base, described as a haven for neo-Nazis, white
supremacists, white nationalists, antisemites, the alt-right, supporters of Donald Trump, conservatives, right-
libertarians, and believers in conspiracy theories [51]. Link: https://gab. com.

https://x.com
https://gab.com

26 Chapter 4. 1IDG Applied to Hate Speech Detection

* <money>: monetary values.
* <date>, <time>: temporal expressions.
* <email>, <phone>: personal data.

e <laugh>, <sad>, <happy>, <surprise>, <kiss>, <wink>, <annoyed>, etc.: non-textual
emotive and expressive content (glyphs or non-alphanumeric character combinations).

Human annotators performed two distinct annotation tasks on the dataset:

* Target class annotation: annotators were asked to determine whether a post was ei-
ther hateful, offensive or neither of the two, i.e., normal. Each post was independently
assessed by three annotators, and the ground truth class was determined by majority
voting. The cases where the three annotators disagreed on the assessment were not
considered for the study.

* Rationale annotation: for each post labeled as hateful or offensive, annotators were
asked to justify their decision by highlighting the specific tokens that contributed to
their judgment.

4.1.1.2 Data Selection and Preprocessing

The latest version of the whole, unprocessed, HateXplain dataset was downloaded from its
GitHub repository>. All selection and preprocessing procedures were carried out using the
Polars Python package, an open-source library for fast and efficient data manipulation [55].

First, data instances in which the three annotators disagreed on the target class assessment
were excluded, only keeping posts for which more than two (out of three) annotators agreed.
The target class of such instances was determined by majority voting.

Subsequently, to focus on a binary classification task, only instances labeled as either hateful
or normal were preserved, while those labeled as offensive were discarded.

In the original dataset, each rationale was encoded as a boolean vector, where each element
indicates whether a token was part of the rationale. The final (global) rationale for a post
was obtained by averaging the boolean vectors provided by different annotators.

To ensure further compatibility with tokenizer models, special Unicode characters, such as
u200d, u200f or accented characters, were replaced with special placeholders. Moreover, all
text excerpts were systematically lowercased to ensure consistency.

Finally, the dataset was split into train, validation, and test segments for the subsequent
analyses, and saved in parquet format for further use. The splitting was done in a stratified
manner, ensuring similar class distributions in each split.

After filtering and preprocessing, the dataset comprised a total of N = 13749 samples. Ta-
ble 4.1 shows the number of instances for each split of the dataset and each target class, as
well as the counts for the total dataset and the ratio of normal to hate speech samples. Note
that this ratio is preserved across all splits, confirming that the stratified sampling procedure
was effective.

3GitHub repository for the HateXplain dataset.

https://github.com/hate-alert/HateXplain

4.1. Materials and Methods 27

TABLE 4.1: Instance counts for each split of the dataset and target class, as well as the
ratio of normal to hate speech samples.

Class
Split Normal Hate Speech Total Ratio (N:HS)
Train 6251 4748 10999 1.32
Validation 781 593 1374 1.32
Test 782 594 1376 1.32
Total 7814 5935 13749 1.32

Table 4.2 presents the number of samples per platform for each split, as well as for the entire
dataset. It also includes the ratio of Twitter to Gab samples. A small residual number of
samples could not be attributed to either Twitter or Gab due to the lack of metadata in the
original dataset. Note that the Twitter-to-Gab ratio is preserved across all splits except for
the validation set, where it is slightly higher.

TABLE 4.2: Instance counts for each split of the dataset and post platform, as well as the
ratio of Twitter to Gab samples.

Platform
Split Twitter Gab Unknown Ratio (T:Gab)
Train 5149 5831 19 0.88
Validation 663 709 2 0.94
Test 643 731 2 0.88
Total 6455 7271 23 0.89

Figure 4.1 shows the distribution of the number of tokens per sample across dataset splits
and target classes. As can be seen, there are no notable differences in the distributions for
each class. Additional figures regarding further descriptive statistics of the dataset can be
consulted in §B.1. Overall, no significant differences in the studied parameters are appreci-
ated.

Train Validation Test
0.04
—— Normal - —— Normal ml —— Normal
Hate Speech Hate Speech b L Hate Speech
0.03 /"\‘,}xm ™\
= o
£ 00 " H
[a}
0.01 ‘ l
\
0.00 N
0 20 40 60 0 20 40 60 0 20 40 60
Number of Tokens per Sample Number of Tokens per Sample Number of Tokens per Sample

FIGURE 4.1: Distribution of the number of tokens per sample for each dataset split and
target class. A kernel density estimation (KDE) curve is overlaid facilitate interpretation.

28 Chapter 4. 1IDG Applied to Hate Speech Detection

4.1.2 Model Selection

To develop a hate speech detection algorithm, two transformer-based state-of-the-art deep
learning text models were implemented and evaluated: Bidirectional Encoder Represen-
tations from Transformers (BERT) [56] and XLNet [57]. These models were selected due to
their strong performance on a wide range of natural language understanding tasks and their
ability to capture contextual information in text through self-attention mechanisms.

BERT is a bidirectional transformer model pretrained using masked language modeling and
next sentence prediction tasks, allowing it to learn deep bidirectional representations for text
by jointly considering both left and right contexts. In contrast, XLNet uses autoregressive
language modeling, incorporating permutation-based factorization to capture bidirectional
dependencies without relying on masking, which can lead to improved performance in cer-
tain downstream tasks.

Both models have been implemented and fine-tuned using the Hugging Face Transformers
library [58] and Pytorch [59], which jointly offer access to a wide range of pretrained models
as well as a unified interface for managing and fine-tuning transformer-based architectures.
For details regarding the computational environment and hardware specifications used to
run the code, please refer to Appendix A.

The fine-tuning for both models was carried out using equivalent training strategies. First,
task-specific pre-trained models and tokenizers were downloaded from the Hugging Face
repositories. In the case of BERT, the BertForSequenceClassification implementation was
employed, with weights initialized from the pre-trained bert-base-uncased model. For XL-
Net, the XLNetForSequenceClassification implementation was used, with weights initial-
ized from the x1net-base-cased pre-trained model.

Input text sequences were tokenized and encoded before being fed into the models for fine-
tuning. Specifically, sequences were tokenized using the respective model tokenizers, con-
verting text into input IDs and attention masks for each transformer architecture. Padding
and truncation were applied to ensure consistent input lengths within each batch. In par-
ticular, a maximum sequence length of 128 elements was selected for both models. Ad-
ditionally, placeholders for special elements described in section §4.1.1.1 and emojis were
manually added to the tokenizers as special tokens to ensure these elements were correctly
recognized and processed by the models.

The models were fine-tuned in a supervised way using the labeled data from the training
split. For BERT, fine-tuning was performed with a batch-size of 32, a learning rate of 2 x 10~°
and a maximum of 5 training epochs. The AdamW optimizer was used, with a weight
decay of 0.1 and a linear learning rate scheduler with 100 warmup steps. Early stopping
was applied by monitoring the validation loss, with training halted if no improvement was
observed. The XLNet model was fine-tuned under the same settings.

The final model for inference was selected based on its performance on the validation dataset,
considering multiple metrics such as the confusion matrix, accuracy, F;-score, and area un-
der the receiver operating characteristic curve (AUROC).

4.1.3 Explainability

4.1.3.1 Generation of Explanations

To interpret the model’s predictions at the interaction level, we employed IDG. All the ex-
plainability analysis was done using the samples of the test split of the dataset.

4.1. Materials and Methods 29

The official implementation of IDG, publicly available on GitHub*, is built on PyTorch and
the Captum library [60]. However, the codebase depended on outdated versions of these
libraries and, in particular, was found to be incompatible with the latest release of the Trans-
formers library. We therefore conducted a thorough revision and refactoring of the code to
ensure compatibility with the latest dependencies and to adapt the implementation to our
specific requirements.

In line with the discussion in §2.2.1, we adopted a zero baseline approach for the attribution
computation. For BERT, this is equivalent to defining the baseline as a vector completely
constituted of [PAD] tokens.

As detailed in §2.2.2, we selected constituency parse trees as the family of meaningful sub-
sets for defining feature importance. These trees were generated systematically using the
Stanza constituency parser [42]. We used an standardly configured pipeline, which relies on
the Penn Tree Bank (PTB) [43], updated following the guidelines of Mott et al. [61].

Additionally, we generated word-level feature importance attributions using IG and SHAP
as reference baselines. These methods, widely adopted for feature importance estimation,
served as a benchmark for assessing the quality of the first-order explanations produced by
IDG.

We employed the Transformers-Interpret library implementation of IG [62]. For SHAP, we
used the official library released by Lundberg et al. [7], and specifically applied the Partition
Explainer algorithm to generate explanations.

4.1.3.2 Quantitative Evaluation

The quality of the generated explanations was assessed using the metrics described in §3.

Word-level Attributions

The attributions at the word level generated by IDG were quantitatively evaluated from both
the plausibility and faithfulness perspective, and compared with the values corresponding
to the explanations generated by IG and SHAP.

Regarding plausibility, agreement@k and the area under the precision-recall curve (AUPRC)
were computed. Since both metrics require samples with human-provided rationales, these
evaluations were limited to instances from the hate speech class, as they are the only ones
annotated with importance labels in our dataset. Only correctly predicted samples were
considered.

For consecutive values of k between 1 and 15, agreement@k was computed for each of the
considered samples. The global agreement@k for all the samples was computed using the
averaging formula described in §3.1.1.1.

To compute the AUPRC, each soft-scored human rationale was binarized into a ground-
truth vector by marking a token as important if it had a positive soft score (i.e., if at least
one of the three annotators considered it relevant). Then, the precision-recall curve com-
paring the explanation method’s attributions to the human annotations was computed for
each sample. A global AUPRC was obtained by averaging the individual sample AUPRCs.

4GitHub repository for the IDG implementation.

https://github.com/parantapa/integrated-directional-gradients

30 Chapter 4. 1IDG Applied to Hate Speech Detection

Globally averaged precision-recall curves were also computed by interpolating all individ-
ual precision-recall curves over a fixed range of recall values and then averaging the corre-
sponding precision values.

As for faithfulness, we evaluated the explanations using the comprehensiveness and suffi-
ciency metrics. Specifically, each feature importance attribution vector was ¢!-normalized
before computing the comprehensiveness-threshold and sufficiency-threshold curves, as de-
fined in §3.1.2. The padding baseline approach was applied by masking the appropriate to-
kens in each perturbed example with [PAD] tokens. Consistent with the plausibility evalua-
tion, only correctly predicted samples were considered. Global AUCPC and AOSPC values
were obtained by averaging the individual sample AUCPCs and AOSPCs, respectively.

High-order Interactions

The importance of high-order feature interactions given by IDG was solely evaluated from
the faithfulness perspective. A plausibility analysis would have required rationalized con-
stituency parse trees, which were not available.

First, the constituency parse tree of each sequence was depth-balanced using algorithm 1.
The importance attribution vector associated to each level of the depth-balanced tree was £!-
normalized. Then, comprehensiveness-threshold and sufficiency-threshold curves for each
level within each sample were computed.

Next, to obtain a global representation, level-wise curves were averaged across all samples
in the dataset, resulting in a global curve per tree depth level. Finally, as discussed in §3.2,
a corrected averaging procedure was applied to these level-wise curves to compute global
faithfulness metrics that account for support and span-coverage biases.

For each tree level, we computed the support (i.e., the number of samples whose depth-
balanced constituency trees reached that level) and the mean maximum span coverage, de-
fined as the average maximum fraction of the sentence length covered by nodes at that level.
This analysis revealed that support is approximately inversely proportional to the tree level,
while the mean maximum span coverage tends to increase roughly in direct proportion to
the level. Hence, we introduced correction factors to compensate for these dependencies,
following the guidelines described in §3.2 and equation (3.9). Finally, using the globally
corrected curves, we computed AUCPCyo and AOSPCyo.

4.1.3.3 Qualitative Evaluation

To visualize the explainability trees generated by IDG, a custom visualization framework
was developed using Matplotlib [63], following the guidelines described in §2.2.3. This
allowed us to intuitively inspect the hierarchical structure of importance attributions and
assess the coherence and interpretability of the explanations.

Global qualitative explanations, in the sense of §3.3, were generated by creating word clouds
for the word-level importances assigned by IDG, IG and SHAP, using the Word Cloud
Python library [64]. In particular, the global importance score for each token was computed
as the average of its importance scores across all sentences in which the token appeared.
Common English stop words were filtered using the list provided in the Scikit-learn library
[65]. Word clouds for 2-grams were generated similarly using the IDG data.

4.2. Results 31

4.2 Results

4.2.1 Model Performance

As described in §4.1.2, after the fine-tuning phase, models were evaluated based on their
performance metrics on the validation split, and the best performing model was selected
based on these metrics.

Table 4.3 shows the performance of the fine-tuned models on the validation set. Figures 4.2
and 4.3 show the confusion matrix and ROC curve for BERT and XLNet, respectively. Train-
ing curves for both models are reported on §B.2.

Overall, BERT outperforms XLNet across all evaluation metrics except for precision, where
XLNet shows a slight advantage. Therefore, BERT was selected as the final model for sub-
sequent inference and explainability analyses.

TABLE 4.3: Performance metrics of fine-tuned BERT and XLNET on the validation split
for the hate speech class. Boldface is used to highlight the best values.

Metric
Model Accuracy Precision Recall F1-score AUROC
BERT 0.878 0.855 0.865 0.860 0.948
XLNet 0.870 0.862 0.833 0.847 0.937
BERT on Validation Set BERT on Validation Set
750
é 600
[}
" Z
E 450
5 &
Q [l
R -300
B
g -150 0.21
2 ’ —— AUC=095
0 0.0+
Normal Hate speech 0.0 0.2 0.4 0.6 0.8 1.0

Predicted Labels FPR
(A) (B)

FIGURE 4.2: (A) Confusion matrix for BERT on the validation dataset. (B) ROC curve
display for BERT on the validation set.

32 Chapter 4. IDG Applied to Hate Speech Detection

XLNet on Validation Set XLNet on Validation Set
750

=

£ 600

]

z
o
[]
Q 450
5 &
P =
& = -300

5

&

% -150

= —— AUC =0.94

-0 0.0+
Normal Hate speech 0.0 0.2 0.4 0.6 0.8 1.0
Predicted Labels FPR
(A) (B)

FIGURE 4.3: (A) Confusion matrix for XLNet on the validation dataset. (B) ROC curve
display for XLNet on the validation set.

Table 4.4 shows the evaluation metrics of the selected BERT model on the test dataset. Fig-
ure 4.4 complements the previous information with the confusion matrix and ROC curve
display for the model.

TABLE 4.4: Performance metrics of fine-tuned BERT on the test split for the hate speech

class.
Metric
Model Accuracy Precision Recall F1-score AUROC
BERT 0.903 0.881 0.896 0.888 0.954
BERT on Test Set BERT on Test Set
750

g 600

=}
" Z
& 450 o
= &
q:,) =
R -300

&

g -150

es

-0
Normal Hate speech
Predicted Labels FPR
(4) (B)

FIGURE 4.4: (A) Confusion matrix for BERT on the test dataset. (B) ROC curve display
for BERT on the test set.

4.2. Results 33

4.2.2 Explainability
4.2.2.1 Quantitative Evaluation
Word-level Attributions

Here, we focus on the quantitative analysis of the word-level importance attributions gen-
erated by IDG, IG and SHAP.

Figure 4.5 shows the analyzed plausibility metrics for the word-level importance attribu-
tions given by IDG, IG and SHAP. Note that IDG achieves a better agreement@k score at
low-mid values of k than SHAP, which in turn achieves better scores than IG. Regarding the
AUPRC, IDG achieves a value of 0.81, which outweighs the 0.77 value reached by SHAP,
which in turn is greater than the 0.75 attributed to IG.

0.85 1.0
0.80 1 ‘ 0.8
o |
% 0.75 1 5 0.6
£ g
ot g
& 0704 £ 04
(o]
065 IDG 02 IDG AUPRC: 0.81
’ —— IG “| —— IG AUPRC: 0.75
—e— SHAP —— SHAP AUPRC: 0.77
0.60 — : , , , - 0.0 - - - .
0 2 4 6 8 10 12 14 16 0.0 0.2 0.4 0.6 0.8 1.0
k Recall

(A) (B)

FIGURE 4.5: (A) Mean agreement@k for the three evaluated methods. (B) Precision-
recall curve for the three evaluated methods.

Regarding faithfulness, figure 4.6 presents the comprehensiveness-threshold and sufficiency-
threshold curves for the analyzed methods.

The comprehensiveness-threshold curve shows the drop in model confidence for each im-
portance threshold. A higher area under the curve (AUCPC) indicates greater faithfulness,
as it means that the explainability method identifies features that are truly relevant to the
model’s decision across more importance thresholds.

The sufficiency-threshold curve displays the variation in model confidence when, at a given
importance threshold, only the relevant features are retained, and the rest of the features are
removed. A higher Area Over the Sufficiency-threshold Curve (AOSPC) indicates that the
explanation highlights a set of features that is sufficient for the model to maintain a similar
level of confidence, thus demonstrating higher faithfulness.

For the studied data, the best performing method is SHAP, which achieves an AUCPC of
0.13 and an AOSPC of 0.73. IG follows with an AUCPC of 0.10 and an AOSPC of 0.70.
Finally, IDG achieves the lowest values, with an AUCPC of 0.08 and an AOSPC of 0.68.

34 Chapter 4. IDG Applied to Hate Speech Detection

0.40 0.40
IDG AUCPC =0.08

0.351 —— 1G AUCPC = 0.10 035
2 030 —— SHAP AUCPC = 0.13 0301
()
=1
g 0.25 1 U>- 0.25 1
‘B =
= Q
v 0.201 ‘o 0.201
< =
2 2
g« 0.15 1 n 0.151
5]
O 0101 0.10 1 IDG AOSPC = 0.68

—]G AOSPC =0.70
0.05 1 0.05
—— SHAP AOSPC =0.73
0.00 ' T ; " 0.00 + " T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Rationale Threshold Rationale Threshold
(A) (B)

FIGURE 4.6: (A) Comprehensiveness-threshold curve for the three evaluated methods.
(B) Sufficiency-threshold curve for the three evaluated methods.

High-order Interactions

This part is devoted to the qualitative analysis of the importance attributions for high-order
interactions generated by IDG.

Figure 4.7 shows the support of each tree level across the test dataset, along with the mean
maximum span coverage at each level. We can see that, indeed, support is approximately in-
versely proportional to the level, while the mean maximum span coverage tends to increase
with the tree level.

1400
& 08
1200 1 s
2 07
1000 1]
Z 06
-—]
5 800 & 05
> £
& 600 g 04
X 03
400 S
c 02
200 5
S 01
0L 0.0
0 10 20 30 0 10 20 30
Level Level
(A) (B)

FIGURE 4.7: (A) Support at each tree depth-level across the test dataset. (B) Mean maxi-
mum span coverage at each tree-depth level across the test dataset.

Figures 4.8 and 4.9 present the results of the comprehensiveness and sufficiency analyses
for the high-order interactions detected by IDG. Specifically, plot (A) of each figure shows
the raw curves for each level, without any correction factor applied. Plot (B) shows each
level curve multiplied by its correction factor, along with the global curve resulting from

4.2. Results

35

applying a weighted average with the corrections. The area in the plot corresponding to
AUCPCho and AOSPCyp is shaded. IDG achieves a global corrected AUCPCyo of 0.13,

and an AOSPCyo of 0.72.
1.0
» 08
o
=1
[
206
2
[}
©
5 0.4
&
o
Y oo02
0.0
000 025 050
Threshold
(a)

Comprehensiveness

1.0 1

0.8 1

0.6 1

0.4

0.21

0.0

=== Corrected Average
AUCPCyo =0.13
N
N\
\
Y
\\
\\\~
000 025 050 075 1.00
Threshold
(B)

FIGURE 4.8: (A) Comprehensiveness-threshold curves for each level. (B) Corrected com-
prehensiveness-threshold curves along with their weighted average.

1.0
0.8
&
g 06
[}
g
=)
5 04
wn
0.2
0.0
000 025 050
Threshold
(a)

Sulfficiency

1.01

0.81

0.6

0.4

0.21

0.01

== Corrected Average

AOSPCyio = 0.72

m———

050 075

Threshold
(B)

FIGURE 4.9: (A) Sufficiency-threshold curves for each level. (B) Corrected sufficiency-
threshold curves along with their weighted average.

4.2.2.2 Qualitative Evaluation

In this section, we focus on the qualitative analysis of the generated explanations.

Level

Level

Figure 4.10 shows the explanation tree generated by IDG for the sequence “My ching chong
is so cutie”, which the model correctly classified as hateful with 97% confidence. The tree is
presented post-processed according to the visualization framework described in §2.2.3°. At
the word level, IDG correctly identifies “ching” and “chong” as contributing to the hateful
classification, although the token “cutie” is incorrectly attributed as hateful as well. Moving

5In particular, it has been depth-balanced using algorithm 1.

36 Chapter 4. IDG Applied to Hate Speech Detection

up the tree, we can see that the phrase “my ching chong” is attributed a high importance
score toward the hate speech class, whereas “is so cutie” receives an opposite attribution. In
the end, the whole sentence is correctly identified as hateful.

This example highlights how IDG can capture both fine-grained word-level attributions and
higher-order interactions between phrases. By correctly identifying the key hateful terms
and their context, IDG provides a richer explanation of the model’s decision. Although the
misaligned attribution of “cutie” suggests limitations at the word level, the overall hierar-
chical structure helps understand how positive and negative contributions combine to give
the final prediction.

Additional complementary examples of explainability trees are shown in §B.3.
hatespeech

+0.60

+1.000
my ching chong is so cutie

Level 4-

- +0.35

T

+0.629 -0.370
my ching chong is so cutie I L +0.10

Level 3-

dend Direction x Attribution Score

Cevel o +0.629 -0.099 -0.271 | 015
evel 2= my ching chong is |] so cutie I

T T I I —0.40 =
Cver 1| 0118 +0.252 +0.258 -0.099 || -0.067 +0.204 o)
VELLTT my [ching I chong 1 is || so |] cutie o

—-0.65

normal

FIGURE 4.10: Explainability tree for the sequence with ID 1178101883602272256_-
twitter.

Figure 4.11 displays word clouds representing the globally most important tokens for pre-
dictions of the hate speech class, as identified by each explainability method. Each word
cloud is color-coded with the palette used in previous figures to distinguish between the
three methods. At first glance, the most prominent tokens are clearly aligned with highly
offensive and discriminatory English terms, thus showing that all three methods succeed in
highlighting toxic discursive patterns associated with hate speech.

Figure 4.12 shows a word cloud illustrating the globally most relevant 2-grams (combina-
tions of two words) for predictions of the hate speech class, as computed by IDG. As before,
the most important terms contain highly hateful and malicious vocabulary.

4.2. Results

37

IDG

t. muzzrats: nomorerefugees
hal . I o
hltegenoc1de gook bichesy
& trannies SN1 1N <
E wklk(”‘,'””w shautout it
=) - -
= disinfo christcuck ~ zombama : <2
o ch hk 11 Yo
= - Onjg ‘SH‘ \IJ\’WHQH 1 Skrlpal we
w
nlggershltbullshlt
illiterate kackrat g
sheckels o mudslimeés reta
sheboons aki Nig -
U esplonage g;p”, ,lilt‘ oin :
g masculinit 7'”[
=’ peaners ~ ¥adi !
tahahahahahahahahahahﬁhaha ‘hU”)P‘ s
ervert c ing
aser fapp;gger;lLi 1
sgas, shitskins = Jewfags
apologizes bGoty Ful 5. uzzle
janit lesbophobia faggots
edophile towelhead®
P p SOWS hex neas Chink wnoops
~ pipemoslen sandnlggElS ugh coon
It itt rapeft 12
eurocucks " Storme ‘
- medans;,
(7] deadpool faitt -
= caucasians,, 10tta g
o sumbitch twatte
Q koko .Sargon cring 3
negr ess: 6V mother Fuckers
graghead hel)qon mucshal ko
faggotly omienails ‘g
goatfucker yld 5
’ mu221es kardashian .~
1111bil tas spic : N
fur faggotr yJ jihadi’ 2

if(»m AWeapon:.«

(a)

IG

P won whitegenocide - clos
~sheboon .

cultura y
asta rd *”“‘@ﬁe"#‘evlé. mudslime

aner: @
4—'"“""‘“"mudsllmes
imislamic

cau(as%eaar!é

ZMUZZrats s
ﬁ:m mudshark‘ .1
faced

ki k O
§W@9§v‘£b§r@s§9;

uny

goathumpers

iggers 3

nigletsandni
B oj% 3
J}
Ode:

I"I
o
an
a

shec Els

shltsgln explicit

muzratﬁa
eane Sx

goem;“é;:g!l%g ‘?h &
(B)

adpoo
W

Ittt
mtjes

SHAP

ragheads inyader

‘e 3 leaches SplCS scumta n :fnfe
fuckeripanks 8 o fucking
ikescum =~ towelhead mwwt
e dUEETShookegbarbarians O (733
4—‘ skunks r‘atmt(hesbkﬁﬁhklkey 00 .
shitskin®*“"Esn g2
likes WItChCUCdeumb E ¢
niggerdick

""‘;'shall SplC
T Ehex' muslim

ggmfmhnlggerls

female
N Sheboonottoman
~nalottakikes ~"chin
ucks cestroving =S
ausslecoon known

egro dislike g;
gmpwm[“dg ss traolls gOOkgruun +

ngﬁhersculturallyape abbi

arivesN1gger inmigrant =5
Lh—u'ﬂ:bean ['S(Iumbest babies _\¢
dyke dykesyioiie mugsharks S

bsolett COO S
teSs;Cc}an“s[shitlings muslims

tFafsiifrats sandniggars Ry

Eneral

goathumpelrs satanlc faggots

mpowerd
_]lhadlm uzzi an
@ane gt l chong
caucasians MUSLIMES “niggers
furr goatfucker wetbacks

3" wetback Comrf?adeot
%fanprm%tes'cscar]ackersgg?t e

acks bOm
bastard n]_g]_ets

v camelsugar
tpussygrabbing

T

o

defends
cunt
Somali

osers

kikel _/ [

muzra

infectious

-

cu

dogshit

racemixing chimpou t°15 am
S mu

;: =]
ssa551n t

" SOWSq,

lock greeks

urn CE
1slamop obe— @

gﬂfl.rlnrurzy%“"mlej"d shithole faggotry 6::.
Efurryss:
Sinerds.omMUdslimes paki 3
%

gmlgger§h1tbullsh1t

bitchute
fuckoff .
ce ls chinks ki1ls
W%o%gﬂaqksewer cra(kerObanger@

(©)

FIGURE 4.11: Wordclouds showing the globally most important tokens for the hate
speech class, according to (A) IDG, (B) IG, and (C) SHAP.

=

hant_yid

gger

cia_nigger

hate: Cca

tw1tter klkeh

dumb_ni

klke verlfled‘

ate

IDG

fucking_retarded

fuck_sargon

ing -sh

araps

° homosexual_muslims
fucker_coon e lol good

casflans

1an _dykes

e taser fa(e_

X martlnfﬁ;zeli“““

ing beaner: CumeCklﬂg retard

fucking yfw_deadpool

kike_slumlords

Iklke matt :

ahahahahahahahahaha

ahahaha

FIGURE 4.12: Wordcloud showing the globally most important 2-grams for the hate
speech class, according to IDG. A 2-gram is represented by its constituting tokens sepa-

rated by an underscore.

38 Chapter 4. 1IDG Applied to Hate Speech Detection

4.3 Discussion

Our study presents a comprehensive evaluation of IDG applied to a hate speech BERT-based
detection model. We have processed and described our working dataset, assessed model
performance and analyzed both quantitatively and qualitatively the quality of IDG expla-
nations. The discussion below reflects on our main findings.

Dataset. Our descriptive analysis confirmed that our preprocessing and sampling strategy
preserved class and platform distributions across the training, validation, and test splits.
The consistent distributions ensured no that no major biases or structural inconsistencies
affected downstream evaluations. The minor deviation observed in the Twitter-to-Gab ratio
for the validation set has unlikely impacted the analysis, but it is worth noting it for future
work.

Model Performance. BERT consistently outperformed XLNet in all evaluated metrics ex-
cept for precision. Most importantly, given the detection nature of our task, the higher recall
and Fl1-score of BERT, along with its training stability, made it the most suitable candidate
for final evaluation and explainability analysis.

Word-level Attributions. We evaluated the quality of the word-level attributions given by
IDG from the plausibility and faithfulness perspectives, and compared them with similar
metrics for IG and SHAP. Our analysis revealed that IDG was the highest scoring method in
terms of plausibility, thus suggesting that IDG better captures what humans consider rele-
vant for hate speech detection, something particularly important in such a socially sensitive
domain. On the other hand, IDG scored the lowest faithfulness, whereas IG and SHAP ex-
hibited superior scores. This implies that IG and SHAP explanations can more accurately
reflect the actual functional dependence of the model.

High-order Interactions. We evaluated the quality of the high-order interactions impor-
tance attributions given by IDG by using the modified plausibility metrics introduced in the
theoretical framework of this study. The corrected AUCPCpo and AOSPChp values show
that IDG’s high-order attributions can better capture the true functional dependencies of the
model. Notably, these values exceed those of IDG’s word-level faithfulness metrics and are
comparable to the word-level faithfulness scores of SHAP.

Qualitative Assessment. Case studies of specific text sequences reinforced quantitative
findings. In particular, IDG’s hierarchical attributions for a number of examples revealed
how hateful terms were integrated into the model’s classification reasoning. Word clouds
confirmed that all methods successfully highlight toxic discursive patterns associated with
hate speech, with IDG’s 2-gram analysis showing phrase-level toxicity.

39

Chapter 5

Conclusions and Future Work

In this chapter, we present the conclusions derived from this thesis, as well as the limitations
of our work and the future work lines that might stem from it.

5.1 Conclusions

In this work, we have theoretically and empirically explored IDG as an explainability method
capable of attributing importance values not only to individual input features, but also to
their high-order interactions. Moreover, we have explored different metrics for the quanti-
tative evaluation of the quality of such attributions, and proposed a corrected framework to
benchmark the faithfulness of high-order interaction importance attributions for text data.
Finally, we have investigated the applicability and effectiveness of IDG for explaining a
BERT-based hate speech detection model.

Our results suggest that, while IDG lags slightly behind IG and SHAP in terms of word-
level attribution faithfulness, it surpasses both techniques in terms of plausibility, indicating
a closer alignment with human intuition when it comes to identifying hateful content. Fur-
thermore, the ability of IDG to explain high-order interactions improved faithfulness scores,
rivaling traditional word-level interactions. This showcases the potential of high-order im-
portance attributions for capturing the complex reasoning behind text model predictions.

Qualitative analyses proved that IDG can offer interpretable and meaningful explanations,
that align with human expectations and known toxic discursive patterns. Most importantly,
IDG allows extracting insights on how the hierarchical structure of text and word combi-
nations contribute to the output of a model, giving a more exhaustive view of the model’s
decision-making process.

To sum up, IDG represents a promising method for improving explainability in NLP.

5.2 Future Work

One key limitation of our analysis is the reliance on plausibility metrics that depend on an-
notator rationales, that are assumed to be complete and accurate. Despite considering the
outputs from at least two independent annotators, human rationales may not accurately
capture all relevant tokens. Furthermore, annotations were only available at the word level,
which prevented the analysis of plausibility at higher orders. Further studies should incor-
porate data from a larger pool of annotators and, ideally, include structured annotations in
constituency parse trees.

40 Chapter 5. Conclusions and Future Work

Another methodological limitation relates to faithfulness metrics. Both comprehensiveness
and sufficiency rely on perturbations of the input text, which can result in unrealistic ex-
amples or instances that lie too far from the data manifold. This may lead to misleading
quality assessments, especially when the model tends to behave unpredictably on out-of-
distribution inputs. Future work could explore evaluation methodologies that preserve se-
mantic integrity and proximity to the data distribution by, for instance, using causal, coun-
terfactual or generative approaches.

Another relevant limitation of our study is the fact that evaluation has been performed on a
single dataset. To better understand the generalizability and robustness of the explainability
methods, a broader quantitative assessment on different datasets should be performed.

Beyond, it would be interesting to expand the qualitative assessment of IDG by perform-
ing user studies to determine whether explanations are generally agreed upon by different
audiences. Such evaluations could provide more in-depth insights into the interpretability
and usefulness of the explanations in real-world scenarios.

Future studies could also investigate the performance of detection models and explainabil-
ity methods in a multilingual context. Extending analyses to languages beyond English
would help evaluate the generalizability of the methods and explore the unique linguistic
challenges associated with different languages and cultural contexts.

Our dataset was entirely composed of text data; links and audiovisual content were re-
moved or replaced with textual placeholders. However, content in social media goes far
beyond textual data, and includes links, audio and video content. Future work could ex-
plore how to perform multimodal detection and explainability analysis, and how could IDG
integrate in such frameworks.

41

Bibliography

[1]
2]
3]
[4]
[5]

[6]

[7]
[8]
[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

Marc Aureli. Meditacions. Llibres de 1'Index, 2008.

Ian Goodfellow et al. Deep learning. MIT Press Cambridge, 2016.

Michael Tsang, Dehua Cheng, and Yan Liu. Detecting Statistical Interactions from Neural
Network Weights. 2018. arXiv: 1705.04977 [stat.ML].

Jianbo Chen and Michael Jordan. “Ls-tree: Model interpretation when the data are
linguistic”. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2020.

Theo MV Janssen and Barbara H Partee. “Compositionality”. In: Handbook of logic and
language. Elsevier, 1997.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why should i trust you?"
Explaining the predictions of any classifier”. In: Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining. 2016.

Scott M Lundberg and Su-In Lee. “A unified approach to interpreting model predic-
tions”. In: Advances in neural information processing systems (2017).

Scott M. Lundberg et al. “From local explanations to global understanding with ex-
plainable Al for trees”. In: Nature Machine Intelligence (2020).

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic attribution for deep
networks”. In: International conference on machine learning. PMLR. 2017.

W. James Murdoch, Peter J. Liu, and Bin Yu. Beyond Word Importance: Contextual De-
composition to Extract Interactions from LSTMs. 2018. arXiv: 1801.05453 [cs.CL].
Chandan Singh, W. James Murdoch, and Bin Yu. Hierarchical interpretations for neural
network predictions. 2019. arXiv: 1806.05337 [cs.LG].

Michel Grabisch and Marc Roubens. “An axiomatic approach to the concept of inter-
action among players in cooperative games”. In: International Journal of game theory
(1999).

Edith Elkind et al. “On the computational complexity of weighted voting games”. In:
Annals of Mathematics and Artificial Intelligence (2009).

Hanjie Chen, Guangtao Zheng, and Yangfeng Ji. “Generating Hierarchical Explana-
tions on Text Classification via Feature Interaction Detection”. In: Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, 2020.

Joseph D. Janizek, Pascal Sturmfels, and Su-In Lee. “Explaining explanations: Ax-
iomatic feature interactions for deep networks”. In: Journal of Machine Learning Re-
search (2021).

Sandipan Sikdar, Parantapa Bhattacharya, and Kieran Heese. “Integrated Directional
Gradients: Feature Interaction Attribution for Neural NLP Models”. In: Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers).
Association for Computational Linguistics, 2021.

Matthew .L Williams et al. “Hate in the machine: Anti-Black and Anti-Muslim social
media posts as predictors of offline racially and religiously aggravated crime”. In: The
British Journal of Criminology (2020).

https://arxiv.org/abs/1705.04977
https://arxiv.org/abs/1801.05453
https://arxiv.org/abs/1806.05337

42

Bibliography

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]
[29]
[30]
[31]

[32]

[33]
[34]

[35]

[36]

Nedjma Ousidhoum et al. “Multilingual and Multi-Aspect Hate Speech Analysis”.
In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Association for Computational Linguistics, 2019.

Jing Qian et al. “Learning to Decipher Hate Symbols”. In: Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers). Association for Computational
Linguistics, 2019.

Ona de Gibert et al. “Hate Speech Dataset from a White Supremacy Forum”. In: Pro-
ceedings of the 2nd Workshop on Abusive Language Online (ALW?2). Association for Com-
putational Linguistics, 2018.

Jing Qian et al. “Leveraging Intra-User and Inter-User Representation Learning for
Automated Hate Speech Detection”. In: Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers). Association for Computational Linguistics, 2018.
Valerio Basile et al. “Semeval-2019 task 5: Multilingual detection of hate speech against
immigrants and women in twitter”. In: Proceedings of the 13th international workshop on
semantic evaluation. 2019.

Cristina Bosco et al. “Overview of the evalita 2018 hate speech detection task”. In: Ceur
workshop proceedings. CEUR. 2018.

Aymé Arango, Jorge Pérez, and Barbara Poblete. “Hate speech detection is not as easy
as you may think: A closer look at model validation”. In: Proceedings of the 42nd inter-
national acm sigir conference on research and development in information retrieval. 2019.
Tommi Grondahl et al. “All You Need is "Love": Evading Hate Speech Detection”. In:
Proceedings of the 11th ACM Workshop on Artificial Intelligence and Security. AlSec "18.
Association for Computing Machinery, 2018.

Binny Mathew et al. “Hatexplain: A benchmark dataset for explainable hate speech
detection”. In: Proceedings of the AAAI conference on artificial intelligence. 2021.

L.S. Shapley. “17. A Value for n-Person Games”. In: Contributions to the Theory of Games,
Volume II. Princeton University Press, 1953.

Imma Curiel. Cooperative Game Theory and Applications. Cooperative Games Arising from
combinatorial Optimization Problems. Springer New York, 1997.

John C. Harsanyi. “A Simplified Bargaining Model for the n-Person Cooperative Ga-
me”. In: International Economic Review (1963).

Pierre Dehez. “On Harsanyi Dividends and Asymmetric Values”. In: International Game
Theory Review (2017).

David Baehrens et al. “How to explain individual classification decisions”. In: The
Journal of Machine Learning Research (2010).

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps. 2014. arXiv: 1312.
6034 [cs.CV].

Marco Ancona et al. “Gradient-Based Attribution Methods”. In: Explainable Al: Inter-
preting, Explaining and Visualizing Deep Learning. Springer-Verlag, 2022.

Ali Aghababaei et al. Application of integrated gradients explainability to sociopsychological
semantic markers. 2025. arXiv: 2503.04989 [cs.CL].

Jasmijn Bastings et al. ““Will You Find These Shortcuts?” A Protocol for Evaluating
the Faithfulness of Input Salience Methods for Text Classification”. In: Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 2022.

Soumya Sanyal and Xiang Ren. “Discretized Integrated Gradients for Explaining Lan-
guage Models”. In: Proceedings of the 2021 Conference on Empirical Methods in Natural

https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/2503.04989

Bibliography 43

[37]

[38]
[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]
[50]

[51]
[52]

[53]

[54]
[55]

[56]

Language Processing. Ed. by Marie-Francine Moens et al. Association for Computa-
tional Linguistics, 2021.

Joseph Enguehard. “Sequential Integrated Gradients: a simple but effective method
for explaining language models”. In: Findings of the Association for Computational Lin-
guistics: ACL 2023. Association for Computational Linguistics, 2023.

Noam Chomsky and Howard Lasnik. “The Theory of Principles and Parameters”. In:
An International Handbook of Contemporary Research. De Gruyter Mouton, 1993.

C. Pollard and I.A. Sag. Head-Driven Phrase Structure Grammar. Studies in Contempo-
rary Linguistics. University of Chicago Press, 1994.

A. Carnie. Syntax: A Generative Introduction. Introducing Linguistics. Wiley, 2013.
Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech Recognition with
Language Models. 3rd. 2025.

Peng Qi et al. “Stanza: A Python Natural Language Processing Toolkit for Many Hu-
man Languages”. In: Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations. Association for Computational Linguistics,
2020.

Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. “Building a large
annotated corpus of English: The Penn Treebank”. In: Computational linguistics (1993).
Jay DeYoung et al. “ERASER: A Benchmark to Evaluate Rationalized NLP Models”.
In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, 2020.

Alon Jacovi and Yoav Goldberg. “Towards Faithfully Interpretable NLP Systems: How
Should We Define and Evaluate Faithfulness?” In: Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics. Association for Computational Lin-
guistics, 2020.

Pepa Atanasova. “A Diagnostic Study of Explainability Techniques for Text Classifica-
tion”. In: Accountable and Explainable Methods for Complex Reasoning over Text. Springer
Nature Switzerland, 2024.

Jonathan Kamp, Lisa Beinborn, and Antske Fokkens. “Dynamic Top-k Estimation
Consolidates Disagreement between Feature Attribution Methods”. In: The 2023 Con-
ference on Empirical Methods in Natural Language Processing. 2023.

Wojciech Samek et al. “Evaluating the Visualization of What a Deep Neural Network
Has Learned”. In: IEEE Transactions on Neural Networks and Learning Systems (2017).
David Saeteros et al. The Written Self: Decoding Personality and Sex Differences Through
Explainable Al 2025.

Martin] Halvey and Mark T Keane. “An assessment of tag presentation techniques”.
In: Proceedings of the 16th international conference on World Wide Web. 2007.

Wikipedia contributors. Gab (social network). 2025.

Binny Mathew et al. “Spread of hate speech in online social media”. In: Proceedings of
the 10th ACM conference on web science. 2019.

Thomas Davidson et al. “Automated hate speech detection and the problem of of-
fensive language”. In: Proceedings of the international AAAI conference on web and social
media. 2017.

Paula Fortuna and Sérgio Nunes. “A Survey on Automatic Detection of Hate Speech
in Text”. In: ACM Comput. Surv. (2018).

Polars: Blazingly fast DataFrames in Rust, Python, Node.js, R, and SQL. https://pola.
rs/.

Jacob Devlin et al. “BERT: Pre-training of deep bidirectional transformers for language
understanding”. In: Proceedings of the 2019 conference of the North American chapter of the

https://pola.rs/
https://pola.rs/

44 Bibliography

association for computational linguistics: human language technologies, volume 1 (long and
short papers). 2019.

[57] Zhilin Yang et al. “XLNet: Generalized autoregressive pretraining for language under-
standing”. In: Advances in neural information processing systems (2019).

[58] Thomas Wolf et al. “Transformers: State-of-the-Art Natural Language Processing”. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. Association for Computational Linguistics, 2020.

[59] Adam Paszke et al. “PyTorch: an imperative style, high-performance deep learning
library”. In: Proceedings of the 33rd International Conference on Neural Information Pro-
cessing Systems. Curran Associates Inc., 2019.

[60] Narine Kokhlikyan et al. Captum: A unified and generic model interpretability library for
PyTorch. 2020. arXiv: 2009.07896 [cs.LGI.

[61] Justin Mott et al. “Supplementary guidelines for ETTB 2.0”. In: University of Pennsyl-
vania (2009).

[62] Charles Pierse. Transformers Interpret. https://github. com/cdpierse/transformers-
interpret. Version 0.5.2. 2021.

[63] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science &
Engineering (2007).

[64] Andreas C. Mueller. Wordcloud. https : //github . com/amueller /wordcloud. Ver-
sion 1.9.1. 2023.

[65] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research (2011).

[66] Conda: OS-agnostic, system-level binary package and environment manager. https://anaconda.
org/anaconda/conda.

[67] Arvind Subramaniam, Aryan Mehra, and Sayani Kundu. Exploring Hate Speech Detec-
tion with HateXplain and BERT. 2022. arXiv: 2208.04489 [cs.CL].

https://arxiv.org/abs/2009.07896
https://github.com/cdpierse/transformers-interpret
https://github.com/cdpierse/transformers-interpret
https://github.com/amueller/wordcloud
https://anaconda.org/anaconda/conda
https://anaconda.org/anaconda/conda
https://arxiv.org/abs/2208.04489

List of Figures

21

2.2

2.3

4.1

4.2

4.3

44

4.5

4.6

4.7

4.8

49

4.10
4.11

4.12

Example of the constituency tree for the sequence “The bright cheerful col-
ors clash against the dull shadows”, generated using the Stanza constituency
parser [42]. Part-of-speech (POS) and syntactic tags for the different con-
stituents are indicated above the words. Abbreviations are according to the
Penn treebank [43] (DT = determiner, JJ = adjective, NN = noun, VBZ = verb
in the 3rd person of singular present, IN = preposition, NP = noun phrase, PP
= prepositional phrase, VP = verb phrase, S = simple declarative clause).

Depth-balanced constituency tree for the sequence displayed in figure 2.1,
obtained applying algorithm 1.
Results given by IDG on a sentiment classification task. Note how the differ-
ent text constituents interact, with “bright cheerful colors” suggesting positiv-
ity while “dull shadows” introduces negative connotations, illustrating how
the model balances these interactions to reach its final decision.

Distribution of the number of tokens per sample for each dataset split and
target class. A kernel density estimation (KDE) curve is overlaid facilitate
interpretation. L Lo L
(A) Confusion matrix for BERT on the validation dataset. (B) ROC curve dis-
play for BERT on the validationset..
(A) Confusion matrix for XLNet on the validation dataset. (B) ROC curve
display for XLNet on the validationset.
(A) Confusion matrix for BERT on the test dataset. (B) ROC curve display for
BERT onthetestset.
(A) Mean agreement@k for the three evaluated methods. (B) Precision-recall
curve for the three evaluated methods.
(A) Comprehensiveness-threshold curve for the three evaluated methods. (B)
Sufficiency-threshold curve for the three evaluated methods.
(A) Support at each tree depth-level across the test dataset. (B) Mean maxi-
mum span coverage at each tree-depth level across the test dataset.
(A) Comprehensiveness-threshold curves for each level. (B) Corrected com-
prehensiveness-threshold curves along with their weighted average.
(A) Sufficiency-threshold curves for each level. (B) Corrected sufficiency-thres-
hold curves along with their weighted average..
Explainability tree for the sequence with ID 1178101883602272256_twitter. .
Wordclouds showing the globally most important tokens for the hate speech
class, according to (A) IDG, (B) IG,and (C)SHAP.
Wordcloud showing the globally most important 2-grams for the hate speech
class, according to IDG. A 2-gram is represented by its constituting tokens
separated by anunderscore. oL

45

13

14

27

32

34

37

List of Figures

B.1 Distribution of the number of characters per sample for each dataset split and
target class. A kernel density estimation (KDE) curve is overlaid facilitate
interpretation.

B.2 Distribution of the length of words per sample for each dataset split and target
class. A kernel density estimation (KDE) curve is overlaid facilitate interpre-
tation.

B.3 Distribution of the type-token ratio of the samples for each dataset split and
target class. A kernel density estimation (KDE) curve is overlaid facilitate
interpretation.

B.4 Distribution of the number of emojis per sample for each dataset split and
target class. A kernel density estimation (KDE) curve is overlaid facilitate
interpretation. L

B.5 Distribution of the number of special characters (non-alphanumeric) per sam-
ple for each dataset split and target class. A kernel density estimation (KDE)
curve is overlaid facilitate interpretation.

B.6 (A) Evolution of BERT loss during the training epochs. (B) Evolution of BERT
Fi-score during the trainingepochs.

B.7 (A) Evolution of XLNet loss during the training epochs. (B) Evolution of XL-
Net Fi-score during the trainingepochs.

B.8 Explainability tree for the sequence with ID 13730242_gab. The model cor-
rectly predicts the hate speech class, with a 94% confidence.

B.9 Explainability tree for the sequence with ID 1178934864684470273_twitter.
The model correctly predicts the hate speech class, with 85% confidence. . . .

B.10 Explainability tree for the sequence with ID 1266939334772523009_twitter.
The model correctly predicts the hate speech class, with 99% confidence. . . .

B.11 Explainability tree for the sequence with ID 13925301_gab. The model cor-
rectly predicts the hate speech class, with 98% confidence.

B.12 Explainability tree for the sequence with ID 17593622_gab. The model cor-
rectly predicts the hate speech class, with 98% confidence.

B.13 Explainability tree for the sequence with ID 22398230_gab. The model cor-
rectly predicts the hate speech class, with 99% confidence.

59

60

60

List of Tables

41

4.2

4.3

44

Al

Instance counts for each split of the dataset and target class, as well as the
ratio of normal to hate speech samples.
Instance counts for each split of the dataset and post platform, as well as the
ratio of Twitter to Gabsamples.
Performance metrics of fine-tuned BERT and XLNET on the validation split
for the hate speech class. Boldface is used to highlight the best values.

Performance metrics of fine-tuned BERT on the test split for the hate speech
class. ..

Conda packages and their versions.

47

List of Algorithms

1 Equalize DepthsofaTree.

49

Appendices

51

53

Appendix A

Computational Environment and
Hardware Specifications

This appendix provides an overview of the computational environment and hardware speci-
fications used to execute the experiments and run the code developed throughout the project.

A.1 Hardware Specifications

All the experiments were conducted on a local machine with the following hardware con-
figuration:

CPU: Intel® Core™ Ultra 9 185H x 22 @ 5.1 GHz.

RAM: 32.0 GiB.

GPU: NVIDIA® GeForce RTX™ 4060 Laptop GPU with 8.0 GB VRAM.
Storage: 1.0 TB SSD.

Operating System: Ubuntu 24.04.2 LTS.

A.2 Python Environment

The Python environment was managed using Conda [66], and includes the packages listed
in table A.1.

TABLE A.1: Conda packages and their versions.

Package Version Package Version
_libgcc_mutex 0.1 _openmp_mutex 45
absl-py 2.1.0 adwaita-icon-theme 47.0
aiohappyeyeballs 244 aiohttp 3.11.11
aiosignal 1.3.2 annotated-types 0.7.0
anyio 4.8.0 aom 39.1
argon2-cffi 23.1.0 argon2-cffi-bindings 21.2.0
arrow 1.3.0 asttokens 3.0.0
astunparse 1.6.3 async-lru 2.0.4
at-spi2-atk 2.38.0 at-spi2-core 2.40.3
atk-1.0 2.38.0 attr 2.5.1
attrs 24.3.0 aws-c-auth 0.8.0
aws-c-cal 0.8.0 aws-c-common 0.9.31
aws-c-compression 0.3.0 aws-c-event-stream 0.5.0
aws-c-http 0.9.0 aws-c-io 0.15.0
aws-c-mqtt 0.11.0 aws-c-s3 0.7.0
aws-c-sdkutils 0.2.0 aws-checksums 0.2.0
aws-crt-cpp 0.29.0 aws-sdk-cpp 1.11.407

Continued on next page

54

Appendix A. Computational Environment and Hardware Specifications

Table A.1 - continued from previous page

Package Version Package Version
azure-core-cpp 1.14.0 azure-identity-cpp 1.10.0
azure-storage-blobs-cpp 12.13.0 azure-storage-common-cpp 12.8.0
azure-storage-files-datalake-cpp 12.12.0 babel 2.16.0
backcall 0.2.0 beautifulsoup4 4.12.3
bleach 6.2.0 bleach-with-css 6.2.0
blosc 1.21.6 bokeh 3.6.2
branca 0.8.1 brotli 1.1.0
brotli-bin 1.1.0 brotli-python 1.1.0
brunsli 0.1 bzip2 1.0.8
c-ares 1.34.4 c-blosc2 2.15.2
ca-certificates 2025.4.26 cached-property 1.5.2
cached_property 1.5.2 cachetools 5.5.0
cairo 1.18.2 captum 0.7.0
catalogue 2.0.10 certifi 2025.4.26
cffi 1171 charls 242
charset-normalizer 34.1 click 8.1.8
cloudpathlib 0.21.0 cloudpickle 3.1.0
colorama 0.4.6 colorcet 3.1.0
colour 0.1.5 comm 0.2.2
confection 0.1.5 contourpy 1.3.1
cpython 3.12.8 cucim 24.12.00
cuda-cccl_linux-64 12.8.55 cuda-crt-dev_linux-64 12.8.61
cuda-crt-tools 12.8.61 cuda-cudart 12.8.57
cuda-cudart-dev 12.8.57 cuda-cudart-dev_linux-64 12.8.57
cuda-cudart-static 12.8.57 cuda-cudart-static_linux-64 12.8.57
cuda-cudart_linux-64 12.8.57 cuda-cupti 12.8.57
cuda-nvcc-dev_linux-64 12.8.61 cuda-nvcc-impl 12.8.61
cuda-nvcc-tools 12.8.61 cuda-nvrtc 12.8.61
cuda-nvtx 12.8.55 cuda-nvvm-dev_linux-64 12.8.61
cuda-nvvm-impl 12.8.61 cuda-nvvm-tools 12.8.61
cuda-profiler-api 12.8.55 cuda-python 12.6.0
cuda-version 12.8 cudf 24.12.00
cudf-polars 24.12.00 cudf_kafka 24.12.00
cudnn 9.3.0.75 cugraph 24.12.00
cuml 24.12.00 cuproj 24.12.00
cupy 13.3.0 cupy-core 13.3.0
cuspatial 24.12.00 custreamz 24.12.00
cuvs 24.12.00 cuxfilter 24.12.00
cycler 0.12.1 cymem 2.0.11
cyrus-sasl 2.1.27 cython-blis 1.0.1
cytoolz 1.0.1 daald4py 2024.6.0
dal 2024.6.0 dask 2024.11.2
dask-core 2024.11.2 dask-cuda 24.12.00
dask-cudf 24.12.00 dask-expr 1.1.19
datasets 2.14.4 datashader 0.16.3
david 1.2.1 dbus 1.13.6
debugpy 1.8.11 decorator 5.1.1
defusedxml 0.7.1 dill 0.3.7
distributed 2024.11.2 distributed-ucxx 0.41.00
distro 1.9.0 dlpack 0.8
emoji 2.14.1 en-core-web-sm 3.8.0
entrypoints 0.4 epoxy 1.5.10
exceptiongroup 1.2.2 executing 2.1.0
expat 2.6.4 fastrlock 0.8.3
filelock 3.16.1 flatbuffers 24.3.25
fmt 11.0.2 folium 0.19.4
font-ttf-dejavu-sans-mono 2.37 font-ttf-inconsolata 3.000
font-ttf-source-code-pro 2.038 font-ttf-ubuntu 0.83
fontconfig 2.15.0 fonts-conda-ecosystem 1
fonts-conda-forge 1 fonttools 4.55.3
fqdn 151 freetype 2.12.1
freexl 2.0.0 fribidi 1.0.10
frozenlist 1.5.0 fsspec 2024.12.0
gast 0.6.0 gdk-pixbuf 2.42.12
geopandas 1.0.1 geopandas-base 1.0.1
geos 3.13.0 geotiff 1.7.3
gflags 222 giflib 522
glib-tools 2.82.2 glog 0.7.1
gmp 6.3.0 gmpy2 2.15

Continued on next page

A.2. Python Environment

55

Table A.1 - continued from previous page

Package Version Package Version
google-pasta 0.2.0 graphite2 1.3.13
graphviz 12.2.1 grpcio 1.65.5
gtk3 3.24.43 gts 0.7.6
hi1 0.14.0 h2 4.1.0
h5py 3.12.1 harfbuzz 10.4.0
hdf5 1.14.4 hicolor-icon-theme 0.17
holoviews 1.20.0 hpack 4.0.0
httpcore 1.0.7 httpx 0.28.1
huggingface_hub 0.27.1 hyperframe 6.0.1
icu 75.1 idna 3.10
imagecodecs 2024.9.22 imageio 2.36.1
importlib-metadata 8.5.0 importlib_resources 6.5.2
ipykernel 6.29.5 ipython 7.34.0
ipywidgets 8.1.5 isoduration 20.11.0
jedi 0.19.2 jinja2 3.1.5
jiter 0.8.2 joblib 14.2
json-c 0.18 jsonb 0.10.0
jsonpointer 3.0.0 jsonschema 4.23.0
jsonschema-specifications 2024.10.1 jsonschema-with-format-nongpl 4.23.0
jupyter 1.11 jupyter-1sp 225
jupyter-server-proxy 440 jupyter_client 8.6.3
jupyter_console 6.6.3 jupyter_core 572
jupyter_events 0.11.0 jupyter_server 2.15.0
jupyter_server_terminals 0.5.3 jupyterlab 434
jupyterlab_pygments 0.3.0 jupyterlab_server 2.27.3
jupyterlab_widgets 3.0.13 jxrlib 1.1
keras 3.8.0 keyutils 1.6.1
kiwisolver 148 krbb 1.21.3
langcodes 34.1 language-data 1.3.0
lazy-loader 0.4 lazy_loader 0.4
lcms2 2.16 1d_impl_linux-64 2.43
lerc 4.0.0 libabseil 20240722.0
libaec 1.1.3 libarchive 3.7.7
libarrow 17.0.0 libarrow-acero 17.0.0
libarrow-dataset 17.0.0 libarrow-substrait 17.0.0
libavif16 1.11 libblas 3.9.0
libbrotlicommon 1.1.0 libbrotlidec 1.1.0
libbrotlienc 1.1.0 libcap 2.71
libcblas 3.9.0 libcre32c 1.1.2
libcublas 12.8.3.14 libcublas-dev 12.8.3.14
libcucim 24.12.00 libcudf 24.12.00
libcudf_kafka 24.12.00 libcufft 11.3.3.41
libcufile 1.13.0.11 libcufile-dev 1.13.0.11
libcugraph 24.12.00 libcugraph_etl 24.12.00
libcugraphops 24.12.00 libcuml 24.12.00
libcumlprims 24.12.00 libcups 23.3
libcurand 10.3.9.55 libcurand-dev 10.3.9.55
libcurl 8.11.1 libcusolver 11.7.2.55
libcusolver-dev 11.7.2.55 libcusparse 12.5.7.53
libcusparse-dev 12.5.7.53 libcuspatial 24.12.00
libcuvs 24.12.00 1libde265 1.0.15
libdeflate 1.22 libedit 3.1.20240808
libev 4.33 libevent 2.1.12
libexpat 2.6.4 libfabric 1.22.0
libfabricl 1.22.0 libffi 342
libgcc 14.2.0 libgcc-ng 14.2.0
libgcrypt-1ib 1.11.0 1libgd 233
libgdal-core 3.10.0 libgfortran 14.2.0
libgfortranb 14.2.0 libglib 2.82.2
libgoogle-cloud 2.30.0 libgoogle-cloud-storage 2.30.0
libgpg-error 1.51 libgrpc 1.65.5
libheif 1.18.2 libhwloc 2.11.2
libhwy 1.1.0 libiconv 1.17
libjpeg-turbo 3.0.0 libjxl 0.11.1
1libkml 1.3.0 libkvikio 24.12.01
liblapack 3.9.0 libllvmi4 14.0.6
liblzma 5.6.3 liblzma-devel 5.6.3
libmagma 2.8.0 libmagma_sparse 2.8.0
libnghttp2 1.64.0 libnl 3.11.0

Continued on next page

56

Appendix A. Computational Environment and Hardware Specifications

Table A.1 - continued from previous page

Package Version Package Version
libnsl 2.0.1 libntlm 1.8
libnvjitlink 12.8.61 libnvjpeg 12.3.5.57
libopenblas 0.3.28 libparquet 17.0.0
libpng 1.6.45 libprotobuf 5.27.5
libraft 24.12.00 libraft-headers 24.12.00
libraft-headers-only 24.12.00 librdkafka 253
libre2-11 2024.07.02 librmm 24.12.01
librsvg 2.58.4 librttopo 1.1.0
libsentencepiece 0.2.0 libsodium 1.0.20
libspatialite 5.1.0 libsqlite 3.47.2
libssh2 1.11.1 libstdcxx 14.2.0
libstdcxx-ng 14.2.0 libsystemdO 256.9
libthrift 0.21.0 1libtiff 4.7.0
libtorch 24.1 libucxx 0.41.00
libudevl 257.2 libutf8proc 2.8.0
libuuid 2.38.1 libuv 1.49.2
libwebp-base 1.5.0 libxcb 1.17.0
libxcrypt 4.4.36 libxgboost 2.1.2
libxkbcommon 1.8.0 libxml2 2135
1libzlib 1.3.1 libzopfli 1.0.3
lime 0.2.0.1 linkify-it-py 2.0.3
11lvm-openmp 19.1.6 llvmlite 0.43.0
locket 1.0.0 1z4 433
1lz4-c 194 lzo 2.10
mapclassify 2.8.1 marisa-trie 121
markdown 3.6 markdown-it-py 3.0.0
markupsafe 3.02 matplotlib-base 3.10.0
matplotlib-inline 0.1.7 mdit-py-plugins 0.4.2
mdurl 0.1.2 minizip 4.0.7
mistune 3.1.0 mkl 2023.2.0
ml_dtypes 04.0 mpc 1.3.1
mpfr 421 mpi 1.0.1
mpich 423 mpmath 1.3.0
msgpack-python 1.1.0 multidict 6.1.0
multipledispatch 0.6.0 multiprocess 0.70.15
munkres 114 murmurhash 1.0.10
namex 0.0.8 nbclient 0.10.2
nbconvert-core 7.16.5 nbformat 5.10.4
nccl 2.24.3.1 ncurses 6.5
nest-asyncio 1.6.0 networkx 342
nltk 39.1 nodejs 22.12.0
notebook 7.3.2 notebook-shim 0.2.4
nspr 4.36 nss 3.107
numba 0.60.0 numba-cuda 0.0.17.1
numpy 1.26.4 nvcomp 4.1.0.6
nvtx 0.2.10 nx-cugraph 24.12.00
openai 1.61.0 openjpeg 253
openssl 3.5.0 opt_einsum 34.0
optree 0.13.1 orc 2.0.2
overrides 7.7.0 packaging 242
pandas 223 pandocfilters 1.5.0
panel 1.5.5 pango 1.56.1
param 2.2.0 parso 0.8.4
partd 142 patsy 1.0.1
pcre2 10.44 pdf2image 1.17.0
pexpect 49.0 pickleshare 0.7.5
pillow 11.1.0 pip 24.3.1
pixman 0.44.2 pkgutil-resolve-name 1.3.10
platformdirs 43.6 polars 1.14.0
poppler 24.12.0 poppler-data 0.4.12
preshed 3.09 proj 9.5.1
prometheus_client 0.21.1 prompt-toolkit 3.0.48
prompt_toolkit 3.0.48 propcache 0.2.1
protobuf 527.5 psutil 6.1.1
pthread-stubs 0.4 ptyprocess 0.7.0
pure_eval 023 py-xgboost 212
pyarrow 17.0.0 pyarrow-core 17.0.0
pycparser 222 pyct 0.5.0
pydantic 2.10.6 pydantic-core 2272

Continued on next page

A.2. Python Environment

57

Table A.1 - continued from previous page

Package Version Package Version
pydot 3.04 pygments 2.19.1
pygraphviz 1.14 pylibcudf 24.12.00
pylibcugraph 24.12.00 pylibraft 24.12.00
pynvjitlink 0.5.0 pynvml 11.4.1
pyogrio 0.10.0 pyparsing 3.2.1
pyproj 3.7.0 pysocks 1.7.1
python 3.12.8 python-confluent-kafka 253
python-dateutil 2.9.0.post0 python-fastjsonschema 2.21.1
python-flatbuffers 24.12.23 python-graphviz 0.20.3
python-json-logger 2.0.7 python-tzdata 2024.2
python-xxhash 3.5.0 python_abi 3.12
pytorch 241 pytz 2024.1
pyviz_comms 3.04 pywavelets 1.8.0
pyyaml 6.0.2 pyzmq 26.2.0
ghull 2020.2 raft-dask 24.12.00
rapids 24.12.00 rapids-dask-dependency 24.12.00
rapids-xgboost 24.12.00 ravie 0.6.6
rdma-core 55.0 re2 2024.07.02
readline 8.2 referencing 0.35.1
regex 2024.11.6 requests 2.32.3
rfc3339-validator 0.1.4 rfc3986-validator 0.1.1
rich 1394 rmm 24.12.01
rpds-py 0.22.3 s2n 1.5.6
safetensors 0.5.2 scikit-image 0.24.0
scikit-learn 1.6.1 scikit-learn-intelex 2024.6.0
scipy 1.15.1 seaborn 0.13.2
seaborn-base 0.13.2 send2trash 1.8.3
sentencepiece 0.1.99 sentencepiece-python 0.2.0
sentencepiece-spm 0.2.0 setuptools 75.8.0
shap 0.46.0 shapely 2.0.6
shapiq 122 shellingham 154
simpervisor 1.0.0 six 1.17.0
sleef 3.7 slicer 0.0.8
smart-open 7.1.0 smart_open 7.1.0
snappy 121 sniffio 1.3.1
sortedcontainers 24.0 soupsieve 2.5
spacy 3.8.2 spacy-legacy 3.0.12
spacy-loggers 1.0.5 spdlog 1.14.1
sqlite 3.47.2 srsly 251
stack_data 0.6.3 stanza 1.10.1
statsmodels 0.14.4 streamz 0.6.4
svt-avl 2.3.0 sympy 1.13.3
tbb 2021.13.0 tblib 3.0.0
tensorboard 2.17.1 tensorboard-data-server 0.7.0
tensorflow 2.17.0 tensorflow-base 2.17.0
tensorflow-estimator 2.17.0 termcolor 2.5.0
terminado 0.18.1 tf-keras 2.17.0
thinc 8.3.2 threadpoolctl 3.5.0
tifffile 2024.12.12 tinycss2 1.4.0

tk 8.6.13 tokenizers 0.21.0
tomli 221 toolz 1.0.0
tornado 6.4.2 tqdm 4.67.1
traitlets 5.14.3 transformers 4.48.0
transformers-interpret 0.10.0 treelite 43.0
typer 0.15.2 typer-slim 0.15.2
typer-slim-standard 0.15.2 types-python-dateutil 2.9.0.20241206
typing-extensions 4122 typing_extensions 4122
typing_utils 0.1.0 tzdata 2024b
uc-micro-py 1.0.3 ucx 1.17.0
ucx-proc 1.0.0 ucx-py 0.41.00
ucxx 0.41.00 ujson 5.10.0
unicodedata2 16.0.0 uri-template 1.3.0
uriparser 0.9.8 urllib3 2.3.0
wasabi 1.1.3 wayland 1.23.1
wcwidth 0.2.13 weasel 0.4.1
webcolors 24111 webencodings 0.5.1
websocket-client 1.8.0 werkzeug 3.13
wheel 0.45.1 widgetsnbextension 4.0.13
wordcloud 194 wrapt 1.17.2

Continued on next page

Appendix A. Computational Environment and Hardware Specifications

Table A.1 - continued from previous page

Package Version Package Version
X265 35 xarray 2025.1.1
xerces-c 3.25 xgboost 2.1.2
xkeyboard-config 2.43 xorg-libice 1.1.2
xorg-libsm 1.25 xorg-libx11 1.8.11
xorg-libxau 1.0.12 xorg-libxcomposite 0.4.6
xorg-libxcursor 1.2.3 xorg-libxdamage 1.1.6
xorg-libxdmcp 1.1.5 xorg-libxext 1.3.6
xorg-libxfixes 6.0.1 xorg-libxi 1.8.2
xorg-libxinerama 1.15 xorg-libxrandr 154
xorg-libxrender 0.9.12 xorg-libxtst 1.2.5
xxhash 0.8.2 Xyzservices 2024.9.0
XZ 5.6.3 xz-gpl-tools 5.6.3
xz-tools 5.6.3 yaml 0.2.5
yarl 1.18.3 zeromq 43.5
zfp 1.0.1 zict 3.0.0
zipp 3.21.0 zlib 1.3.1
zlib-ng 223 zstandard 0.23.0
zstd 1.5.6

59

Appendix B

Supplementary Figures

In this appendix, additional figures that support the analyses and results presented in the
main text are provided. These include extended visualizations, distribution plots, and other
relevant graphical information referenced throughout the thesis.

B.1 Dataset Descriptive Statistics

The figures of this section are meant to extend and complement the description of the dataset
done in §4.1.1.2.

Figure B.1 shows the distribution of the number of characters per sample across splits and
target classes. Figure B.2 presents the distribution of word lengths. Figure B.3 shows the
distribution of the type-token ratio (TTR), defined as the total number of unique words
divided by the total number of words for each sample. Figure B.4 presents the distribution
of the number of emojis per sample. Finally, figure B.5 shows the distribution of the number
of special characters (non-alphanumeric).

Train Validation Test
——— Normal ——— Normal ——— Normal
0.007 Hate Speech Hate Speech Hate Speech
0.006 . .
z _ﬁ;‘\ j\

= 0.005 EIAN m
‘B
2 0004
A i

0.003 . | .

0.0021 |/ N Hw 10

/ 1
Q
0.000 . |
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Number of Characters per Sample Number of Characters per Sample Number of Characters per Sample

FIGURE B.1: Distribution of the number of characters per sample for each dataset split
and target class. A kernel density estimation (KDE) curve is overlaid facilitate interpre-
tation.

Appendix B. Supplementary Figures

Train Validation Test
—— Normal M —— Normal —— Normal
0.20 —— Hate Speech] —— Hate Speech —— Hate Speech
0.15 \
g \
k7]
g
A o010
0.05
0.00
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Word Length Word Length Word Length

Density

Density

FIGURE B.2: Distribution of the length of words per sample for each dataset split and
target class. A kernel density estimation (KDE) curve is overlaid facilitate interpretation.

Train Validation Test
10 —— Normal —— Normal . —— Normal
—— Hate Speech —— Hate Speech L —— Hate Speech

8

6

4

2 \ 1 I
%0 02 04 0.6 0.8 10 00 02 0.4 0.6 038 10 00 02 04 06 08 1.0

Type-token Ratio Type-token Ratio Type-token Ratio
FIGURE B.3: Distribution of the type-token ratio of the samples for each dataset split and
target class. A kernel density estimation (KDE) curve is overlaid facilitate interpretation.
Train Validation Test
1.0 —— Normal —— Normal —— Normal
—— Hate Speech N — Hate Speech —— Hate Speech

038

0.6

0.4

02

00 -

30 0 5 0 15 2 25 300 5 0 15 20 25

5 10 15 20 25

Number of Emojis per Sample

Number of Emojis per Sample

Number of Emojis per Sample

FIGURE B.4: Distribution of the number of emojis per sample for each dataset split and
target class. A kernel density estimation (KDE) curve is overlaid facilitate interpretation.

30

B.2. Model Training Curves 61

Train Validation Test
0.4 —— Normal —— Normal —— Normal
Hate Speech Hate Speech Hate Speech

0.3
2
‘B
g 02
[a}

0.1

«_J] ‘ }
0.0 = :
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Number of Emojis per Sample Number of Emojis per Sample Number of Emojis per Sample

FIGURE B.5: Distribution of the number of special characters (non-alphanumeric) per
sample for each dataset split and target class. A kernel density estimation (KDE) curve
is overlaid facilitate interpretation.

B.2 Model Training Curves
In this section, the training curves for the BERT and XLNet models are reported. For each

model, the evolution of the loss function and the F;-score on the validation dataset are rep-
resented. Figure B.6 shows the data for BERT, and figure B.7 does it for XLNet.

BERT Loss BERT F;-score
0.6 : 1.00 T
05 0.951
0.41 \ 0.901]
i —e— Train g i
(9} I @] i
& 031 ! Validation 2 0.851 i
= : ---- Early Stopping LTI: i
0.2 0.801
i i —e— Train
0.1 | 0.75 1 i Validation
i i ---- Early Stopping
00— ! " ; u 0.70 = ! " ; u
1 2 3 4 5 1 2 3 4 5
Epoch Epoch
(a) (B)

FIGURE B.6: (A) Evolution of BERT loss during the training epochs. (B) Evolution of
BERT F;-score during the training epochs.

62 Appendix B. Supplementary Figures
XLNet Loss XLNet F;-score
0.6 : 1.00 T
051 0.951
0.41 \ 0.90-
i —eo— Train g :
0 1 e}
8 031 Validation 2 0851 i
= i ---- Early Stopping UI:‘ i
0.21 0.80-
i i —e— Train
0.14 i 0.751 ! Validation
i i ---- Early Stopping
0.0 ! : : . 0.70 1= % - - -
1 2 3 4 5 1 2 3 4 5
Epoch Epoch
(A) (B)
FIGURE B.7: (A) Evolution of XLNet loss during the training epochs. (B) Evolution of
XLNet Fq-score during the training epochs.
B.3 Hierarchical Explainability Trees

In this section, additional hierarchical explainability trees generated by IDG are shown, to

complement the results of the qualitative analysis presented in §4.2.2.2.

Level 5-

Level 4-

Level 2

Level 1-

hatespeech

+1.000
nothing is more cringy than a nigger in a flashy suit

+0.953
is more cringy than a nigger in a flashy suit
+0.046 0. 044 +0.654
nothmg more cringy than a nigger

-0.255
ina flashy suit

+0.1 046 +0.; 214

-0.. 255 ‘

nothing more crlngy in a flashy suit
+0.046 -0.044 +0.. 214 -0.042 +0.; 395 -0. 048 -0.207
- nothing is more cringy than a nigger in a flashy suit . 0.4
+0.046 -0.044 +0.046 +0.168 -0.042 0.064 +0.329 -0.048 | +0.03¢ -0.110 +0.061
nothing is more cringy than a nigger in a flashy suit . 065

normal

FIGURE B.8: Explainability tree for the sequence with ID 13730242_gab. The model
correctly predicts the hate speech class, with a 94% confidence.

Dividend Direction x Attribution Score

B.3. Hierarchical Explainability Trees

63

hatespeech

+0.60

+1.000
Level 5= <user> oh my the niggers gonna be pissed "

T

I

my the niggers

+0.839

my the niggers gonna be pissed

+0.600

+0.600
my the niggers

Lovel 4 +0.071 +0.088
evela= <user> 1 oh
Level 3 +0.071 +0.088
evels- <user> 1 oh
Level > +0.071 +0.088
evel e <user> 1 oh
Level1 +0.071 +0.088 || +0.067 || +0.067
evel - <user> 1 oh [| my [| the

I

+0.238
gonna be pissed

I

T

-0.070 +0.168
gonna be pissed

-0.070 +0.055 +0.112
gonna be pissed

+0.35

+0.10

=015

Dividend Direction x Attribution Score

-0.40

—0.65

normal

FIGURE B.9: Explainability tree for the sequence with ID 1178934864684470273_-
twitter. The model correctly predicts the hate speech class, with 85% confidence.

T

T

Cevel 3 -0.182 +0.07

evel=- <user> tonight 1

Cevel -0.182 40.07

evels- <user> tonight 1

Cevel 1 -0.080 -0.101 10.077| +0.158
evelil <user> tonight i [| ate

+0.738
ate kike <time>

+0.576
kike <time>

+0.112
<time>

hatespeech

Cevel s +1.000
evera- <user> tonight i ate kike <time> -

+0.60

- +0.35

- +0.10

- —0.15

-0.40

—0.65

normal

FIGURE B.10: Explainability tree for the sequence with ID 1266939334772523009_-
twitter. The model correctly predicts the hate speech class, with 99% confidence.

idend Direction x Attribution Score

i

D

64 Appendix B. Supplementary Figures

hatespeech

L 13 +1.000
evel s - true lotta coons in antifa -

T

+0.60

F +0.35

Level 2 +0.726 0.273 o1
evel - true lotta coons in antifa -

T 1 T I —0.15
evel 1 +0.099 +0.271 +0.354 -0.082 +0.191
SVELLT true | lotta 1 coons |[| in |[] antifa - -0.40

Dividend Direction x Attribution Score

—0.65

normal

FIGURE B.11: Explainability tree for the sequence with ID 13925301_gab. The model
correctly predicts the hate speech class, with 98% confidence.

hatespeech

+0.60

+1.000

o

o

193

Level 3. p
eve billionaire cool still a fucking nigger | 035 5
| j

F +0.10 E

evel 5 +0.104 +0.208 +0.686 s
EVel 21 billionaire] cool still a fucking nigger <
I I I I " g

g

£

Cevel 1 +0.104 +0.122 +0.085 +0.148 <
Ve billionaire 1 cool still fucking 040 g
2

=

—0.65

normal

FIGURE B.12: Explainability tree for the sequence with ID 17693622_gab. The model
correctly predicts the hate speech class, with 98% confidence.

B.3. Hierarchical Explainability Trees

65

Level +1.000
evel - on point it all kike mercinary work -

T

Level 3 -0.122

evel o= on point

Lovel > -0.122

evele- on point

Lever 1| 0081 -0.061 -0.067 || +0.109
Vel L™l on point it all

+0.876
it all kike mercinary work

+0.807
all kike mercinary work

T

+0.221
mercinary

+0.068
work

hatespeech

+0.60

- +0.35

- +0.10

F —0.15

Dividend Direction x Attribution Score

|
o
IS
S

-0.65

normal

FIGURE B.13: Explainability tree for the sequence with ID 22398230_gab. The model
correctly predicts the hate speech class, with 99% confidence.

67

Appendix C

Code Availability

The code developed and used throughout this thesis is publicly available in the following
GitHub repository: github.com/srmarcballestero/IDG_HateXplain.

https://github.com/srmarcballestero/IDG_HateXplain

	Abstract
	Acknowledgements
	Contents
	Introduction
	Integrated Directional Gradients
	The Feature Group Attribution Problem
	Problem Formulation
	Axiomatic Requirements
	The IDG Solution

	IDG Applied to Text Classification
	Choosing a Baseline b
	The Family of Meaningful Feature Subsets M
	Output Data: Visualization and Interpretation

	Validation Metrics
	Word-level Attributions
	Agreement with Human Rationales: Plausibility
	Agreement@k
	Area under the Precision-Recall Curve

	Agreement with Model Behavior: Faithfulness
	Comprehensiveness
	Sufficiency

	High-order Interactions
	Global Qualitative Insights

	IDG Applied to Hate Speech Detection
	Materials and Methods
	Dataset
	Dataset Overview
	Data Selection and Preprocessing

	Model Selection
	Explainability
	Generation of Explanations
	Quantitative Evaluation
	Qualitative Evaluation

	Results
	Model Performance
	Explainability
	Quantitative Evaluation
	Qualitative Evaluation

	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	Appendices
	Computational Environment and Hardware Specifications
	Hardware Specifications
	Python Environment

	Supplementary Figures
	Dataset Descriptive Statistics
	Model Training Curves
	Hierarchical Explainability Trees

	Code Availability

