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Abstract: The Laughlin fractional quantum Hall effect (FQHE) is one of the paradigmatic
strongly-correlated systems that has captivated physicists for decades. Arguably, its most defining
property is the emergence of collective excitations with fractional charge and statistics. In this
project, we report the observation of these signatures in one of the most well-studied lattice analogs
to the FQH: the Hofstadter model. Moreover, we discuss whether variational neural networks can

be valid ansétze of the FQH ground state.
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I. INTRODUCTION

Until the 1980s the physical description of phase
transitions had successfully been explained by Landau’s
symmetry-breaking theory. It postulates that a phase
is essentially an equivalence relation between states that
share the same symmetry, and that any phase transition
involves a spontaneous breaking of that symmetry (SSB).
For instance, the para-ferro magnetic transition in spin
systems involves the SSB of the rotational symmetry.

However, the discovery of the FQH effect showed the
limitations of Landau’s symmetry-breaking theory. Dur-
ing the 1990s multiple Hall states were being reported
with different characteristic "fractions"; while sharing all
the same symmetries [I, 2]. Thus, the FQHE became the
first topologically ordered phase of matter to be discov-
ered, a new class of materials outside Landau’s paradigm,
which are characterized by the emergence of collective ex-
citations with fractional charge and statistics (anyons):

p/meQ (1)

The FQH effect describes the behavior of particles (ini-
tially fermions, but the description was later generalized
for bosons too) under the effect of a magnetic flux ® and
with arbitrary 2-body repulsive potentials:

[W(ry,ra)) = €W (ry,11))
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One of the most significant parameters in the description
of the quantum Hall states is the filling fraction, which
describes the proportion between the number of particles
(N) and the number of flux quanta (ny)": v = N/ng. For
example, when the interactions are neglected, each par-
ticle under the magnetic field describes a quantized cy-
clotron orbit, which gives a filling fraction of v = 1. This
system is called the integer quantum Hall effect (IQHE).

[t] ng = ®/Po, where g = 2wh/e is the magnetic flux quantum
and @, the total flux through the system.

Although this Hamiltonian has not yet been exactly
solved (neither exactly nor perturbatively) for general
non-negligible interactions; Laughlin proposed an ansatz
that captures the properties of the FQHE [3]:

U, (21, ., 2n) = H(Z’ — zj)Me” [z /4l (3)

1<J

The Laughlin wavefunction describes matter with frac-
tional filling v = % and constant density p = vny/A. It
also describes the ground state of a gapped energy spec-
trum, which makes it resistant to small perturbations.
Finally, the Laughlin wavefunction predicts the signature
property of the FQHE; i.e. the system can reach its low-
energy excited states by introducing localized quasiholes
with charge ¢ = ¢/m and anyonic phase ¢ = 7/m.

The goal of this thesis is to observe these anyonic ex-
citations in a lattice analog of the FQHE: the Hofstadter
model. Before presenting this model, we are going to
introduce the composite fermion theory, which explains
the physical origin of the fractionalization.

II. COMPOSITE FERMION THEORY

In condensed matter physics, especially in highly corre-
lated systems, it is usually the case that the right degrees
of freedom to describe the system are not the same as the
original ones. In fact, strongly interacting particles may
reorganize themselves so that weakly coupled, composite
quasiparticles may emerge. One of the most well-known
examples are the Cooper pairs, a composite quasiparticle
that emerges in superconductors. These ideas are what
motivated the description of fermionic FQH states using
composite particles [4} [5].

We start by analyzing the Laughlin wavefunction
which can be divided into two parts:

1<j

where z; = x; — iy; denotes the position of the jth par-
ticle as a complex number. The first term in this de-
composition is a Slater determinant, which corresponds
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Figure 1: Hopping terms in a Hofstadter lattice in the
Landau gauge (A = Bze,), where § = 21®/®,.

to the wavefunction for non-interacting particles, i.e., the
lowest Landau level in the IQHE (¢(2) = ¥,;,=1(2)). The
second term is equivalent to adding m — 1 vortices in the
same positions as the particles. In this context, we are
going to understand a vortex (z — 1) centered in 7 as a
structure that introduces a phase factor of w,orter = 27
to the wavefunction when a particle moves around it.

Now, let us illustrate what is the effect of binding these
m — 1 vortices to the particles. The probability that two
particles come within distance r from each other rapidly
drops like 2™, much faster than in the non-interacting
Slater determinants, which decrease like 2. We can see
that these vortices are very effective at keeping particles
apart from each other and screen much of the Coulomb
repulsion.

Thus, the composite fermion theory proposes that par-
ticles minimize their repulsion by forming bound states
with m — 1 vortex-like excitations. Although this theory
was initially developed for fermionic systems, the argu-
ments presented also can be applied for bosonic FQH
states. In this case, however, composite bosons are
formed. This theory explains two of the main features
of the FQHE:

1. Charge of quasihole-like excitations: A quasihole
can be produced by introducing a vortex [ [,(z; —7)
in FQH matter. The Ahanorov-Bohm phase! that
the vortex will pick after encircling an area that
contains a flux &4 and Ny = v® 4 /P, particles is:

o qPa _
a0 =208 = N g

2. Anyonic statistics of the quasiholes: Now let’s re-
peat the same scheme but introducing a second
quasihole (of charge e/m) in the area that is en-
circled by the first quasihole. This new quasi-
hole depletes some of the particles in the area:
Ny = v®,4/Pg — 1/m. The extra contribution to
the Aharonov-Bohm phase that this change pro-
duces, can be associated to the braiding phase of
the quasiholes (7o = 2¢):

2T

Tbr = E (6)

When a quantum particle describes a closed loop, it will pick a
q p P p
phase y4p proportional to the encircled magnetic flux ®.
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III. HOFSTADTER MODEL

The Hofstadter model [6] describes bosonic particles
hopping in a two-dimensional lattice and subjected to an
external magnetic field. The Hamiltonian reads:

; U
H=—t Z e0ii aZaj + h.c +§ Zni(m—l)—i—z Vi(r)n;
(i.3) i i

(7)
where a;r (a;) is the creation (annihilation) operator for
a boson at site 7 and n; is the corresponding number
operator. In this expression, three different terms can be
identified:

e A term describing the hopping of bosons between
nearest-neighbour sites with strength ¢ and with a
dynamical phase factor e’ that mimics the effect

of magnetic field on the particles (Fig. 1J).

e A term describing on-site interactions with strength
U. In this project, we will mostly consider the hard-
core boson limit (U — o0), as it simplifies the cal-
culations. This particular case forbids states with
n; > 1 occupation numbers, which dramatically de-
creases the Hilbert’s space dimension.

e A term describing possible external energy offsets
Vi(r), which we will use to either encode trapping
harmonic potentials or localized impurities to pin
the quasiholes.

The band structure of the Hofstadter model shares
many similarities to that of the FQHE, which is our main
motivation for studying this system. It belongs to a class
of systems with topological bands, which means that the
bands have associated a non-zero Chern number. The
Chern numbers are topological integer invariants that

characterize the "winding" of the electronic bands |ul((n)>
A Chern number C = 1 means that the particles gain an
extra phase of 2w (winding) when encircling the whole
Brillouin Zone (BZ):

1 0 (n) 0

cm = — ul! %u{j)m?kez (8)
J

= o by 261]%<

As part of this thesis, we have also computed the band
structure of the Hofstadter model , which shows
that it also has a topological non-trivial nature.

The fact that the Chern number is a topological invari-
ant means that it cannot change under smooth adiabatic
transformations. A band cannot modify its winding un-
less a discontinuous (non-smooth) transformation occurs,
such as when a band gap closes. This is why it is only pos-
sible to draw equivalence relations between systems with
the same Chern number. A nice analogy can be made
using the Mdbius strip: its winding cannot be changed,
no matter how we deform it, unless we make destructive
changes, such as cutting the strip and rejoining the ends.

Motivated by this idea, Scaffidi and Moller 7], showed
that the states in the bottom-left tail of the Hofstadter
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Figure 2: Band structure of the Hofstadter model (in
units of t) as a function of the magnetic flux through a
unit cell ®..;;. The colors represent the Chern numbers

associated with each gap.

butterfly can be adiabatically deformed to the lowest
Landau level of the FQH effect (both with C = 1) . This
evidence further proves the equivalence between these
two systems, which motivates us to look for fractional
states in the Hofstadter model.

IV. NUMERICAL METHODS

In order to calculate the main physical observables (i.e.
braiding phase, density depletions) we will use the follow-
ing methods:

e Exact diagonalization of the hamiltonian.

e Variational neural quantum states, particularly Re-
stricted Boltzmann Machines (RBM)

The usage of neural quantum states (NQS) is closely
linked with the variational principle of quantum mechan-
ics. The idea is that the expected value of the hamilto-
nian, calculated with a variational wavefunction depen-
dent on a series of parameters, will always be greater
than the energy of the ground state of the system.

<1/1(0417~~70¢N)|H|1/)(0l1a~~,04N)> > EGS (9)

This is why NQSs, if properly optimized, can be good
ansitze of the ground state of any many-body quantum
system. In this thesis, we have used as a variational
a function a RBM, provided by the software package
NetKet [§]. The RBM can be expressed as:

M N
\I!(nl) — ezi @il H 2cosh | b; + Z Wijnj (10)
i=1 J
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where W;;, b; are variational parameters that have to be
optimized through Monte Carlo stochastic reconfigura-
tion and n; the occupation of each site.

V. RESULTS

As described in the theoretical section, the aim of this
thesis is to simulate emergent phenomena from a topo-
logically ordered system, such as the Hofstadter model,
with special focus on its fractional excitations. Further-
more, we propose ourselves to analyze whether the RBM
can be a good ansétze for topologically ordered systems,
by checking if they can properly reproduce these excita-
tions. In this section we describe two theoretical setups
that reveal specific features about the FQHE, such as
charge fractionalization and anyonic excitations.

In particular, we focus on describing a fractional Hall
state with a filling number of ¥ = 1/2, which has the
following properties:

e The Laughlin wavefunction is even (which is why
the bosonic Hofstadter model is a suitable lattice
analog).

e The fractional excitations (quasiholes) have electric
charge ¢ = e/2 and anyonic phase ¢ = 7/2 (which
corresponds to a braiding phase of 1, = 2p = 7).

A. Fractional charge redistribution through
potential offsets

For our first simulations we will use the setup described
in [9]. The idea is to introduce two spatially-separated
localized potential offsets with opposite sign to pin quasi-
particles and quasiholes. By plotting the integrated par-
ticle density (which is proportional to the electric charge)
near each defect, we expect to observe the following prop-
erties of the FQHE.

e First, considering that the FQH states have many-
body gapped energy spectra, we expect to see that
the system is resistant against small perturbations.

e Second, we expect the potential dip to attract a
quasiparticle (QP), while the potential bump, a
quasihole (QH) with a quantized charge of +e/2.

The system we will describe consists of a rectangular
lattice with N, x Ny, sites and open boundary conditions,
which contains (N, —1) x (N, —1) cells. We fill the system
with N bosons, then apply a magnetic flux ®..;; on each
cell and perturb the system by applying localized and
opposite potential offsets V; on two separate regions.

The filling number is the ratio between the number of
bosons that each cell provides, and the number of flux
quanta that fit into each cell.

o N/Ncell

v =
(I)cell/q)o

(11)

In order to simulate a state with v = 1/2, we choose
a suitable shape and number of particles. We calculate
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Figure 3: Results for a 9x5 lattice (right) with N =4
and @, /Py = 1/4. We introduce offsets in the darker
cells and compute the charge accumulation/depletion in
the red/blue regions (as a function of the offsets
strength). The points and dashed lines correspond to
the results given by the RBM and exact
diagonalization, respectively.

the groundstate of this system as a function of V' using
both exact diagonalization and the RBM and plot the
integrated particle density near the impurities (Fig. 3)).

From looking at this figure, we can make two obser-
vations that seem to indicate the presence of fractional
states in the Hofstadter lattice. First of all, the system is
mostly insensitive towards these potential offsets (impu-
rities) throughout most of the simulation, which can be
attributed to the gapped nature of the FQHE spectrum.

Moreover, we can observe abrupt changes in the in-
tegrated particle densities near each defect with values
generally close to +e/2. This result can be explained, as
the system obtains enough energy to be in many-body ex-
cited states by generating pairs of QP-QH. Then, they are
transferred respectively to the potential dips and bumps
generated by the defects in the bulk, which is why this
fractional charge separation can be observed. The de-
viations from the expected value can be attributed to
finite-size effects.

B. Use of a potential offset with a confining
harmonic potential

With the former method, we have checked that the
RBM, trained accordingly with the Hofstadter model,
can properly describe two important signatures of the
FQHE: its gapped spectrum and the charge fractionaliza-
tion. However, it could be argued that the most defining
feature of the FQHE, which is linked to its topologically
ordered nature, are its anyonic excitations. To calculate
the braiding phase ¢y, associated with the exchange of
two quasiholes, we will use a setup similar to that de-
scribed in [I0]. We consider a system with N = 3 bosons
in an 8x8 lattice with open boundary conditions. We ap-
ply a background magnetic flux ®..;;/Po = 0.25 and we
also introduce an additional harmonic confining potential

Treball de Fi de Grau
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Figure 4: Density profile in a system with N = 3 bosons
in an 8x8 lattice and under the effect of a confining
harmonic potential with constant Vi = 0.02¢. We
observe a central plateau with density p = v®.e1/Pp.

in the form V; = Vu|7f — Teonter|*-

However, we cannot guarantee that for any arbitrary
value of the trapping strength Vj the system will stabilize
in the v = 1/2 FQHE. In fact, one of the defining features
of the FQHE is a plateau of constant particle density
p =vDee/Pg. Thus, the first step we take is to identify
the value of V4, with which we obtain a central plateau
with particle density p = 0.125. We find that this value
is Vo = 0.02t (Fig. 4).

Afterwards, we identify the pinning potential V;, for
which the system places 1 and 2 QH in the center of the
lattice, respectively. We follow a very similar procedure
to the one explained in section A: we compute the density
depletion around the potential offset and look for sharp
changes with magnitude around Ap ~ 0.5. We find that
these values are V; = 0.4 and V; = 6 (Fig. 5.

1. Quasihole statistics through density depletion profiles

In previous works, a new method was developed to cal-
culate the braiding phase through the density depletion
profiles (diqu(7), daqu(7)) generated by 1 and 2 quasi-
holes, respectively [I1]:

sg;r _ W(Z%H[@QH@ — 2daqu (7|72 (12)

where the depletions are defined as:

drqu(7) = (n(7))oqu — (n(7))rqu (13)

This scheme for determining ¢y, is particularly advan-
tageous for small systems, compared to more traditional
schemes. The latter involve the explicit computation
of the braiding phase by separating the quasiholes and
rotating one around the other. In contrast, the method
we use in this thesis has no need for this process, which
saves a considerable amount of computational time and
can work on even small lattices, such as the one we use.
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Figure 5: Charge depletion around the potential offset
as a function of its intensity. Attached, are the
depletion profiles d(r) of the situations where 1 and 2
QHs are introduced, respectively. We consider that the
QHs only occupy the highlighted area.

qqu/e o/ (27)
ED 0.475 0.482
RBM 0.483 0.446

Table I: Charge and braiding phase of the quasiholes
generated in a Hofstadter lattice and calculated through
exact diagonalization (ED) and a variational RBM.
Both results are close to the expected value for the
v = 1/2 state: 0.5.

With the results in the previous section, we calculate
the integrated charge of the quasiholes and the braiding
phase (eq. 12). The results are summarized in

We can observe that both the RBM and the exact di-
agonalization predict that the lattice will generate any-
onic excitations with charge e/2 and statistical phase

0= /2 =7/2).
VI. CONCLUSIONS

In this work, we have successfully studied the topologi-
cal nature of the Hofstadter model and we have observed
defining features of fractional quantum Hall states. The
conclusions derived from this work are the following.

The Hofstadter model presents a band structure with
non-trivial topological Chern numbers. In particular, in
the limit of low fluxes, the ground state presents a Chern
number of 1, which is why the Hofstadter model can be
mapped to FQH states.

Moreover, we have observed that the Hofstadter model
can hold quasihole-like excitations with fractional charge
and statistics, which are the most characteristic prop-
erties of topologically-ordered phases such as the FQH
effect. These properties are also corroborated by our cal-
culations with the neural networks, which seems to indi-
cate that the RBM can be good variational functions for
the ground state of the FQHE.

The study of highly correlated materials has been ex-
perimenting nowadays notable success. Thus, possible
continuations of this work could be the study of more
complex materials with topological bands, such as the
twisted bilayer graphene (TBG).
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Resum: L’efecte Hall quantic fraccionari de Laughlin (FQHE) és un dels sistemes fortament
correlacionats que més ha captivat als fisics durant décades. Es podria dir que la seva propietat
més caracteristica és ’emergéncia d’excitacions col-lectives amb carrega i estadistica fraccionaria.
En aquest projecte, observem aquestes excitacions distintives en un dels models reticulars analegs
al FQH més estudiats: el model de Hofstadter. A més, discutim si les xarxes neuronals variacionals
poden ser uns ansétze valids de l'estat fonamental del FQH.
Paraules clau: Matéria condensada, ordre topologic, anyons, estats quantics neuronals, ntimero

de Chern
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Una de les principals aplicacions de l’estudi dels anyons és la implementacié practica d’ordinadors quantics. El
principal obstacle en la seva realitzacidé experimental és la decoheréncia dels estats quantics: petites pertorbacions
poden facilment ocasionar que els qubits perdin la seva coheréncia i que 'ordinador deixi de funcionar. Els anyons,
d’altra banda, sén uns defectes topologics que apareixen en sistemes com el FQHE que son resistents a perturbacions
locals i continues. Aquesta estabilitat és la ra6 per la qual els ordinadors quantics topologics amb anyons séon una de

les implementacions practiques més prometedores.

D’aquesta manera, aquest TFG esta relacionat amb ’ODS 9, ja que contribueix en I’estudi d’una de les tecnologies
del futur. A més, una de les aplicacions de la computacié quantica més prometedora és la simulaci6é de les propietats
quantiques de molécules i, en especial, farmacs. Per tant, aquest TFG pot contribuir a ’'ODS 3, que busca millorar
la salut i el benestar de la poblacié. Finalment, aquest treball forma part d’un grau universitari de Fisica i creiem
que pot ajudar a motivar académicament a futurs alumnes que passin per la facultat (ODS 4, educaci6 de qualitat).
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