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ABSTRACT

The current biologically uninformed psychiatric taxonomy complicates optimal diagnosis and treatment.
Neuroimaging-based machine learning methods hold promise for tackling these issues, but large-scale, repre-
sentative cohorts are required for building robust and generalizable models. The European College of Neuro-
psychopharmacology Neuroimaging Network Accessible Data Repository (ECNP-NNADR) addresses this need by
collating multi-site, multi-modal, multi-diagnosis datasets that enable collaborative research. The newly estab-
lished ECNP-NNADR includes 4829 participants across 21 cohorts and 11 distinct psychiatric diagnoses, avail-
able via the Virtual Pooling and Analysis of Research data (ViPAR) software. The repository includes
demographic and clinical information, including diagnosis and questionnaires evaluating psychiatric symp-
tomatology, as well as multi-atlas grey matter volume regions of interest (ROI). To illustrate the opportunities
offered by the repository, two proof-of-concept analyses were performed: (1) multivariate classification of 498
patients with schizophrenia (SZ) and 498 matched healthy control (HC) individuals, and (2) normative age
prediction using 1170 HC individuals with subsequent application of this model to study abnormal brain
maturational processes in patients with SZ. In the SZ classification task, we observed varying balanced accu-
racies, reaching a maximum of 71.13% across sites and atlases. The normative-age model demonstrated a mean
absolute error (MAE) of 6.95 years [coefficient of determination (R? = 0.77, P < .001] across sites and atlases.
The model demonstrated robust generalization on a separate HC left-out sample achieving a MAE of 7.16 years
[R% = 0.74,P < .001]. When applied to the SZ group, the model exhibited a MAE of 7.79 years [R? = 0.79, P <
.001], with patients displaying accelerated brain-aging with a brain age gap (BrainAGE) of 4.49 (8.90) years.
Conclusively, this novel multi-site, multi-modal, transdiagnostic data repository offers unique opportunities for
systematically tackling existing challenges around the generalizability and validity of imaging-based machine

learning applications for psychiatry.

1. Introduction

The global prevalence of mental disorders has dramatically increased
over the past two decades (GBD, 2019 Mental Disorders Collaborators,
2022). Recent reports indicate that, as of 2020, approximately one
billion individuals worldwide suffer from mental disorders, impacting
the global economy by approximately 2.5 trillion dollars annually; this
economic burden is forecasted to reach 6 trillion dollars by 2030 (The
Lancet Global Health, 2020; Chodavadia et al., 2023). Considerable
obstacles exist for the accurate, early diagnosis of these complex disor-
ders, owing to the heterogeneity of the established “bio-
logy-uninformed” taxonomic system which does not consider
pathophysiological signals and thus hinder the identification of patho-
gnomonic biopsychosocial patterns (Fusar-Poli et al., 2016; McClintock
et al., 2010).

Moreover, classical inferential statistics, which have been commonly
used in psychiatric research to date (Bzdok, 2017), have significant
shortcomings. These methods are limited in their ability to extract
predictive patterns from multimodal, heterogeneous data sets, and to
embed these patterns into scalable tools for individualized patient
management in real-world clinical care (Dwyer et al., 2018; Dwyer and
Koutsouleris, 2022).

To address these shortcomings, the field of precision psychiatry has
increasingly embraced machine learning (ML) techniques as a promising
methodological avenue for dealing with multi-scale, high-dimensional,
and heterogeneous datasets. Specifically, supervised ML methods offer
the possibility to improve early recognition, differential diagnosis, and
inform treatment selection based on classification and regression algo-
rithms, whereas unsupervised ML techniques facilitate a biologically
informed revision of existing diagnostic concepts via clustering and
factorization methods (Dwyer et al, 2018; Bzdok and
Meyer-Lindenberg, 2018; Zhou et al., 2022). However, despite the
promise of this methodological revolution in psychiatric research, there
are caveats that need to be addressed prior to clinical translation.
Concretely, model generalizability beyond the initial discovery sample
is a key translational requirement that must be unequivocally demon-
strated. However, meeting this criterion requires large and heterogenous
samples that are representative of the inherent heterogeneity of the
mental disorder in question (Lombardo et al., 2019; Feczko et al., 2019).
Furthermore, model specificity and applicability must be measured from

a transdiagnostic perspective to establish the “operational windows” of
population characteristics, such as age, sex, and ethnicity, that
conjointly determine model performance and thus model eligibility for
specific patient populations. Collaborative, multi-site, multi-project data
repositories provide an opportunity to address these intertwined issues
and facilitate the translation of psychiatric research into clinically
informative tools.

To address this important need, we introduce the European College
of Neuropsychopharmacology Neuroimaging Network Accessible Data
Repository (ECNP-NNADR) project as a new collaborative data science
initiative. The project has so far produced an accessible data repository
containing clinical and magnetic resonance imaging (MRI) data safely
shared using the Virtual Pooling and Analysis of Research data (ViPAR)
software (Kw et al., 2015). The initiative started in October 2020 with
seven European sites, all of which have contributed patient data
comprising different psychiatric disorders (N = 2363), including
schizophrenia (SZ), major depressive disorder (MDD), bipolar disorder I
(BDI), bipolar disorder II (BDII), borderline personality disorder (BPD),
obsessive compulsive disorder (OCD), mild cognitive impairment (MCI),
hoarding disorder (HD), general anxiety disorder (GAD), social phobia
(SP), clinical high-risk for psychosis (CHR) and first-episode psychosis
(FEP), and large samples of healthy control (HC) individuals (N = 2466).
The goal of the ECNP-NNADR initiative is to create a multi-site,
multi-variable data repository that facilitates collaborative psychiatric
research, and offer the opportunity to identify and validate complex
disease patterns through the simultaneous investigation of different data
modalities.

In the following section, we describe the data collection, harmoni-
zation, and sharing process across different sites, as well as the chal-
lenges encountered. Moreover, we describe two proof-of-concept
analyses which were conducted to demonstrate the feasibility of using
state-of-the-art ML methods in such a collaborative setup. By applying
support vector machines (SVM) to volumetric region-of-interest (ROI)
measures derived from structural MRI data, we first developed a clas-
sifier that separates SZ patients from HC. Secondly, we used a normative
approach to train a regression model to predict age based on ROI data
from HC, which we then applied to SZ patients to evaluate clinical ef-
fects on brain aging. Furthermore, we evaluated how brain age gap
(BrainAGE) scores are related to HC and SZ separability in the classifi-
cation analyses. These analysis tasks were selected based on the ample
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literature available for comparison and with the aim to demonstrate the
potential of the current data repository and its adjunct analytical facil-
ities for future multi-modal, multi-site machine learning studies.

2. Methods
2.1. Description of the ECNP-NNADR cohorts

To date, seven European sites representing six different countries
participate in the ECNP-NNADR project: The Ludwig-Maximilian Uni-
versity Hospital in Munich, Bavaria, Germany (MUC); NORMENT
Centre, Division of Mental Health and Addiction, Oslo University, Oslo,
Norway (OSL); Bellvitge Biomedical Research Institute-IDIBELL, Uni-
versitat de Barcelona, Barcelona, Spain (BAR); University of Edinburgh,
Edinburgh, Scotland; Universita degli Studi di Milano, Milan, Italy
(MIL); University of Turku, Turku, Finland (TUR); Universita degli Studi
di Verona, Verona, Italy (VER). Across the participating sites, patients
were included if they had complete demographic information including
age, sex, diagnosis, and at least one complete score set in one of the
clinical scales or MRI data. For more details regarding the inclusion/
exclusion criteria used for each of the cohorts included in the ECNP-
NNADR, see Table S1. All included studies were approved by their
respective local ethics committees (Table S1).

Currently, the repository consists of clinical and MRI data from 21
cohorts across the seven sites, resulting in a total sample size of 4829
participants, including HC individuals and eleven distinct psychiatric
conditions. We provide an overview of the available clinical and MRI
data across sites in Table 1 and across diagnoses in Table 2 and Fig. 1,
and section 3.1. Repository sample characteristics.

2.2. Data harmonization

A significant challenge in creating big data repositories consists of

Table 1
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the appropriate harmonization of data across cohorts and study sites to
facilitate the analytical process. Within the ECNP-NNADR, we harmo-
nized the clinical and MRI data based on modality-specific data dictio-
naries, defining the specific data type, scale (continuous/categorical),
and validity range for each variable, parameters which were followed by
all participating sites. Furthermore, a quality control script was provided
to all the sites for checking the value ranges of all variables according to
the dictionaries prior to sharing the data within the ViPAR platform.

2.2.1. Clinical data

The clinical dictionary consisted of demographic variables such as
the cohort, age, sex, and site, as well as clinical parameters, including
the psychiatric diagnosis and six different clinical scales common across
sites (GBD, 2019 Mental Disorders Collaborators, 2022): Hamilton
Depression Rating Scale 17 (HDRS 17) (The Lancet Global Health,
2020), Hamilton Depression Rating Scale 21 (HDRS 21) (Chodavadia
et al., 2023), Montgomery-Asberg Depression Rating Scale (MADRS)
(Fusar-Poli et al., 2016), Childhood Trauma Questionnaire (CTQ)
(McClintock et al., 2010), Global Assessment of Functioning (GAF), and
(Bzdok, 2017) Positive and Negative Syndrome Scale (PANSS). For a
more detailed description of the clinical scales and their coding systems
in the ECNP-NNADR clinical dictionary, refer to section 1.1 of the Sup-
plementary Methods.

2.2.2. MRI data acquisition and preprocessing

The ECNP-NNADR represents a collaborative effort aimed at creating
a comprehensive neuroimaging-based database by aggregating data
from existing, separately conducted neuroimaging studies. Hence, it is
important to note that the MRI data collection was not harmonized a
priori in terms of MRI parameters across different sites. Detailed de-
scriptions of the MRI parameters utilized at each site are available
within the repository (Table S2).

The MRI image processing was harmonized across sites, such that the

Overview of demographic, clinical and MRI data available for each site of the ECNP-NNADR.

Barcelona (N = 781) Edinburgh (N = Milan (N = Munich (N = 922) Oslo (N = 822) Turku (N = Verona (N = 610)
1186) 174) 334)
Age (yrs), N 781 (37.75 + 15.52) 1186 (60.04 + 174 (40.76 + 922 (33.18 + 822 (33.61 + 334 (26.74 610 (38.9 + 12.42)
(mean =+ SD) 10.05) 14.33) 11.45) 10.14) + 6.33)
Sex (male, 373, 408 490, 696 88, 86 477, 445 438, 384 172,162 316, 294
female)
Diagnoses 433 HC, 53 MDD, 218 OCD, 820 HC, 344 MDD, 26 HC, 110 502 HC, 156 SZ, 295 HC, 224 SZ, 95 HC, 295 HC, 123 SZ, 38
21 MCI, 20 HD, 32 GAD, 4 SP 12 BDI, 10 BDII BDI, 38 BDII 104 MDD, 43 BDI, 191 BDI, 112 10 Sz, MDD, 74 BDI, 12 BDII,
59 BPD, Other 123 MDD, 68 FEP
58 CHR 24 BDI,

1 BDII,

4 OCD,

8 GAD,

18 HD,

51 MCI
HDRS17, n 92 (6.76 + 7.37) - - 79 (21.66 + 5.95) - - 108 (9.26 + 6.95)
(mean =+ SD)
HDRS21, n - - 29 (7.66 + - - - 107 (10.83 + 8.61)
(mean + SD) 8.23)
MADRS, n 3(35.67 + 8.08) - 13 (3.00 + 41 (17.41 + 9.06) - - -
(mean =+ SD) 3.49)
CTQ, n (mean 75 (39.95 + 13.13) 1157 (34.01 + - 180 (31.32 + - 152 (37.35 -
+ SD) 11.70) 6.47) + 10.48)
GAF, n (mean - - 95(33.73 + 65 (51.17 + 414 (49.76 + 334 (62.96 459 (69.74 + 16.65)
+ SD) 15.23) 13.74) 11.58) + 20.87)
PANSS, n - - - 239 (76.21 + 406 (53.22 + 180 (45.56 229 (64.89 + 16.21)
(mean =+ SD) 27.57) 16.22) + 19.23)
MRI atlas data, 781 1186 175 922 822 241 610
N

Note. yrs = years, SD = standard deviation, SZ = schizophrenia, MDD = major depressive disorder, BDI = bipolar disorder I, BDII = bipolar disorder II, BPD =
borderline personality disorder, OCD = obsessive compulsive disorder, MCI = mild cognitive impairment, HD = hoarding disorder, GAD = general anxiety disorder,
SP = social phobia, CHR = clinical high-risk of schizophrenia, HDRS17 = Hamilton Depression Rating Scale (17 items), HDRS21 = Hamilton Depression Rating Scale
(21 items), MADRS = Montgomery-Asberg Depression Rating Scale, CTQ = Childhood Trauma Questionnaire, GAF = Global Assessment of Functioning, PANSS =

Positive and Negative Syndrome Scale.
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Table 2
Overview of demographic, clinical and MRI variables grouped by diagnosis.
HC (N SZ(N = MDD BDI (N BDII (N BPD (N OCD (N MCI (N HD (N GAD SP (N CHR (N FEP (N Other
= 2466) 513) (N = = 454) =61) =59) = 222) =72) = 38) N = =4) = 58) = 68) N =
662) 40) 112)
Age (yrs), 2466 513 662 454 61 59 222 72 38 40 4 58 68 112
N (42.93 (33.46 (49.76 (39.19 (48.23 (25.93 (36.09 (39.61 (38.53 (25.62 (23.50 (24.48 (31.10 (30.75
(mean + + + + + 13.38) + 4.16) + 6.98) + + + + 3.99) + 3.00) + 5.56) +9.24) +9.99)
SD) 16.91) 10.69) 15.88) 10.27) 21.19) 14.39)
Sex (male, 1235, 299, 256, 209,246 31, 30 0, 59 106, 40, 32 25,13 17,23 31 36, 22 31,37 66, 46
female) 1231 214 406 116
HDRS17, 31 9 (8.89 149 50 (7.60 12 - - 21 - - - - 7 (8.29 -
N (mean (1.29 + 7.51) (17.36 + 6.82) (9.08 (3.76 + 7.89)
+ SD) + 2.80) + 7.88) + 5.60) + 2.93)
HDRS21, - 8 (7.51 30 69 (9.09 22 - - - - - - - 7 (9.43 -
N (mean + 4.62) 13.90 + 8.07) (7.00 + 9.20)
+ SD) + 7.49) + 5.67)
MADRS, N - - 3 4 (2.75 9(3.11 - - - - - - 41 - -
(mean + (35.67 + 4.86) + 3.06) (17.41
SD) + 8.08) =+ 9.06)
CTQ, N 1039 5 391 20 11 - 76 14 5 3 - - - -
(mean + (31.5 (38.80 (39.47 (45.40 (48.00 (39.89 (37.64 (41.00 (39.00
SD) +7.92) + + + 16.76) + + + 9.40) + 5.78) +
10.47) 14.72) 19.60) 13.05) 13.00)
GAF, N 66 283 156 312 26 - 4 51 18 8 - 41 - 68
(mean + (78.54 (47.76 (55.44 (50.01 (42.19 (48.00 (47.22 (54.39 (60.75 (59.15 (50.01
SD) + 5.76) + + + 16.38) + +8.12) + + + 9.65) + +
12.41) 11.46) 18.00) 15.14) 13.64) 10.36) 11.41)
PANSS, N - 433 92 200 13 43 1(68 + 17 6 3 - 44 59 77
(mean + (71.72 (52.61 (47.3 £ (60.15 (70.65 0) (62.71 (60.50 (39.33 (60.27 (56.78 (53.38
SD) + + 11.40) + 3.27) + + + + 4.51) + + +
27.07) 16.49) 18.60) 18.84) 29.66) 18.60) 13.97) 14.18)
MRI atlas 2466 513 662 455 61 59 72 38 40 4 58 68 112
data, N

Note. yrs = years, SD = standard deviation, SZ = schizophrenia, MDD = major depressive disorder, BDI = bipolar disorder I, BDII = bipolar disorder II, BPD =
borderline personality disorder, OCD = obsessive compulsive disorder, MCI = mild cognitive impairment, HD = hoarding disorder, GAD = general anxiety disorder,
SP = social phobia, CHR = clinical high-risk of schizophrenia, HDRS17 = Hamilton Depression Rating Scale (17 items), HDRS21 = Hamilton Depression Rating Scale
(21 items), MADRS = Montgomery-Asberg Depression Rating Scale, CTQ = Childhood Trauma Questionnaire, GAF = Global Assessment of Functioning, PANSS =

Positive and Negative Syndrome Scale.

T1-weighted structural images were processed using the morphometric
analysis pipeline implemented in CAT12 (version 12.8, optimized for
multi-site deployment; https://neuro-jena.github.io/enigma-cat12/).
MATLAB-based scripts and instruction files were developed at LMU and
were designed to cater to the needs of all participating sites, offering
both standalone versions that do not require a MATLAB license or
standard versions. By distributing these resources to all sites, we aimed
to streamline and facilitate the harmonization process of MRI image
processing, thereby contributing to the reliability and comparability of
our neuroimaging analyses. The pipeline produced grey matter volume
(GMV) and white matter volume (WMV) measures for a set of ROIs
parcellated according to the Schaefer-200 (GMV and WMYV)
(Koutsouleris et al., 2021), AAL3 (GMV) (Bischl et al., 2016), and
Hammers (GMV and WMV) atlases (Tholke et al., 2023).

2.3. Data sharing using ViPAR

To comply with different data privacy regulations imposed by the
data-providing institutions, the ECNP-NNADR project employs the
ViPAR software (Kw et al., 2015). ViPAR has been successfully used by
similar international multi-consortia initiatives employing ML methods
for psychiatric applications, such as the HARMONY collaboration
(Koutsouleris et al., 2021).

The ViPAR platform consists of an analysis portal hosted at the
central master server located within a secure research-dedicated sub-
network of LMU University Hospital, and local SQL databases estab-
lished at the participating sites, where the harmonized data are
permanently stored (Fig. 2). Based on this setup, ViPAR allows feder-
ated, simultaneous pooling of the anonymized data from each of the
local databases into the central master server’s random-access memory

(RAM) for the limited run-time of a given analysis, circumventing the
need to create local physical copies of the data. Currently, the ViPAR
platform supports MATLAB and R software for conducting analyses,
with further extensions (e.g. Python) planned based on upcoming
analytical requirements. Additionally, the Edinburgh and Oslo sites
shared their data directly with LMU through Data Transfer Agreements
and is therefore stored within the local Munich ViPAR database.

The ViPAR web portal supports the creation of projects and assign-
ment of researchers to projects authorized by the ECNP-NNADR steering
board, such that the researchers’ data access can be closely regulated,
and analyses are automatically logged within the master server (Fig. 2).
Currently, members of the ECNP Neuroimaging Network who made data
available to the ECNP-NNADR project are eligible to submit analysis
proposals, which are evaluated by the steering board of the ECNP-
NNADR.

2.4. Proof-of-concept analyses

We performed two proof-of-concept ML-based analyses to highlight
the suitability of the ECNP-NNADR for multivariate analyses. In the first
analysis, we developed a multivariate classification model aimed at
distinguishing between HC individuals and patients with SZ by utilizing
GMV ROI data as features (see section 2.4.1. Classification analysis for
further methodological details). For the second analysis, we developed a
multivariate age-predicting model, based on GMV ROIs from HC in-
dividuals (detailed methodological procedures in section 2.4.2. Regres-
sion analysis). This age-prediction model was then applied separately to
an independent HC sample and to patients with SZ, and the study par-
ticipants’ Brain Age Gap Estimate (BrainAGE) scores were computed as
the difference between the person’s predicted neuroanatomical and
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Fig. 1. Overlap of clinical scales available for each participant within the different diagnostic groups. Connecting lines denote overlap in the questionnaires.
The bars represent the total sample size for each of the questionnaires. Set size refers to the overall total sample size for the respective questionnaires, and interaction
size refers to the number of samples for that combination of questionnaires. CTQ = Childhood Trauma Questionnaire, GAF = Global Assessment of Functioning,
HDRS17 = Hamilton Depression Rating Scale (17 items), HDRS21 = Hamilton Depression Rating Scale (21 items), MADRS = Montgomery—Asberg Depression Rating
Scale, PANSS = Positive and Negative Syndrome Scale. The visualization was generated using the UpSetR package in R.

observed chronological age. For example, if a 25-year-old patient’s
BrainAGE score measures five years, the neuroanatomical properties of
the given brain resemble the neuroanatomical properties of a 30-year-
old reference person, and hence indicate accelerated ageing in the
given patient.

All GMV ROIs underwent an initial correction for total intracranial
volume by dividing the value of each ROI by the total intracranial vol-
ume. The input features in both classification and regression analysis
were GMV ROI values from AAL3, Hammers, and Schaefer atlases.
Additionally, each analysis was repeated with the data from individual
atlases separately. All analyses were conducted using MATLAB
(R2022a) and R software (v4.1) within the ViPAR environment. The
classification and regression ML analyses were conducted using the
open-source Machine learning in R toolbox (mlr, v4.1) (Bischl et al.,
2016).

The R scripts used for all the proof-of-concept analyses are freely
available in our GitHub repository (https://github.com/adyash
a95/ECNP-NNADRrepo/).

2.4.1. Classification analysis

For the classification analysis, we only included sites that provided
sufficient data for SZ patients (MUC: N = 156, VER: N = 118, OSL: N =
224). We matched 498 healthy individuals one-to-one for age and sex to
SZ patients to avoid the problem of unbalanced samples that often oc-
curs in ML analyses. The left-out 567 HC individuals (MUC: N = 334,
VER: N =162, OSL: N = 71) belonging to the same sites were retained to
assess specificity of the classification model (Tholke et al., 2023; Chen

et al., 2023).

All machine learning models were constructed within a nested
repeated cross-validation (CV) framework, comprising 5 folds at both
the inner (CV1, used for hyperparameter tuning) and outer CV cycles
(CV2), with 5 permutations applied to each cycle. In this approach, a
group of hyperparameters is chosen for every outer training set (CV2).
Subsequently, the model is trained on each outer training set using the
optimal hyperparameters, and its effectiveness is assessed on the outer
test sets. This comprehensive approach was adopted to prevent infor-
mation leakage between train and test data and enhance the generaliz-
ability of the models (Parvandeh et al., 2020).

In the ML analyses, the data preprocessing included (GBD, 2019
Mental Disorders Collaborators, 2022): feature scaling between —1 and
1 and (The Lancet Global Health, 2020) a global mean offset correction
to mitigate site-effects present in the MRI ROI data (Koutsouleris et al.,
2021). Concretely, we used the HC individuals to estimate site-specific
means, to avoid the removal of clinically relevant effects. Then, we
computed differences between the site means and the overall mean for
each feature and finally subtracted these mean differences from the
entire data of each respective site (HC individuals and SZ patients), in
order to mean-center the data to the overall mean of the training data.
All  preprocessing steps were embedded within the nested
cross-validation framework.

Following data preprocessing, we used the L2-Regularized L2-Loss
Support Vector Classification algorithm (LiblineaRL1L2SVC) to classify
HC individuals and SZ patients, and optimized the regularization
parameter (Cgypy) over the range of o[=6— +41 Here, the decision scores
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Fig. 2. Overview of the ViPAR-based setup used for data federation within the ECNP Neuroimaging Network. Data of each remote site is stored locally within
SQL databases synchronized with the ViPAR Master Server based on a common data dictionary. When an analysis is run through the Master Server’s Web Analysis
Portal, local data from the remote sites is temporarily pooled into the Master Server’s RAM for the limited duration of the analysis, without the need for permanent

central storage.

from the classification models are defined as the distance between the
position of the given individual in the linear kernel space and the
model’s decision boundary. In this context, the magnitude of the deci-
sion scores reflects the confidence in classifying an individual towards
the respective class (e.g. higher positive decision scores indicate higher
confidence in the SZ class membership, while higher negative decision
scores indicate high confidence in the HC class membership of a person).
We assessed model performance using the true positive rate (sensitivity;
SEN), true negative rate (specificity; SPE) and balanced accuracy (BAC),
measured as the average between SEN and SPE. BAC was selected as the
model’s optimization criterion.

In the classification analysis, we pursued three distinct approaches to
effectively differentiate HC and SZ individuals. Firstly, three separate
classification models were developed to classify HC and SZ individuals
within each site, namely MUC, VER, and OSL. Since the model training
occurred individually within each site, no site-specific corrections were
performed. Individual models were further applied to the left-out HC
individuals belonging to the respective sites. Secondly, a classification
model was trained and cross-validated using data pooled across all sites,
allowing for a comprehensive analysis of the entire dataset. This model
was applied to the left-out HC individuals belonging to pooled sites.
Thirdly, we employed a leave-one-site-out approach, where three clas-
sification models were trained and cross-validated using data from two
sites and tested on the left-out site. Specifically, one model classified HC
and SZ individuals trained on individuals from MUC and VER, which
was then applied to OSL. Similarly, another model trained on in-
dividuals from MUC and OSL was applied to VER, and the third model
trained on individuals from OSL and VER was applied to MUC.

Furthermore, the individual models were applied to the left-out HC in-
dividuals of the left-out sites respectively to assess the model specificity.
This approach enabled us to assess the generalizability of the classifi-
cation models across different sites while accounting for site-specific
variations.

2.4.2. Regression analysis

To obtain a sample representative of all age ranges, we selected 1170
HC individuals from the total 2357 HC individuals. This selection pro-
cess involved dividing the total sample into 12 age bins and sampling
individuals from each bin. By doing so, we ensured that the selected
sample was uniformly distributed across age groups, facilitating the
construction of a normative age model that captures the variability
across different age ranges. We thus avoided an underrepresentation of
the tails of the age distribution which characterised the normative
sample (see Figure S1 for the age distributions). We will refer to this
selected HC individuals as the ‘HC normative’ sample. The remaining
1161 HC individuals were retained as an independent dataset for model
validation, which we refer to as the ‘HC left-out” sample. We used the
same pre-processing steps and CV settings as previously described for
the classification model in 2.5.1. Classification analysis, and a L2-
Regularized L1-Loss Support Vector Regression algorithm (Libli-
neaRL2L1SVR) available in the mlr R package. Next, we applied the
brain-age prediction model to the HC individuals belonging to the HC
left-out sample (N = 1161) as well as the patients with SZ (N = 503). We
measured the precision of the model’s predictions, using the mean ab-
solute error (MAE), Pearson correlation coefficient (r) and coefficient of
determination (R%) between individual chronological and predicted age
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with MAE as the optimization criterion.

The predicted age values were corrected for their chronological age,
addressing the overestimation at lower age ranges and underestimation
at higher age ranges using linear regression analysis, as a common
practice in BrainAGE research (Chen et al., 2022). Beta-coefficients were
computed through partial correlation analysis utilizing the HC norma-
tive sample. Subsequently, these coefficients were applied to the HC
left-out and SZ samples to derive corrected predicted-age values.
Furthermore, the individualized BrainAGE scores were calculated by
subtracting the chronological age from the corrected predicted age for
both HC and SZ individuals.

Post-hoc two-sample t-tests assessed group differences between the
BrainAGE scores of HC normative and left-out individuals as well as
normative HC and SZ individuals at @ = .05.

3. Results
3.1. Repository sample characteristics

Currently, the ECNP-NNADR includes 4829 participants across seven
different study sites, with 51.07% of the sample consisting of HC in-
dividuals. From the entire sample, 4580 participants have MRI data
available, 51.57% of which are HC individuals, 3044 participants have
both clinical and imaging data and 1536 participants have only imaging
data. Tables 1 and 2 provide a comprehensive overview of the de-
mographic, clinical, and MRI data available for each site and diagnosis,
respectively. The repository includes 2475 (51.25%) women, and the
mean age of study participants is 41.14(SD = 16.19) years. For a visual
representation of the distribution of age across sites and diagnoses, see
Figure S2 and Figure S3.

Currently, the repository combines data of six clinical question-
naires, with the CTQ having the most participant responses (N = 1564),
followed by the GAF (N = 1367) and PANSS (N = 1054) scales. Within
the clinical data, there is a substantial overlap among the question-
naires, as depicted in Fig. 1. Specifically, there are 543 participants with
both GAF and PANSS scores, while 147 participants have data for GAF,
PANSS, and CTQ questionnaires. Currently, there are no participants
with data for all questionnaires. For a visual representation of the dis-
tributions of clinical scale scores across sites and diagnoses, see
Figure S4 and Figure S5.

3.2. Proof of concept analysis

For simplicity, we report the performances for models using GMV
ROIs from all atlases as features in the results below, unless explicitly
stated otherwise. Tables 3-5 provide detailed performances of models
using GMV ROIs from individual atlases and when combined from all
atlases.

3.2.1. Classification analysis

Four hundred ninety-eight HC individuals and four hundred ninety-
eight patients diagnosed with SZ, matched based on age and sex criteria,
were included in the analysis [age: mean (SD)yc = 33.96 (10.30), mean
(SD)s; = 33.59 (10.69), t (df) = 0.55 (992.64), P > .55; sex: female
(%)yc = 205 (41.16%), female (%)sz = 205 (41.16), y2 (df) =0, P =1].

In the first approach, the model classified SZ patients and HC in-
dividuals with a BAC of 68.60% (SEN = 67.32%; SPE = 69.88%) in the
MUC sample, 70.65% (SEN = 66.86%; SPE = 74.45%) in the OSL
sample, and 50.82% (SEN = 49.51%; SPE = 52.14%) in the VER cohort,
when using the GMV ROIs from all atlases as discriminative features
(Fig. 3A). Subsequently, after applying these models to the HC left-out
samples of the respective sites, we observed SPEs of 70.22%, 65.92%,
and 56.66% for MUC, OSL, and VER respectively. Notably, the highest
classification accuracy was achieved by the model employing ROIs
extracted using the AAL3 atlas as features, particularly for individuals
from the OSL site [BAC = 72.31% (SEN = 66.60%; SPE = 78.01%)].
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Table 3
Proof-of-concept classification analysis.

Model Performance in Classification Analysis

Site SEN (%) SPE (%) BAC (%) SPE (%)
All atlases

Munich 67.32 69.88 68.60 HC left-out 70.22
Oslo 66.86 74.45 70.65 HC left-out 65.92
Verona 49.51 52.14 50.82 HC left-out 56.66
Schaefers

Munich 64.62 66.81 65.72 HC left-out 64.31
Oslo 60.29 63.57 61.93 HC left-out 43.21
Verona 50.86 51.25 51.05 HC left-out 47.94
AAL3

Munich 67.46 68.46 67.96 HC left-out 66.06
Oslo 66.60 78.01 72.31 HC left-out 72.73
Verona 50.83 53.42 52.12 HC left-out 57.39
Hammers

Munich 61.27 66.80 64.04 HC left-out 71.22
Oslo 65.18 77.66 71.42 HC left-out 67.49
Verona 52.57 48.99 50.78 HC left-out 54.16

Note. SEN = Sensitivity, SPE = Specificity, BAC = balanced accuracy.

In the second approach, the model, trained with data pooled across
the three sites performed with a BAC of 64.29% (SEN = 60.93%; SPE =
67.63%). When applied to the left-out HC individuals, this model pro-
duced an SPE of 64.73%.

Moreover, in the third approach, the model trained on pooled data
from OSL and VER performed with a BAC of 62.97% (SEN = 60.13%j;
SPE = 65.80%). In the application of this model to the matched HC and
SZ individuals from the left-out site of MUC, the model yielded a BAC of
60.74% (SEN = 45.74%; SPE = 75.74%). Application of this model to
the left-out HC individuals from MUC resulted in a specificity of 76.96%.
The OSL + VER model demonstrated a BAC of 59.91% (SEN = 43.08%;
SPE = 76.73%) across the entire MUC dataset. Furthermore, the model
trained on data from MUC and VER performed with a BAC of 56.57%
(SEN = 55.68%; SPE = 57.46%). When applied to the matched HC and
SZ individuals from the left-out site of OSL, this model achieved a BAC of
61.13% (SEN = 48.02%; SPE = 74.25%). Application to the left-out HC
individuals from OSL resulted in a specificity of 73.18%, while the entire
OSL sample exhibited a BAC of 61.08% (SEN = 48.29%; SPE = 73.87%).
Lastly, the model trained on the pooled data from MUC and OSL
exhibited a BAC of 71.13% (SEN = 67.63%; SPE = 74.63%). When
applied to the matched HC and SZ individuals from the left-out site of
VER, the model yielded a BAC of 49.59% (SEN = 21.19%; SPE =
78.00%). On the left-out HC individuals from VER, the model achieved a
specificity of 73.53%, and a BAC of 48.43% (SEN = 21.53%; SPE =
75.34.93%) when applied to the matched HC, SZ, and left-out HC in-
dividuals. Detailed overview of results from the classification analysis
are shown in Table 4 and Fig. 3.

3.2.2. Regression analysis

The regression model predicted age with a MAE of 7.16 years (R? =
0.77, P < .001) and a mean (SD) BrainAGE of ~0 (8.90) in the HC-
normative group (Fig. 4). Upon application of this model to the left-
out HC individuals, the MAE was maintained at 6.97 years (R? = 0.74,
P <.001) with a negligible deviation in the BrainAGE [mean (SD) = 0.12
(8.89)]. Subsequently, application of this model to patients diagnosed
with SZ yielded a MAE of 7.79 R? = 0.79, P < .001) and a BrainAGE
score of 4.49 (8.90). Notably, we did not observe significant BrainAGE
differences between the normative and left-out HC samples [t (df) =
-0.35 (2329), P = 0.73]. BrainAGE differed between HC and SZ in-
dividuals, with the SZ group exhibiting higher BrainAGE compared to
both normative and the left-out HC samples (SZ vs. HCormative: t (df) =
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Table 4

Proof-of-concept classification analysis. Out-of-sample performance of the

Table 4 (continued)

Neuroscience Applied 4 (2025) 105407

Sites SEN SPE BAC Applied SEN SPE BAC
models when applied to left-out data. ) ) ©6) Site %) %) %)
Sites SEN SPE BAC Applied SEN SPE BAC AAL3
(%) (%) (%) Site (%) (%) (%)
Munich 65.74 73.79 69.76 Verona 20.78 78.37 49.57
All atlases + Oslo (HC
Munich 67.63 74.63 71.13  Verona 21.19  78.00  49.59 matched +
+ Oslo (HC SZ)
matched + Verona 21.25 75.46 48.37
SZ) (HC all +
Verona 2153 7534  48.43 52)
(HC all + Verona - 73.33 -
SZ) (HC left-
Verona - 73.53 - out)
(HC left- Munich 5802 60.00 59.01 Oslo(HC 5227 70.88 61.57
out) + matched +
Munich 55.68 57.46 56.57  Oslo (HC 48.02 7425 61.13 Verona Sz)
+ matched + Oslo (HC 52.32 69.88 61.10
Verona SZ) all + S7)
Oslo (HC 48.29 73.87 61.08 Oslo (HC - 67.49 -
all + SZ) left-out)
Oslo (HC - 7318 - Oslo + 58.31 6597 6214  Munich 5326 7318  63.22
left-out) Verona (HC
Oslo + 60.13  65.80 62.97  Munich 4574 7574  60.74 matched +
Verona (HC SZ)
matched + Munich 50.21 74.01 62.11
SZ) (HC all +
Munich 43.08 7673  59.91 52)
(HC all + Munich - 74.26 -
SZ) (HC left-
Munich - 76.96 - out)
(HC left- Munich 6053 6828 6440 Munich +  — 6553 -
out) + Oslo Oslo +
Munich 60.93 67.63 64.29 Munich + — 64.73 - + Verona
+ Oslo Oslo + Verona (HC left-
+ Verona _ _ L out) L L
Verona (HC left- Hammers
out)
_ - — _— Munich 66.95 71.74 69.34 Verona 25.36 74.07 49.71
Schaefers + Oslo (HC
Munich 61.95 63.32 62.63 Verona 28.92 71.22 50.7 matched +
+ Oslo (HC SZ)
matched + Verona 25.97 71.21 48.59
SZ) (HC all +
Verona 26.85 71.47  49.16 52)
(HC all + Verona - 69.53 -
S7) (HC left-
Verona - 71.56 - out)
(HC left- Munich 51.17 56.51 53.84  Oslo (HC 57.05 67.55  62.30
out) + matched +
Munich 56.04 57.15 56.59  Oslo (HC 47.93 6639 57.16 Verona S7)
+ matched + Oslo (HC 56.25 66.83 61.54
Verona SZ) all + SZ)
Oslo (HC 45.68 66.12 55.90 Oslo (HC - 65.24 -
all + SZ) left-out)
Oslo (HC - 65.52 - Oslo + 5889 67.85 63.37  Munich 4990 7338 61.64
left-out) Verona (HC
Oslo + 53.45 56.16 54.80 Munich 43.90 69.49 56.69 matched +
Verona (HC S7)
matched + Munich 48.38 74.78 61.58
SZ) (HC all +
Munich 4295 69.29  56.12 52)
(HC all + Munich - 75.29 -
S7) (HC left-
Munich - 69.39 - out)
(HC left- Munich 5973 67.26 6350 Munich +  — 66.77 -
out) + Oslo Oslo +
Munich 59.11 58.39 58.75 Munich + - 55.33 - + Verona
+ Oslo Oslo + Verona (HC left-
+ Verona out)
Verona Sl'lnc) left- Note. SEN = Sensitivity, SPE = Specificity, BAC = balanced accuracy.
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Table 5
Proof-of-concept regression analysis.

Regression Analysis

R2 MAE r BrainAGE (mean + SD)
HC normative
All Atlases 0.77 7.16 0.88" 1.0907e-14 (8.90)
Schaefers 0.78 7.10 0.90" 6.6803e-15 (8.78)
AAL3 0.78 6.98 0.88" 6.0487e-15 (8.65)
Hammers 0.79 6.95 0.89" 7.6277e-15 (8.62)
HC left-out
All Atlases 0.74 6.97 0.86" 0.12 (8.89)
Schaefers 0.74 7.02 0.86" 0.09 (8.81)
AAL3 0.78 6.35 0.89% —0.11 (8.09)
Hammers 0.78 6.45 0.88" —0.28 (8.27)
Sz
All Atlases 0.79 7.79 0.78" 4.49 (8.90)
Schaefers 0.62 8.10 0.79% 3.85(9.13)
AAL3 0.67 7.10 0.82% 3.72 (8.39)
Hammers 0.64 7.85 0.80" 4.11 (9.05)

Note. r = Correlation Coefficient measured by Pearson Correlation, MAE = Mean
Absolute Error, R? = Coefficient of Determination, BrainAGE = Brain age Esti-
mation, SD = Standard Deviation, HC = Healthy Controls, SZ = Schizophrenia
patients.

2 P <0.001.

—9.46 (1671), P < .001; SZ vs HCpefrou: [t (df) = —9.19 (1662), P <
.001]). For detailed overview of the model performance based on indi-
vidual atlas data, please refer to Table 5 and Figure S6. Additionally, for
post-hoc comparisons between BrainAGE scores of HC normative, HC
left-out and SZ samples, please refer to Tables S3-S5.

4. Discussion

Neuroimaging data has sparked significant excitement in recent
years as a source of potential intermediate phenotypes of mental dis-
orders, promising an advancement of psychiatry towards a more bio-
logically informed framework (Chen et al., 2022; Linden, 2012).

However, the development of novel imaging-based precision psy-
chiatry tools for addressing the worldwide burden of mental health
disorders is currently hindered by the suboptimal generalizability and
clinical utility of small-scale studies (Chen et al., 2023; Yarkoni, 2022).
In this context, the newly established ECNP-NNADR offers a collabora-
tive platform for addressing some of these challenges while maintaining
data privacy (White et al., 2022), with an emphasis on building and
validating neuroimaging-based ML models for diagnostic and prognostic
applications. In the current work, we explored the opportunities the data
repository offers, and addressed key issues associated with setting up a
multi-site, big-data repository. To illustrate these opportunities and
challenges, we conducted two proof-of-concept analyses, aimed at
opening the avenue for future work leveraging the richness of the
database.

First, we show that multi-atlas GMV data can separate HC individuals
from SZ patients with BAC of up to 72.31% across the different cohorts
in the discovery phase, and of up to BAC = 63.22% in the model vali-
dation phase, specifically when applying the model built on the Oslo and
Verona data to the left-out Munich site. Our results are comparable with
previous work reporting highly variable performances (ranging between
~55 and 90%) when classifying SZ patients from HC individuals based
on structural MRI data drawn from multi-site studies (Dorfel et al., 2023;
Nenadic et al., 2017). Second, we built a normative age prediction
model using the HC individuals available in the ECNP-NNADR. The best
model performed with a MAE of 6.35 years which is comparable to
previously reported age prediction models with MAE ranging between
~2.5and 10 years (Han et al., 2022; Dorfel et al., 2023). The application
of the model to the left-out HC sample revealed BrainAGE scores that
were not statistically different from those of the HC normative in-
dividuals, affirming the robustness of the model’s generalizability across
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heterogenous HC populations. Notably, we found accelerated brain
aging in SZ patients relative to the norm, which is a consistent finding in
the literature (Nenadi¢ et al., 2017; Koutsouleris et al., 2014; Con-
stantinides et al., 2023). In summary, our findings are consistent with
prior research, underscoring the analytical potential and strengths
provided by the repository.

However, the analyses also highlight obstacles hindering the trans-
lation of neuroimaging-based models into clinically reliable and gener-
alizable tools (Dinsdale et al., 2022; Leming et al., 2023). First, the
modest and variable performance of our SZ classification models across
the different study cohorts emphasizes the importance of appropriately
accounting for site-related heterogeneity within large-scale, multi-site
datasets. Residual site effects could thus be one of the potential factors
contributing to these findings, warranting further analysis. While the
CAT12 processing pipeline was applied identically across sites, the
optimal correction of simple and more complex scanner-related effects
remains a debated research area (Bayer et al., 2022; Solanes et al.,
2023). We used a simple univariate site correction method which
showed good results in removing cohort effects from clinical data
(Koutsouleris et al., 2021). However, scanner effects may require more
elaborate procedures, such as deep learning-based methods (Bayer et al.,
2022). Second, the demographic and clinical heterogeneity of subjects
within and across the participating sites could have additionally diluted
the neurobiological signature of SZ, leading to reduced model perfor-
mance. This hypothesis is further supported by the particularly low
separability of patients coming from the VER study site, who were un-
dergoing an intensive rehabilitation program that could have potentially
attenuated diagnostic brain patterns. Third, the variable accuracies of
the SZ classification models when applied on the held-out validation
sites revealed both over- and under-estimations of model performance in
the discovery phase. Moreover, the observed variation in specificity with
the increase in the validation site’s sample size, achieved by incorpo-
rating additional left-out HC samples, suggests a potential challenge to
the model’s generalizability following changes in the dataset. This
observation prompts consideration of the model’s susceptibility to
overfitting, potentially impacting its generalizability to new samples.
This further highlights the need for multiple independent validation
samples for determining the true generalizability of machine learning
models before clinical translation can be achieved.

Overall, the current findings illustrate equally the challenges and
opportunities resulting from site-related, demographic, clinical and
methodological characteristics intrinsic to ECNP-NNADR. The re-
pository offers unique opportunities to systematically investigate novel
methodological approaches which could allow overcoming these chal-
lenges, such as promising algorithms for correcting batch effects and
symptom and stage-oriented clinical phenotyping (Jp et al., 2018; Hu
et al., 2023). Moreover, the machine learning methodology employed
here was computationally inexpensive, keeping in line with the
proof-of-concept character of the current work. Exploring more elabo-
rate deep learning, ensemble-based, and feature-selection algorithms
previously reported to surpass classical methods in terms of performance
and robustness constitutes a relevant future avenue to be pursued in
ECNP-NNADR (Han et al., 2022; Polikar, 2012; Peng et al., 2021).

More broadly, we envision the ECNP-NNADR to facilitate scientific
progress in the following ways (GBD, 2019 Mental Disorders Collabo-
rators, 2022): development of novel differential diagnostic, prognostic,
and theragnostic models with a focus on inter-site generalizability and
reproducibility, by employing state-of-the-art ML methods based on
thorough CV and overfitting management (The Lancet Global Health,
2020); exploration of transdiagnostic vs diagnostic-specific neurobio-
logical pathways across major psychiatric disorders (Chodavadia et al.,
2023); improvement of the clinical acceptability and feasibility of
neuroimaging-based models by prioritizing model interpretability, as
well as by using widely-available software and routinely employed im-
aging sequences; and (Fusar-Poli et al., 2016) introduction of multi-
modal (including both clinical and neuroimaging domains) approaches
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Fig. 3. Proof of concept analysis for the classification model. (A) Model performance assessed using balanced accuracy for classifying SZ from HC individuals
across different sites. (B) Model performance assessed using balanced accuracy for classifying SZ from HC individuals pooled from all the sites. The vertical bars
represent the interquartile range of the balanced accuracies, and the dots represent outliers.

to address the disease heterogeneity commonly observed in psychiatric
disorders.

Nonetheless, several limitations and avenues for further improve-
ment of the repository are noteworthy. First, the neuroimaging data
available within ECNP-NNADR is currently limited to multi-atlas grey
and white matter volumetric parcellations derived using a harmonized
pipeline shared across the data centers, which can be readily analyzed
through the web-based ViPAR platform. In this direction, we plan to
extend the repository to include voxel-level structural neuroimaging
data, as well as additional neuroimaging modalities, which may provide
more flexible feature extraction and modelling opportunities. Second,
the repository currently only includes cross-sectional data. Recruiting
more sites would allow us to extend the repository with longitudinal
data sets and increase the sample sizes for the various psychiatric dis-
orders. Third, the ECNP-NNADR is a European collaboration and,
therefore, only includes individuals from this specific socio-
demographic and socio-economic background. Therefore, evaluating
generalizability of the results obtained in the ECNP-NNADR to other
populations outside Europe necessitates future international

collaborative efforts.
5. Conclusions

Through the ECNP-NNADR consortium, we have established a multi-
site data repository consisting of clinical questionnaire and brain
morphometry data belonging to patients with various psychiatric con-
ditions, aimed at facilitating psychiatric research within the precision
psychiatry framework. The two proof-of-concept analyses presented
here highlight the opportunities that the ECNP-NNADR offers for state-
of-the-art machine learning applications, which can propel the devel-
opment of individualized diagnosis and treatment options. Ultimately,
this data repository aims at facilitating international and collaborative
research endeavors focused on effectively delineating the inherent het-
erogeneity within major psychiatric disorders.
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the model using GMV ROI values from Schaefers, AAL3 and Hammers
atlases together.
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