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Abstract: Entanglement lies at the heart of quantum technologies, enabling quantum computa-
tion, secure communication, and ultra-precise sensing, and it arises naturally in systems of atoms
interacting with light. In this work, we analyze the entanglement dynamics resulting from the inter-
action between a two-level atom and a single quantized mode of the electromagnetic field, described
by the paradigmatic Jaynes—Cummings Hamiltonian. By preparing the system initially in different
field states, including Fock, coherent, and squeezed vacuum states, we compute the corresponding
time evolution and quantify the entanglement generated between atom and light using the con-
cept of bipartite entanglement entropy. Our results show how photon statistics influence both the

generation and the stability of entanglement.
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I. INTRODUCTION

Understanding how atoms and light interact at the
quantum level is crucial for many current quantum tech-
nologies where atoms are used for storing and processing
information while photons are ideal carriers for transmit-
ting it. One of the simplest and most representative mod-
els describing such interactions is the Jaynes-Cummings
Hamiltonian [1], describing a simple quantum emitter in-
teracting with a single quantized electromagnetic mode,
allowing the observation of purely quantum phenomena
such as coherent excitation exchange and the generation
of entanglement between light and matter.

This model has been experimentally realized in mul-
tiple platforms, including Rydberg atoms in microwave
[2, 4] and optical [5] cavities, trapped ions [3], and more
recently, superconducting qubits [6], and quantum dots
[7]. These investigations were recognized with the No-
bel Prize in Physics in 2012, awarded to Haroche and
Wineland for their pioneering work in manipulating in-
dividual quantum systems.

The entanglement generated in these systems is not
only a clear manifestation of the quantum nature of
light-matter interactions, but also an essential resource
for quantum information tasks such as computation,
communication, and sensing. In the Jaynes—Cummings
model, the entanglement between atom and light can be
quantified using the von Neumann entropy of the atomic
reduced density matrix [8]. While the global atom-field
system evolves unitarily and remains pure, the atomic
subsystem typically becomes mixed, signaling the emer-
gence of correlations and entanglement with the field.

In this work, we analyze the time evolution of entangle-
ment between a single two-level atom and a single quan-
tized mode of the electromagnetic field, initially uncor-
related. We study how the choice of the initial state of
the field -whether a Fock, coherent, or squeezed vacuum
state- influences the dynamics of entanglement.

II. THEORETICAL FRAMEWORK

Let us consider a two-level quantum emitter (qubit),
with energy levels |g) and |e), which is coupled to a sin-
gle quantized electromagnetic mode, such as the optical
mode of a high-finesse cavity (see Fig. 1). This can be de-
scribed by the Jaynes-Cummings Hamiltonian [1], which
in the rotating-wave approximation that neglects energy
non-conserving terms, takes its simplest form (from now
on i=1):

H =woo'o +wa'a+ g(oa’ +o'a). (1)

Here, 0 = |g)(e| and o = |e)(g| are, respectively, the an-
nihilation and creation operators of an atomic excitation,
while a and a' are the annihilation and creation operators
associated with the field. They act on a n-photon state
according to a|n) = y/nln—1) and af|n) = vn + 1jn+1).
We denote by w and wq the field and atomic transition
frequencies, and g the atom-photon coupling strength.

We will work in the Fock basis of the composite system,
where each basis state is of the form |, n), withn € {g,e}
denoting the atomic state, and n € Ny the number of
photons. In numerical implementations we will truncate
the basis to a sufficiently large N to ensure all relevant
contributions are accounted for.

The conservation of the total number of excitations
allows the Hilbert space to be decomposed into finite-
dimensional subspaces (blocks), simplifying the analysis
of the system dynamics. In particular, the Hamiltonian
Eq. (1) only couples states of the form |g,n) <> |e,n — 1)
and thus decomposes into independent 2 x 2 blocks acting
on these two-dimensional subspaces. Each block has the

form:
Hn = (;% ng\{ﬁA> ’ @

where A = w — wy is the detuning between the field and
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FIG. 1: Schematics of the system. A single two-level quantum
emitter (with levels |g) and |e)) couples with strength g to a
single light mode (such as a cavity mode). The atomic and
light frequencies are denoted by wo and w, respectively.

the atomic frequency. This reduces the full dynamics to
a sequence of simple two-level systems.

Bipartite Entanglement.— One of the main goals
of this work is to quantify the entanglement generated
between atoms and photons. Entanglement is a prop-
erty of a composite system in which the quantum state
of the whole system cannot be written as a product of
the states of its parts. More precisely, let us consider
a bipartite system with subsystems A and B, whose
Hilbert space can be written as H4 ® Hp. A pure state
|¥) is entangled when it cannot be written in the form
|T) = |®)4|€) B, where |P)4 and |€)p are states of the
corresponding Hilbert spaces H4 and Hp.

Given this partition, we can construct the reduced den-
sity matrix of subsystem A as pa = Trg(p), where p is
the density matrix of the total system and the trace is
performed over the degrees of freedom of subsystem B.
Equivalently, the reduced density matrix of subsystem B
is pg = Tra(p). For a pure state, the bipartite entan-
glement between A and B can be quantified using the
entanglement entropy, which is defined as the von Neu-
mann entropy of any of the two reduced density matrices:

S(ps)-
3)

This quantity vanishes for a state with no entanglement.
Indeed, in this case, the reduced density matrix in the
basis in which the state is a product state is diagonal
with only a single non-zero eigenvalue equal to one.

In this work, we choose A to be a single qubit and B
the light field. Thus, S quantifies the amount of entan-
glement between atom and light.

S(pa) = —Tr(palogpa) = —Tr(pplog pr) =

III. RESULTS: FOCK STATE INITIALIZATION

We start with the simplest case of an initial state being
a Fock state. We choose that the atom is initially in the
excited state, while the cavity contains no photons. This
corresponds to a product state of the composite system
|(t = 0)) = le,0) with no entanglement and a total
excitation number equal to one. The dynamics are thus
restricted to the subspace generated by the two states
le,0) and |g,1), and therefore entirely contained within
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the H; block introduced in Eq. (2).
The diagonalization of H; yields the eigenvalues:

Vg + A2, (4)

Since H is time-independent, the time evolution of the
state is given by |¥(t)) = e7"1¢|U(t = 0)). By express-
ing the state in the Fock basis |¢(t)) = ¢41(¢)|g,1) +
ceo(t)le,0), we find for the coefficients:

A Q
EL=-—+= Q=
272

cg1(t) = —iexp (—i?t) 259 sin(Qt/2)

Ceolt) = exp <i§t> {cos(ﬂt/?) - z‘% sin(Qt/2)
(5)

The ground and exc1ted state populatlons are then given
by Py(t) = |cg.1(t )|? and P, (t) = |ce.0(t)]?, respectively.

Since the state |U(¢)) is always pure (it evolves uni-
tarily), the total density matrix is directly p(t) =
[1(t))((t)|. Performing the trace over the photonic de-
gree of freedom, we obtain the atomic reduced density
matrix, where only the diagonal terms survive:

pat(t) = (1 B OPe(t) Peo(t)> . (6)

Finally, the von Neumann entropy becomes:
S(t) = (1= Pe(t))log (1 — Fe(t)) . (7)

Although the expression diverges formally at P, = 0 and
P, = 1, the entropy approaches zero in both limits. At
these points the atomic state is unentangled, and we will
take S = 0.

According to Egs. (5), the atomic level populations
exhibit oscillations known as Rabi oscillations, with a
frequency and amplitude that depend on A and g. In
the resonant case (A = 0), where the light frequency ex-
actly matches the atomic transition frequency, the atomic
state populations oscillate with frequency €2, = 2g and
maximal amplitude equal to 1, leading to full excitation
transfer between atomic and photonic modes. Instead,
the presence of detuning (A # 0) reduces the oscillation
amplitude by a factor A?/Q? while the frequency in-
creases and is equal to Q,,, = \/4¢g% + AZ. These results
are shown in Fig. (2).

In the same figure, we also plot the entanglement en-
tropy evaluated from Eq. (7). This attains a global max-
imum at P. = 1/2; with Spax = log2, and vanishes
for P, = 0 and P. = 1. Consequently, in the reso-
nant case, the entanglement reaches its maximum when
t = (2n + 1)7/2Q,, and vanishes at t = nn/Q, (with
n being an integer), corresponding to the revival of the
initial state or complete population inversion. In the off-
resonant case, full population inversion does not occur,
and the entanglement vanishes only at ¢ = 2nw/Q,,,
while exhibiting local minima at t = (2n + 1)7/Q,-.

—P.(t) log P.(t) -
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FIG. 2: Population of the |e) state (blue), the average num-
ber of photons (red) and the entanglement entropy S (green),
for the resonant (A = 0, top) and non-resonant (A/g = 1,
bottom) cases, plotted as a function of the dimensionless pa-
rameter gt/m. The initial state is |e, 0).

IV. RESULTS: COHERENT AND SQUEEZED
VACUUM STATE INITIALIZATION

Having understood the dynamics restricted within one
of the Hamiltonian blocks Eq. (2), we will now consider
initially a more general product state |¥(t = 0)) = |e) ®
|®), where the field state is of the general form:

) = > culn). ®)
n=0

Here, the c,, coefficients determine the probability |c,|?
to find the system with exactly n photons.

From now on, and for simplicity, we will restrict our-
selves to the resonant case, and set A = 0 in the Hamil-
tonian Eq. (2). We can now make a similar development
to the previous section for each of the blocks, arriving at
the following time evolution expression:

() = 3" e [—isin(v/ngt) |g, n) + cos(v/ngt) le,n — 1)]
' 9)

Performing the partial trace over the photon degree of
freedom, we obtain for the reduced atomic density matrix
components:

Pt =D len|? cos*(V/ngt) (10)
n=1

oo
Pl = Z icnCh €™ cos(v/n + Lgt) sin(v/ngt), (11)
n=1

with pif =1 — pgt and pi{ = (pc)*.

Note that, in general, the atomic coherences pJ; do not
vanish. This is opposite to the case of having an initial
photonic Fock state. Eq. (6) is not valid here, and S(pat)

needs to be evaluated from Eq. (3).
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A. Coherent States

We will first consider that the photonic field |®) corre-
sponds to a coherent state |a). Coherent states of the
electromagnetic field are fundamental in quantum op-
tics as they are quantum states that best approximate
the classical behavior of a mode of the electromagnetic
field, with minimum uncertainty in any direction in phase
space [9]. They are defined as eigenstates of the annihila-
tion operator of a photon a: a|a) = a|a). The coefficients
in the Fock basis are given by:

a2 a”
_plal?2 O
vn!

The probability p, = |c,|? to find the system with ex-
actly n photons follows a Poissonian distribution with av-
erage photon number (n) = |a|? and variance Var(n) =
|a)?. For small values of |a|, the distribution is narrow
and highly non-Gaussian. However, as |«| increases, it
tends to a Gaussian profile centered at the mean value
(n) = |a|?. Figure 3 (a) shows the photon number dis-
tribution for coherent states with different values of «.

Having defined the coefficients ¢,,, we now compute the
atomic reduced density matrix and evaluate the entan-
glement entropy S(pat) as given in Eq. (3). The result for
pc¢ and [pdf|, together with S(pat), as a function of time
t and for a particular value of @ = 3 is shown in Fig. 3
(b). We also perform a sweep over a range of values of
the o parameter, and compute the entanglement entropy
and plot it versus a and time ¢ in Fig. 3 (c).

These results show a more complex dynamics com-
pared to the case of an initial photonic state with a sin-
gle Fock component. They involve a superposition of
harmonic functions of different frequencies Q,, = /n€l,
weighted by the corresponding coefficients c¢,,.

The dynamics of the reduced density matrix compo-
nents, as depicted in Fig. 3 (b), exhibit distinct behaviors
depending on the magnitude of |«|. In the limit |a| < 1
corresponding to a mean photon number close to zero,
the evolution resembles the regime analyzed in Sec. III.
In this case, both, population and entanglement, display
regular oscillations at frequency 2, = 2g.

As the value of « increases, the system transitions
to a qualitatively different dynamical regime character-
ized by the appearance of collapse and revival struc-
ture in the atomic populations. Superposed on these
dynamics are fast oscillations occurring at a frequency
determined by the dominant photon number component
Qs = 29/ = 2ga (that is, the frequency for which the
distribution is maximum). We note that for a classical
field of intensity o n, populations will perform regular
oscillations at the same frequency €27, but we will not
observe collapse phenomena or entanglement generation.

Instead, for the coherent state (that is still quantum),
these rapid oscillations are modulated by a slower en-
velope arising from differences between Rabi frequencies
corresponding to adjacent photon numbers. A Taylor
expansion around the dominant frequency ()5 leads to

(12)

Cn
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FIG. 3: Atom-field dynamics under the Jaynes-Cummings model for different initial field states: coherent (top panels) and

squeezed vacuum states (bottom panels).

(a) and (d) Photon number distribution |c,|? for different values of o and 7,

respectively. (b) and (e) Time evolution of the excited state population P. = pgf (blue), absolute value of coherence |pgf|
(green) and entanglement entropy S(pas) (red), as a function of the dimensionless parameter gt/m. (c) and (f) Color map of

S(pat) as a function of gt/m and « or r, respectively.

Qrvon ~ Qn+6n- 0Q,,/0n|, = 2¢/ng+dn-g/\/fi, where
on represents small deviations in photon number from
the dominant component. Thus, we find that the dom-
inating difference in frequency (setting in the previous
expression on = 1) is AQ = Q50 — Qi ~ g/vVR = g/a.

The interference among the different Fock components
induced by these frequency differences results in a grad-
ual suppression of the coherent oscillations, leading to the
collapse phenomenon. The associated collapse time scale
can be estimated as T°°! « 1/AQ = «a/g. During this
stage, destructive interference among the various Rabi
frequencies induces a substantial increase in atom-field
entanglement as reflected in the behavior of Fig. 3.

At longer times, partial revivals emerge as the domi-
nant Fock components approximately re-phase. We ex-
pect this to occur for a time TV such that for the
most relevant frequency components §2,, it is fulfilled that
(2, —Qp) T = 27m (for some m integer value). Again,
if we focus on the dominating components such that
0 — Qs = dn-g/a, we find a revival time TV = 27a/g.
This estimation remains only valid for the most popu-
lated states of photons, and therefore full revivals are
not generally observed. Nevertheless, a decrease in the
entanglement entropy S(pq:) is observed at these times
indicating an evolution towards a state more separable.

Additionally, at times around 7" /2, a strong reduc-
tion in the entropy S(pat) is observed with an increase in
atomic coherence between the ground and excited states.
In this regime, the atomic state closely approximates to
|T) ~ (|g) — ile))/Vv/2, corresponding to a nearly pure
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state with minimal entanglement with the field.

B. Squeezed Vacuum States

Squeezed vacuum states are a class of non-classical
states of light that exhibit reduced quantum uncertainty
in one field quadrature at the expense of increased uncer-
tainty in the conjugate quadrature [10]. These states are
generated by applying a squeezing operator to the vac-
uum and are characterized by a nontrivial photon number
distribution that contains only even photon numbers and
exhibits super-Poissonian statistics, that is, the variance
on the photon number is larger than its mean value.

More precisely, for a single optical mode (described
by a and a' operators) the squeezing operator can be
written as S(£) = exp(£*a? — £aT2), where & = re? is
the squeezing parameter. Here the r parameter sets the
strength of the squeezing, while the 6 angle determines its
direction. When applied to the electromagnetic vacuum,
it leads to the squeezed vacuum state S(€)|0), creating
pairs of photons with correlated phase and amplitude.

In this work we will choose § = 0, corresponding
to squeezing in the position-like quadrature, defined as
X = (a+a')/v/2. This leads to a reduced variance in
this operator, compared to the variance of the vacuum
state or a coherent state. Since the uncertainty principle
needs to be fulfilled, this also means that the variance in
the conjugate quadrature (in this case the momentum-
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like quadrature P = i(a —al)y/2) will be increased (anti-
squeezing). A different value of 6 rotates the squeez-
ing axis in phase space, determining which quadrature is
squeezed and which is anti-squeezed.

For the 6 = 0 case, the coefficients ¢, in the Fock
decomposition take the values:

| n/2
! vl (—1tanhr> , ifn =2k

Cp = v coshr - (n/2)' 2
0, ifn=2k+1,
(13)
where k € Ng.

Therefore, only even photon number components are
present in this state. The mean value of photons is given
by 7i = sinh?(r), while the variance Var(n) = (7 + 1) >
7, indicating that the distribution is broader compared
to the coherent state case (now it is super-Poissionian).
The corresponding probability distribution is depicted in
Fig. 3 (d) as a function of photon number n for different
values of the squeezing parameter r.

In this case, and from Egs. (11) we can see that the
atomic density matrix remains diagonal during the full
time evolution, with coherences between the ground and
the excited state identically equal to zero. Nevertheless,
the atom becomes entangled with the field very quickly,
reflecting the spreading of excitation amplitudes across
multiple photon number components. This is shown in
Fig. 3 (e) and (f).

In comparison to the coherent light field case, we do not
observe in this case a collapse where the population oscil-
lations are completely suppressed. In the case of squeezed
vacuumm, dephasing is reduced, due to the peaked dis-
tribution at n = 0 component and a more spaced photon
number components. This leads to more regular oscil-
lations in the observables, with frequency close to the
vacuum Rabi frequency €2, = 2g.

V. CONCLUSIONS

In this work, we have studied the dynamics of the
atomic state populations and the atom—photon entangle-

ment in the Jaynes—Cummings model for three different
initial field states, and have shown how they are governed
by the photon-number statistics.

When the field is prepared in a single Fock state,
where the photon number is sharply defined, the sys-
tem exhibits perfectly periodic Rabi oscillations. In
this regime, entanglement undergoes regular oscillations,
reaching maximal values when the excitation is equally
shared between the atom and the field, and returning to
zero when the system temporarily factorizes. Since there
is no uncertainty in the photon number, no coherences
are present.

In contrast, for initial coherent light states, the su-
perposition of multiple photon-number components gives
rise to the canonical collapse and revival phenomenon.
The initial Rabi oscillations rapidly dephase due to the
spread of photon number dependent frequencies, leading
to a temporary collapse of both the atomic population
and the entanglement. However, constructive rephasing
occurs after a characteristic revival time, and both the
atomic population and entanglement are restored.

Finally, the squeezed vacuum state offers another dis-
tinct possible regime. Its even photon number distribu-
tion and super-Poissonian statistics reduce the spread of
Rabi frequencies leading to more regular oscillations and
prolonged entanglement.

Altogether, our results illustrate the crucial role that
photon-number statistics play in determining both the
population dynamics and the entanglement properties
of atom—field systems. The tools developed in this
work not only reproduce the well-known features of the
Jaynes—Cummings model but also provide quantitative
criteria for tuning and optimizing entanglement genera-
tion.
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