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Abstract: We present an algorithm to enhance the performance of quantum teleportation when
utilizing non-maximally entangled states. We adopt a proposed entanglement measure and calculate
its values for several well-known states. After outlining the quantum teleportation process, we
introduce fidelity functions that can be employed when the considered state fails to meet certain
conditions. These functions are optimized using a Bayesian inference method, known as Multiple
Correlated-Try Metropolis algorithm, by generating Markov chains of length 3 · 105. The results
are applied to analyze a family of two-qubit states parameterized by a single variable, observing
a notable improvement in teleportation performance. Ultimately, we identify a strong correlation
between the proposed entanglement measure and the success rate of quantum teleportation.
Keywords: Entanglement, Markov chain, Density, Qubit, Unitary transformation.
SDGs: Educational development (SDG 4), Industry, innovation and infrastructure (ODS 9).

I. INTRODUCTION

The utility of quantum mechanics in technology has
been evident since the 20th century. In 1993, it was ex-
perimentally verified that, using Bell states —maximally
entangled (m.e.) states of two qubits— it is possible to
“teleport” a qubit from one point to another, without
being concerned about distance. This is the well-known
quantum teleportation (QT) phenomenon. Recently, QT
was shown to coexist with internet signals [1], one step
toward establishing a global-scale quantum network.

A robust measure of entanglement cannot increase un-
der local operations [2] and must provide a clear defi-
nition of maximal entanglement —a crucial requirement
for achieving successful QT. Over time, various meth-
ods for quantifying entanglement have emerged [3]. The
paper [4] proposes a measure defined by an observable,
Jn. This is based on the Segre embeddings, offering a
geometric perspective on quantum entanglement.

The Markov chain Monte Carlo (MCMC) methods
experienced significant growth in the 1980s. Based on
Bayesian inference, these methods can model density
functions without requiring normalization [5]. This ap-
proach may be relevant for studying non-m.e. states in
QT. The insights gained from this method could improve
the performance of such protocol, while also offering a
deeper understanding of the relationship between QT
and entanglement.

Regarding the structure of this work, in Sec. II we
mathematically describe qubits, entanglement and the
method used to measure entanglement in any n-qubit
state. In Sec. III, we explain the QT algorithm for a
single qubit. Sec. IV starts by considering states different
from Bell’s when doing QT. Then, we explain and test
a version of an MCMC algorithm that can be efficient
in those cases. In Sec. V, we apply these concepts to
study specific states parameterized by an angle θ ∈ [0, π).
Finally, in Sec. VI we comment the results obtained and
present options about how this paper may be continued.

II. CHARACTERIZATION OF QUANTUM
ENTANGLEMENT

In this work, we will only deal with mechanical systems
formed by n ≥ 1 fixed 2-level particle states (qubits).
Their quantum states are described by unitary complex
vectors lying in a 2n-dimensional Hilbert space, H2n .
The general state of a system consisting of n ≥ 1 qubits

is of the form

|ψ⟩ = a1 |0
(n)· · ·0⟩+ a2 |0

(n−1)· · · 01⟩+ · · ·+ a2n |1(n)· · ·1⟩ , (1)

where ai ∈ C, ∀i = 1, . . . , 2n, and |a1|2+ · · ·+ |a2n |2 = 1.
The states |i1 · · · in⟩ ≡ |i1⟩O1

⊗ · · · ⊗ |in⟩On
with ij ∈

{0, 1} form an orthonormal basis of H2n . The symbol
Oj represents the observer associated to the j-th qubit.
Some examples of 2-qubit states are the well-known Bell
states:

|ϕ0⟩ = (|00⟩+ |11⟩)/
√
2, |ϕ1⟩ = (|01⟩+ |10⟩)/

√
2,

|ϕ2⟩ = (|01⟩ − |10⟩)/
√
2, |ϕ3⟩ = (|00⟩ − |11⟩)/

√
2.

A state |ψ⟩ of n ≥ 2 qubits is said to be product if there
exist two states |ψ1⟩ ∈ HN1 and |ψ2⟩ ∈ HN2 such that
|ψ⟩ = |ψ1⟩⊗|ψ2⟩. On the contrary, the state is entangled.
It must be satisfied that Ni = 2ni and n1 + n2 = n [6].
Given a product state, it is q-partite if it can be written

as a product of q > 1 states. When q is maximal, i.e.
q = n − 1, then the state is called separable. In this
context, entangled states are also known as 1-partite.
Let us consider a state |ψ⟩ of a system composed by

n ≥ 2 particles. We desire to know if this one is entan-
gled, so we must consider all possible states that could
satisfy |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩. If we denote n1 = l where
1 ≤ l < n, then n2 = n − l. According to the nota-
tion used in Eq. (1), we can think our system where the
particles are arranged in an orderly row.

O1• O2• · · · On−1• On•
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We are interested in looking for a decomposition of our
state in the form |ψ⟩O1···On

= |ψ1⟩O1···Ol
⊗ |ψ1⟩Ol+1···On

.

Another different decomposition one may contemplate
would be obtained by permuting at least two particles,
thereby altering the position of the observers. This corre-
sponds to permuting the Hilbert basis. Nevertheless, this
would probably represent a different state from |ψ⟩. An
example of this would be for the state |B1⟩ from Tab. I:
by permuting the basis, we obtain two different states
|B2⟩ and |B3⟩.
All in all, to characterize the entanglement of our

original state, we must contemplate all the possible bi-
partitions of the system. They are parameterized with l
and there are n− 1 different ones.

There exists a family of observables {Jn,l} —given by
an (n− 1)-hypercube of Segre embeddings from [4]— the
expected values of which on the state |ψ⟩, ⟨J ⟩ψ, are de-
fined as

Jn,l(ψ) := 2−
(

1
2l−1

∑3
i1,...,il

| ⟨ψ|σi1 ⊗ · · · ⊗ σil ⊗ I2n−l |ψ⟩ |2
)

(2)
where σ0, . . . , σ3 are the Pauli operators (see S.M.1).
Their values in general stay in [0, 1]. In [4], one will find
that, given a partition l, from these observables it follows
the next result:

Jn,l(ψ) = 0 ⇔ |ψ⟩O1···On
= |ψ1⟩O1···Ol

|ψ2⟩Ol+1···On
.

From this, it can be shown that if η is the number of
partitions such as Jn,l(ψ) = 0, then the state is (η + 1)-
partite. Furthermore, there is proposed a measurement
of entanglement defined by the observables in Eq. (2):

Jn(ψ) :=
1

n− 1

n−1∑
l=1

Jn,l(ψ). (3)

The larger its value, the greater the entanglement. From
this, the following physical interpretation arises:

Jn(ψ) = 0 ⇔ |ψ⟩ separable state,

Jn(ψ) = 1 ⇔ |ψ⟩ maximally entangled (m.e.) state.

III. QUANTUM TELEPORTATION (QT)

Let us consider three people: Alice, Bob and Char-
lie. The first two are connected via a classical channel,
through which only bits of information can be sent. In
contrast, Alice and Charlie can only transfer qubits of
information through a quantum channel. Alice and Bob
prepare and share the Bell state |ϕ0⟩AB , which is m.e..
The labels A and B represent two different observers [8].
After that, Alice takes one qubit whereas Bob the other
one, and then both move away (see page 6).

Charlie prepares a single qubit |ψ⟩C with the aim of
sending it to Bob, but they are not connected in any
way. Therefore, Charlie decides to transmit his qubit to

TABLE I: Table with values of {Jn,l} and Jn (computed in [7])
for some well-known states of n = 2, 3, 4 qubits. States |ϕi⟩ and
|GHZ⟩ are recognized in the literature as m.e..

Bell states |ϕi⟩ J2(ϕi) 1

|Sep⟩ J3,1(Sep) 0 J3(Sep)

|000⟩ J3,2(Sep) 0 0

|B1⟩ J3,1(B1) 0 J3(B1)
1√
2
(|000⟩+ |011⟩) J3,2(B1) 1 1/2

|W ⟩ J3,1(W ) 8/9 J3(W )
1√
3
(|001⟩+ |010⟩+ |100⟩) J3,2(W ) 8/9 8/9

|GHZ⟩ J3,1(GHZ) 1 J3(GHZ)
1√
2
(|000⟩+ |111⟩) J3,2(GHZ) 1 1

|D4,1⟩ J4,1(D4,1) 3/4 J3(D4,1)
1
2
(|0001⟩+ |0010⟩)+ J4,2(D4,1) 1 5/6

+ 1
2
(|0100⟩+ |1000⟩) J4,3(D4,1) 3/4

Alice, who can make contact with Bob. Unfortunately, it
is impossible for her to get to know this state. Suppose
then that Charlie’s qubit is |ψ⟩C = a1 |0⟩+ a2 |1⟩, where
ai ∈ C such that a21 + a22 = 1.
Let us contemplate the state of the whole system:

|Ψ⟩CAB = |ψ⟩C ⊗ |ϕ0⟩AB . Because of the fact that at
this moment Alice is in possession of two qubits, then
she can perform a measurement in the Bell basis —the
four Bell states form an orthonormal basis of H4—. Af-
ter that, the state of the system formed by the qubits
A and C will be projected onto one Bell state. Thus, it
may be convenient to write |Ψ⟩CAB in terms of the four
Bell states:

|Ψ⟩CAB =
1

2

[
|ϕ0⟩CA |ψ⟩B + |ϕ1⟩CA σB1 |ψ⟩B

+ |ϕ2⟩CA (−iσB2 ) |ψ⟩B + |ϕ3⟩CA σB3 |ψ⟩B
]
.
(4)

Once the Bell measurement is carried out, the state of
Alice’s system is |ϕi⟩CA for some i ∈ {0, 1, 2, 3}. Then,
Bob’s qubit transforms into |φ⟩B = 1√

piCA
⟨ϕi|Ψ⟩CAB .

It is easy to see that pi = 1/4, which matches with the
probability of Alice obtaining |ϕi⟩. Therefore, Bob’s state
is one of the following: |φ0⟩ = |ψ⟩ , |φ1⟩ = σ1 |ψ⟩ , |φ2⟩ =
(−iσ2) |ψ⟩ or |φ3⟩ = σ3 |ψ⟩.
At this point, Alice’s state is |ϕi⟩CA for some i, which

corresponds to the i-th measurement outcome. Alice
then communicates her outcome to Bob using 2 bits of
classical information. With this message, Bob can iden-
tify Alice’s state and, consequently, his own state, which
is |φi⟩B . Considering that the Pauli operators satisfy
σkσk = I, ∀k ∈ {0, 1, 2, 3}, Bob must apply the trans-
formation σi to his qubit. This results in a new state
|φ̃i⟩B = σBi |φi⟩B s. t. | ⟨φ̃i | ψ⟩ |2=1. In other words,
the probability of Bob’s state matching Charlie’s is one,
so the experiment has been successfully completed.
One important observation is that, until the telepor-

tation is completed, neither Alice nor Bob obtains no
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information about the state of Charlie’s particle. This
leads us to conclude that the state |ϕ0⟩AB can teleport
any qubit state prepared by Charlie. Indeed, it is known
that for teleportation to be successfully completed, the
only requirement for the shared state is that it must be
m.e.. However, if this state is not a Bell state, the pro-
cedure might differ slightly.

Instead of Alice and Bob preparing one Bell state, let
us suppose that the shared state, |Φ⟩AB , is an arbitrary
state of two qubits: it could be product, entangled or
m.e.. According to Eq. (1), let be |Φ⟩ = b1 |00⟩ + · · · +
b4 |11⟩ for some bi ∈ C. We will continue to assume that
Alice always performs a Bell measurement on her particle
and Charlie’s. Hence, it is still convenient expressing the
state of the entire system in terms of the four Bell states:

|Υ⟩CAB =

3∑
k=0

ci |ϕi⟩CA |φi⟩B . (5)

After the measurement, Alice will obtain the outcome
|ϕj⟩ with probability pj = |cj |2 for some j ∈ {0, 1, 2, 3}.
Bob’s state will change then to |φj⟩. The unclear point
now is the transformation Bob may apply to his qubit
once he learns of Alice’s outcome. If it is a Bell state or
one satisfying some specific conditions proved in [9],{

|b1|2 + |b2|2 = |b3|2 + |b4|2 = 1
2

b1b3 = −b2b4
, (6)

then this is not an issue. The thing we already can ensure
is that QT may not be one hundred per cent successful,
as the requirement of the shared state to be m.e. might
no longer hold. That is, the state Bob receives at the
end of the process |φ̃j⟩B will have a certain probability
(less than or equal to one) of being the state of Charlie’s
|ψ⟩C . This probability is referred to as fidelity and, for
the j-th outcome, is computed as

Fψj := |B ⟨φ̃j |ψ⟩C |2. (7)

From now on, we will refer to the set of transformations
Λ = {Λ0,Λ1,Λ2,Λ3} as the instructions Bob must follow
to complete QT. If Alice has obtained the Bell state |ϕj⟩,
then Bob will use the transformation Λj , so his state at
the end of the experiment will be |φ̃j⟩B = Λj |φj⟩B . Note
that these instructions must only depend on the shared
state |Φ⟩AB and must be the same for every |ψ⟩C , so we
will often write ΛΦ.

Assuming these instructions are known, we provide a
way for characterizing how effective |Φ⟩AB is for teleport-
ing a single qubit |ψ⟩C . This is done by considering the
following weighted arithmetic mean:

FΦ(ψ) :=

3∑
i=0

piF
ψ
i =

3∑
i=0

pi|B ⟨φi|(ΛΦ
i )

†|ψ⟩C |2. (8)

From this, we will say that the state |Φ⟩ is perfect for
quantum teleportation (PQT) if FΦ(ψ) = 1, ∀ |ψ⟩ ∈ H2.
For example, we already know that the four Bell states
are PQT and the corresponding instructions are

Λϕ0 = {Λ0 = σ0, Λ1 = σ1, Λ2 = σ2, Λ3 = σ3},
Λϕ1 = {Λ0 = σ1, Λ1 = σ0, Λ2 = σ3, Λ3 = σ2},
Λϕ2 = {Λ0 = σ2, Λ1 = σ3, Λ2 = σ0, Λ3 = σ1},
Λϕ3 = {Λ0 = σ3, Λ1 = σ2, Λ2 = σ1, Λ3 = σ0}.

IV. OPTIMIZING INSTRUCTIONS FOR QT

The main challenge when attempting to conduct QT
with a given shared state |Φ⟩AB is determining the ex-
act instructions ΛΦ. The transformations ΛΦ

j are 2 × 2
unitary matrices (see S.M.2), so their general form is

ΛΦ
j (α, β, γ) =

(
eiα cos γ eiβ sin γ

−e−iβ sin γ e−iα cos γ

)
(9)

∀j ∈ {0, 1, 2, 3}. Thus, each ΛΦ
j is fully determined, up

to a global phase, by a set of points χΦ
j = {(α, β, γ)k}

where α, β, γ ∈ [0, 2π). The QT fidelity from Eq. (7) may
depend on these three parameters like

Fψj (α, β, γ) = |B ⟨φj | (ΛΦ
j (α, β, γ))

† | ψ⟩
C
|2. (10)

The instructions ΛΦ must be those that yield the best
teleportation results. If |Φ⟩ satisfy Eq. (6), then the
state is PQT [9], its instructions are perfectly known and
J2(Φ) = 1 (see S.M.3). More generally, if |Φ⟩ is m.e.,
finding them is likely straightforward. But if J2(Φ) < 1
or the number of qubits increases, this task can become
significantly more complex, potentially requiring a brute
force method. In such cases, let us consider a set of
m arbitrary qubits Ω = {|ψ1⟩C , . . . , |ψm⟩C}. The next
function, defined using fidelities of the form Eq. (10),

Fj(α, β, γ) :=

m∏
k=1

Fψk

j (α, β, γ) (11)

may give an estimation of the value of (α, β, γ) character-
izing the transformation ΛΦ

j that Bob must follow when
Alice gets the j-th outcome.
We are interested in finding the global maximums of

the latter function. Nevertheless, since Eq. (11) provides
a statistical value of the parameters because of Ω, then
Fj is a kind of an error function. This is the reason
why is more convenient finding the distributing values of
(α, β, γ) in respect of Fj .

A. Multiple Correlated-Try Metropolis (MCTM)

Let us consider a fixed outcome j and let be x =
(α, β, γ), where α, β, γ ∈ [0, 2π). Instead of using
Eq. (11), we will take fj(x) := − lnFj(x) ∈ [0,∞). By
following [10], there exists a density function ρT (x) ∝
exp(−fj(x)/T ) =: gT (x), where T > 0 is a scale param-
eter. Note that the modes of ρT (the points with higher
density) match the minimum values of fj . The param-
eter T does not change these modes, but the lower its
value, the narrower the density at these points.
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FIG. 3: Contours of the
modes from the densities
ραβ , ρβγ and ργα. The data
has been obtained imple-
menting the MCTM algo-
rithm to the states |Φ(θ)⟩ =
cos θ |00⟩+ sin θ |11⟩ for ten
different values of θ ∈ [0, π).
For θ ∈

{
π
4
, 3π

4

}
the states

are m.e., whereas the re-
maining states are entan-
gled but not maximally (see
Fig. 2).

The main objective here is to look for the form of the
target density ρT . We could try to compute

∫
R3 gT (x)dx,

but this integral is too complex. Fortunately, [11] pro-
vides a method for estimating ρT without computing
any integral at all. This algorithm is called Multiple
Correlated-Try Metropolis (MCTM). Being one MCMC
method, it generates random numbers from the known
function gT , which produces a Markov chain {xt}Nt=1 such
that its invariant density function matches with our tar-
get density ρ ∝ gT . The generation of such Markov chain
using a particular version of the MCTM algorithm is de-
scribed in S.M.4.
We will use large values of N , like 3·105, and a number

of m = 50 random qubits for a better convergence to ρT .
Fixed these values, we will need to choose an appropriate
value of T following the statement mentioned in [5]: the
optimal acceptance rate of points during the algorithm
should be around 1/4. We have seen that values of T
around 2.5 − 3 are good ones. On the other hand, the
points of the resulting Markov chain after the algorithm
theoretically have been generated from the density func-
tion ρT . But for this, it is required a certain period of
convergence. This is the reason why it is necessary to
apply what is called some burn-in period : removing from
the Markov chain the points at the begging that have
not already converged. We have observed that a burn-in
period of b = 300 points is more than enough.

Once we get such set of points {(α, β, γ)t}Nb , thanks
to the function KernelDensity from the Python’s li-
brary sklearn —see [7]— we can plot the 2-dimensional
marginal densities ραβ , ρβγ and ργα which better fit the

0 π/2 π 3π/2 2π
0

π
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π

3π

2

2π
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β
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4.0
·10−2

0 π/2 π 3π/2 2π
β
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0 π/2 π 3π/2 2π
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0.6

2.4

4.2
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FIG. 1: Plot of the 2D marginal densities ραβ , ρβγ and
ργα associated to the j = 0 outcome when the shared

state is |ϕ0⟩. From their modes it is obtained that χϕ0
0 =

{(0, β1, 0), (0, β2, π), (π, β3, 0), (π, β4, π)}, where βi can be any in
[0, 2π).

simulated data. By combining the modes of each 2D
density, we obtain the modes of the 3D density ρT . For
instance, we have performed the MCTM method on the
shared Bell state |ϕ0⟩. For each outcome j, the modes of

the associated 3D density, χϕ0

j , are effectively the unique

points defining the transformation Λϕ0

j from Λϕ0 (see

Fig. 1 or page 6).

V. CONNECTING QUANTUM
TELEPORTATION AND ENTANGLEMENT

In this section, we focus on states of the form |Φ(θ)⟩ =
cos θ |00⟩+sin θ |11⟩, where θ ∈ [0, π). See in Fig. 2 that,
depending on the angle, the state may be non-ideal for
QT because the observable from Eq. (3) varies from 0 to
1, so it can be non-m.e.. Therefore, we will implement
the MCTM algorithm to determine their optimal instruc-
tions and evaluate their efficacy in QT. Furthermore, we
will analyze the relationship between the resulting suc-
cess rate of QT and the observable J2.

0 π/4 π/2 3π/4 π

0.0

0.2

0.4

0.6

0.8

1.0

θ

J2 F SF

FIG. 2: Representation of the J2 values, Eq. (3), and the arith-
metic mean values Fθ of the set {FΦ(θ)(ψ)}ψ , Eq. (8), with its
corresponding standard deviation SF , for each state of the form
|Φ(θ)⟩ = cos θ |00⟩+ sin θ |11⟩. These mean values have been com-
puted by taking 105 arbitrary qubits |ψ⟩.

For θ /∈
{
π
4 ,

3π
4

}
, the corresponding states are not m.e..

After applying the MCTM algorithm to selected angles
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(see Fig. 3), we find that ΛΦ(θ1) = Λϕ0 for all θ1 ∈
(
0, π2

)
,

whereas ΛΦ(θ2) = Λϕ3 for all θ2 ∈
(
π
2 , π

)
. For angles

θ3 ∈
{
0, π2

}
, we have obtained ΛΦ(θ3) can be either Λϕ0

or Λϕ3 .
When θ ∈

{
π
4 ,

3π
4

}
, the states correspond to |ϕ0⟩

and |ϕ3⟩, respectively, which are m.e.. The results (see
Fig. 2), J2(Φ(θ)) = 1 and Fθ = 1, with a negligible error,
align with our expectations. In contrast, for θ ∈

{
0, π2

}
,

we find J2(Φ(θ)) = 0, together with the minimum fi-
delity Fθ = 0.62 and the maximum standard deviation
SFθ

= 0.13 across all angles in [0, π). This result is con-

sistent, as these states correspond to |00⟩ and |11⟩, which
are product states. For the remaining angles, even with
the MCTM method, QT is not fully successful: the fi-
delity values Fθ + SFθ

do not reach the maximum value
for any angle. This suggests that these states are not
m.e., which is also supported by J2.

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0

F = 2/3

0.
12

5

0.
01

5

J2

F

SF

FIG. 4: Plot of the mean values F and the std. deviation SF ,
depending on J2. The corresponding data is from Fig. 2.

The dependence of QT success on entanglement is ev-
idenced by observing a continuous and symmetric evo-
lution of Fθ and J2 with respect to θ = π

2 . As seen in

Fig. 4, a clear correlation exists between J2 and F . When
the shared state is less entangled, QT success decreases,

resulting in higher fidelity errors. At the same time, the
standard deviation increases, indicating that QT success
becomes more sensitive to the qubit being teleported.
Finally, implementing the MCTM algorithm for states

with J2 > 0.125 improves QT performance compared to
other methods. For instance, [8] introduces an alterna-
tive such that the best possible fidelity result is 2

3 .

VI. SUMMARY AND CONCLUSIONS

In this work, we explored how well the proposal en-
tanglement measure J2 relates with the QT efficiency.
We first introduced physical interpretations for the val-
ues of J2. To analyze QT using non-full entangled states
(J2 < 1) of the form |Φ(θ)⟩ = cos θ |00⟩+sin θ |11⟩, we im-
plemented the MCTM algorithm. Using the parameters
N = 3 · 105,m = 50, T = 2.5 and b = 300, we obtained
optimal density distributions which describe the set of
transformations ΛΦ(θ) for QT. The results support the
conclusion that if |Φ⟩ is PQT, then J2(Φ) = 1. Addition-
ally, the MCTM algorithm provided better fidelity out-
comes compared to alternative approaches. Future work
could focus on investigating alternative measures beyond
Bell’s, which might help establish a stronger connection
between Jn and QT. Finally, the MCTM algorithm used
in this study can be perfectly adapted and potentially
applied to states with more qubits, where problem com-
plexity increases significantly. This could enable tele-
porting multiple qubits, thereby improving the rate of
information transmission via QT.
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Resum: Presentem un algoritme per millorar el rendiment de la teleportació quàntica quan
s’utilitzen estats no màximament entrellaçats. Adoptem una proposta de mesura d’entrellaçament i
calculem els seus valors per a diversos estats coneguts. Després de descriure el procés de teleportació
quàntica, introdüım funcions de fidelitat que es poden utilitzar quan l’estat considerat no compleix
certes condicions. Aquestes funcions s’optimitzen mitjançant un mètode d’inferència Bayesiana,
conegut com Multiple Correlated-Try Metropolis algorithm, generant cadenes de Markov de longitud
3 · 105. Els resultats s’apliquen per analitzar una famı́lia d’estats de dos qubits parametritzats per
una sola variable, observant una millora notable en el rendiment de la teleportació. Finalment,
identifiquem una forta correlació entre la mesura d’entrellaçament proposada i la taxa d’èxit de la
teleportació quàntica.
Paraules clau: Entrellaçament, cadena de Markov, Densitat, Qubit, Transformació unitària
ODSs: Aquest TFG està relacionat amb els Objectius de Desenvolupament Sostenible (SDGs)

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de les desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures X

Aquest TFG d’un grau universitari de F́ısica es relaciona amb l’ODS 9 d’indústria, innovació i infraestructures:
contribueix al coneixement fonamental per avançar en les tecnologies de comunicació quàntica. Més concretament, el
desenvolupament d’algoritmes que milloren els protocols de teleportació quàntica incentiva la innovació en xarxes de
comunicació més segures i efectives. A més, promou el desenvolupament educatiu de qualitat (ODS 4), ja que implica
metodologies avançades de resolució de problemes rellevants per a la f́ısica i les ciències computacionals.
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SUPPLEMENTARY MATERIAL

S.M.1 The Pauli matrices used in this work are

σ0 :=

(
1 0

0 1

)
, σ1 :=

(
0 1

1 0

)
, σ2 :=

(
0 −i
i 0

)
and σ3 :=

(
1 0

0 −1

)
.

S.M.2 A unitary transformation on H2 is a 2 × 2 complex matrix U such as (U)† = (U)−1. These type of matrices
preserve the norm of two-dimensional vectors, so if |ψ⟩ is a physical state in H2, then so is U |ψ⟩. The general
form of U can be written as

U = eiθ

(
eiα cos γ eiβ sin γ

−e−iβ sin γ e−iα cos γ

)
,

where α, β, γ and θ are four real parameters.

S.M.3 Let |Φ⟩ = a1 |00⟩+ a2 |01⟩+ a3 |10⟩+ a4 |11⟩ be a 2-qubit state.

If
|a1|2 + |a2|2 = |a3|2 + |a4|2 = 1

2

a1a3 = −a2a4

}
=⇒ |Φ⟩ is PQT and J2(Φ) = 1.

In this case, the instructions ΛΦ are of the form (up to a global phase)

ΛΦ
0 =

√
2

(
a1 a2
a3 a4

)
ΛΦ
1 =

√
2

(
a3 a4
a1 a2

)

ΛΦ
2 =

√
2

(
a3 a4
−a1 −a2

)
ΛΦ
3 =

√
2

(
a1 a2
−a3 −a4

)
and the outcomes of the Bell measurement are all equiprobable, i.e. pj = 1/4 for all j = 0, 1, 2, 3 and for any
teleported state |ψ⟩ ∈ H2.

S.M.4 The version of the MCTM method we have used in this work generates a Markov chain {xt}N1 following these
steps:

1. We choose a random point in V as the first member of the chain, x1, such as fj(x1) ̸= ∞.

2. For t ≥ 1, let x := xt be the last point of the chain. From a Gaussian distribution N ((xT , (k). . ., xT )T ,Σ3k),
we generate k trial proposals y1, . . . , yk. The covariance matrix Σ3k is of the form

Σ3k =


Σ Γ · · · Γ

Γ Σ Γ Γ

· · · · · · · · · · · ·
Γ Γ · · · Σ


where Σ = σ2I3 and Γ = σ2

1−k I3 for some σ2. We will use values of σ2 around 10− 20. Moreover, the work

[11] indicates that, for this version of the MCTM, a number of k = 7 trial proposals is a good one.

3. We compute gT (yl) for each l = 1, . . . , k, and then we select one of these points y with probability propor-
tional to gT (y).

4. We generate x̃1, . . . , x̃k points from the same Gaussian distribution from before, but with y instead of x
and conditioning that x̃k = x.

5. We compute the acceptance probability :

A(y, xt) = min

{
1,
gT (y1) + · · ·+ gT (yk)

gT (x̃1) + · · ·+ gT (x̃k)

}
.

6. The following point of the chain xt+1 is y with probability A(y, x) or x with probability 1−A(y, x).

7. The steps 2− 6 are repeated with the last point of the chain xt+1, until xN is reached.
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