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Abstract: This work has consisted on finding Mott insulating phases for a Hubbard model at
half-filling. The numerical simulations have been performed with Time-Evolving Block Decimation,
a tensor network method. Two interaction terms have been considered: on-site repulsion U and
next-neighbour repulsion V. The introduction of the first has allowed to observe a spin density wave
phase that lost kinetic energy with on-site repulsion strength, and the latter has shown a distortion
of the SDW antiferromagnetic ordering with a phase transition at V = U/2, in which the fermion
ordering changes to charge density wave. The results show that simulations of the Hubbard model
can be carried out in an optimal and satisfactory way using tensor network formalism.
Keywords: Hubbard model, tensor networks, imaginary time evolution, Coulomb repulsion, Mott

insulator.

SDGs: This work is related to sustainable-development goals 4 and 12 (see page 6).

I. INTRODUCTION

The study of the properties of electrons in a lattice is
one of the most important problems of condensed mat-
ter physics. As essential as it is, it poses a practically
impossible task to solve, since one should account for
all particle-wise interactions in the crystal, both atomic
and electronic, to obtain an exact solution. The most
standard hypothesis to make when attempting to solve
this problem is a mean field approximation that neglects
direct particle interactions and models their collective
effect as a mean potential field with which all parti-
cles interact. This gives rise to band theory, which as-
sumes any electron interacts with a mean periodic poten-
tial and extrapolates a material’s conductive properties
based on the filling of its energy bands or quantum states:
partially-filled bands give rise to metallic behaviour, com-
pletely full bands are insulating. There are materials,
however, that present a conductivity orders of magni-
tude lower than is predicted by band theory: such is the
case of oxides like MnO, CoO and NiO, as de Boer and
Verwey first pointed out [1]. However, it was Nevill Mott
and Rudolf Peierls who proposed that this could be an
effect of strong electron-electron repulsion [2].

Motivated by this, one may take a different approach:
instead of defining a general potential with which all elec-
trons interact, the problem can be attacked from a quan-
tum many-body standpoint, where particle-wise interac-
tions are considered explicitly. From this perspective, the
most essential actions a particle can perform are to move
to another site and interact with another particle: this
implies that every particle will obey a Hamiltonian with
a kinetic term and a potential term. With no interaction,
particles will move freely across the lattice, and become
delocalised. The point at which electron-wise repulsion
reduces the conductivity of a material is known as a Mott
insulator phase, where Coulomb repulsion between elec-
trons becomes significant enough that the particle wave-
functions localise to reduce their overlap. Formally, a

Mott insulator is any insulating phase that is not pre-
dicted by band theory, and thus arises purely from par-
ticle interaction.

Throughout this project, a numerical solution for a
1D Hubbard model has been implemented to observe the
consequences of applying explicit Coulomb repulsion to a
lattice with fermions at half-filling. To solve this problem
in an optimal way, tensor network formalism has been
employed, which enables to operate with large quantities
of entangled data in an efficient way by narrowing entan-
glement. Time-Evolving Block Decimation has been the
method of choice to converge the system into the ground
state. With it we have been able to observe two types
of phases of Mott insulating nature; a spin density wave
and a charge density wave.

II. THEORETICAL BACKGROUND

A. The Hubbard model

The Hubbard model describes the behaviour of parti-
cles in a lattice using the following Hamiltonian:

H=-—t Z(cjcj + c}cz-) + UE:TLTM7 (1)
(i) i

where t is the tunnelling amplitude and U is the on-
site interaction strength: the second term adds an en-
ergetic cost of U for every doubly-occupied site. For
repulsive systems, U > 0. Although the model can be
employed for bosons as well (Bose-Hubbard model), this
work will focus on its fermion version (Fermi-Hubbard),
as we strive to simulate the behaviour of electrons in a
lattice, which is clearly fermionic. We will consider only
non-degenerate (s) orbitals, which can only allocate up
to two electrons. This implies a Fock basis of (0,1, ], 1J):
a site can either be unoccupied, occupied by a spin up or
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spin down electron, or occupied by both. Being a quan-
tum model, our wavefunctions will return a set of ampli-
tudes at any site giving the probability of observing each
Fock state in it. In the non-interacting case (U = 0),
particles tunnel arbitrarily throughout the whole lattice
and become delocalised. Technically, particles become
fully localised only in the limit U — oo, but throughout
this work we will refer to particles as ”localised” when
found in an identifiable ordering that reduces kinetic en-
ergy, which for us is any ground-state for U > 0. As
the on-site repulsion is increased, in half-filling conditions
(same amount of 1 and | particles, half per site) parti-
cles will tend to occupy a single cell to avoid wavefunction
overlap, which will become increasingly costly in energy:
however, it will not be fully eliminated, as a compromise
between repulsion and kinetic tendencies must be found.
Following that concept, Coulomb repulsion, modelled by
U, is less significant than Pauli exclusion: particles will
favour a neighbour with which their wavefunctions can
even slightly overlap, instead of being fundamentally ex-
cluded. An alternate explanation is considering that the
probability for a particle to jump to one of its nearest
sites is not null for finite U, giving rise to an effective
spin coupling. This effect is known as superexchange [3],
and results in antiferromagnetic ordering for large on-site
repulsion: | 1, ), 1, ...). The resulting alternating spin
arrangement is also known as a spin density wave, as the
site spin is spatially modulated in a wave-like manner
(two-site period).

Following the Coulomb repulsion consideration intro-
duced with U, one may extend the effect adding a
nearest-neighbour interaction term, obtaining the ex-
tended Hubbard model:

Hextended = 7'lHubbaer +V Z nin;, (2)
(i,5)

where n; is the total number of particles at site i. This
term adds an energetic cost of V' for two adjacent par-
ticles. Again, only repulsive interactions will be consid-
ered, corresponding to V' > 0. Upon increasing V' to a
value comparable to that of U, there arrives a point at
which the combined repulsion of the adjacent sites beats
the on-site one, and the particles order themselves in spin
pairs, leaving an empty site between them. In second
quantisation notation, |2,0,2,0,...). Since both up and
down electrons have the same charge, this phase is known
as a charge density wave, as the site charge is spatially
modulated in a two-site periodic manner [4]. This phase
implies particle localisation as well, making it another
example of a Mott insulating phase at half-filling.

On another note, all systems with explicit correla-
tion between particles exhibit an additional complication
when one intends to solve them numerically: computa-
tional cost. To perform correct simulations and keep
computation efficient and relevant we must choose an ad-
equate method.
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B. Tensor network formalism

The Hubbard model for s orbitals describes a system
with a local Hilbert space of dimension d = 4: as such,
the Hilbert space of a 1D Hubbard lattice of N sites has
a dimension of 4V. Being a superposition of all possible
states, a random wavefunction ¥ from this system will
have the same dimension as the Hilbert space. Since it
grows exponentially with system size, the Hilbert space
quickly becomes infeasible to fully explore via traditional
methods like exact diagonalisation. Tensor networks of-
fer an alternative to this explicit representation with the
factorisation of ¥ into lower-rank tensors with explicit
entanglement connections [5]:

|¥) = Z ASAZ AR CLASN L Isisaeasn). (3)
{si}

This is what is known as a matrix product state, and
it is one of the most standard tensor network structures.
With it, the information of every site is stored in its own
tensor, each with its own set of Fock basis amplitudes
regarding the probability of that site being in each state
(stored in what is known as the physical index s;), as
well as pairwise-shared indices (known as virtual or in-
ternal bonds «;) that connect adjacent sites. Internal
bonds contain information about the entanglement be-
tween both sides of the partition said bond represents:
for a given bond dimension Yy, an internal bond can rep-
resent an entanglement entropy of up to logy. This is
where another great advantage of tensor network nota-
tion comes into play: it can be shown that ground states
of one-dimensional gapped systems with local interac-
tions follow an area law for the entanglement entropy [6]
[7]. This property implies that the ground states of such
systems exhibit limited entanglement, and this quantity
scales as one dimension less than the system’s. In the
case of a 1D system, this means that the entanglement
entropy of the ground state saturates at a certain value
constant with system size, and therefore the bond dimen-
sion that can store this given value allows for a precise
representation of the state. Imposing an upper threshold
for the bond dimension regardless of size is a huge ad-
vantage, as it allows to set a limit to the number of op-
erations necessary to simulate the system correctly, that
is notably smaller than when working with a complete
representation.

The concept of maximum bond dimension becomes
particularly understandable when the system is evolved.
Suppose one wishes to perform an operation that involves
two adjacent sites (for example, as we will see in the fol-
lowing section, time-evolving them): the tensors belong-
ing to these two sites will be first contracted together
via their internal bond «;, leaving a two-site tensor of
indices x x d x d x x, where x are internal indices and
d are physical indices. A two-site operator can be ap-
plied onto this tensor by contracting the operator via the
shared physical indices. After performing this operation,
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the following step is to split back the total tensor into
sites to recover the MPS form. The most standard pro-
cedure to do so is Singular Value Decomposition (SVD),
which factorises an arbitrary m x n matrix into a n x n
rotation matrix V', a m x n rescaling array of eigenvalues
S, and a m x m rotation U, such that A = USV*. SVD
is performed on matrices, two-index tensors, which can
easily be derived from arbitrary tensors by index combi-
nations and rearrangements that will be undone after the
partition: in this case, the tensor is reshaped following
x X dxdxyx — xdx xd. Clearly, eigenvectors corre-
sponding to the largest-magnitude eigenvalues will be the
ones with the greatest contribution to the total quantum
state. We can construct a good enough approximation
of the site tensors keeping only the greatest-magnitude x
eigenvalues: this is known as truncation. Software imple-
mentations of SVD commonly return the result matrices
in such a way that S is an array of eigenvalues in de-
scending order, making truncation easy to implement.

In the context of splitting across a tensor derived from
two sites, the array of eigenvalues will contain informa-
tion about the entanglement of the system at both sides
of the split, as it finds itself in the midst of the new inter-
nal bond. By limiting the amount of eigenvalues, one is
limiting the maximum entanglement entropy that can be
expressed between two system partitions; however, we
know by the area law that this is an affordable limita-
tion, as the entanglement entropy naturally saturates at
a given value. Even if the bond dimension imposed is not
precisely the one that satisfies the area law, the lowest
eigenvalues are the ones with lesser contributions to the
complete state.

C. Time-Evolving Block Decimation

This section describes the method with which the
ground state wavefunctions have been computed for an
initial random state and a given Hamiltonian. An arbi-
trary wavefunction ¥(z,t) can be expressed as a linear
combination of Hamiltonian eigenstates:

U(ot) = 3 eathu(a)e Bt/ (1)

Where ¢,, are the amplitudes of each eigenstate in this
particular ¥(z,t), and E,, are the energies of the respec-
tive eigenstates i, (z). The ground state is the Hamilto-
nian eigenstate of lowest energy, and a particularly inter-
esting state to understand the properties of a system, es-
pecially at low temperatures. In terms of Fourier series,
as is defined the wavefunction above, the ground state
will be the eigenstate that oscillates at the lowest fre-
quency, being the component with the smallest exponent
(in magnitude) in the time evolution operator e~*Fot/%,
A change of variables can be done such that 7 = it, where
7 is the imaginary time. Having removed the imaginary
unit from the exponent, the time evolution operators be-
come decaying exponentials:
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lim ¥(z,7) = lim chwn(a:)efE"T/h. (5)

T—>00 T—r00

Upon advancing in imaginary time 7, all exponential
terms will decay at a certain rate, with the lowest rate
being that of the ground state term. If instead of do-
ing a full projection to 7 — oo one applies imaginary
time steps 07 and normalises the wavefunction after each
step, the state will evolve to an increasing spectral domi-
nation of the ground state, and this can be iterated until
all higher-energy states have a negligible contribution:
with due normalisation, the lowest-energy coefficient cq
becomes trivial and ¥ (z,7 — 00) = ().

To implement this projection numerically a time evo-
lution operator must be constructed by exponentiating
the Hamiltonian H: this is not trivial when terms do not
commute, as is the case of hopping and interaction terms
in the Hubbard model. The Hamiltonian can, however,
be expressed as a sum of commuting terms:

e M — = (HotHe)™ — iy (e’H"T/nefﬂeT/n)n (6)
n—oo

Such operator is thus split into two subsets, the el-
ements of which all commute; notice that d7 = 7/n.
This process is known as Suzuki-Trotter decomposition
or Trotterization. The common procedure is splitting the
Hamiltonian into odd terms (H, = >_ h;h; 1 for odd i,
acting on site pairs starting with an odd index like 1-2, 3-
4...) and even terms (H.). Now, the application of one of
these two partitions H; onto V¥ is equivalent to applying
their terms h;h; 11 individually (just two-site interaction
tensors, known as gates), as they commute. Thus, it is
only necessary to employ these gates, of dimension d?, to
evolve the system into the projected ground state, effec-
tively breaking down the action of a full exponentiated
matrix into a sequence of gate applications, each consist-
ing of x?d* operations. The splitting (decimation) of the
full time evolution operator into local gates is what is
known as Time-Evolving Block Decimation. Recall now
the MPS representation introduced earlier: if a N-site
wavefunction were described by a vector of dV coeffi-
cients, its imaginary time step operator e %7 would be
described by a matrix of dimension d x d"V, and every
imaginary time step (in which said operator is applied
onto the wavefunction) would consist of d?" operations
(in other words, have a complexity of d>V). By splitting
the Hamiltonian into gates, one must apply N (N —1 for
open boundary conditions) gates onto the sites, resulting
in a time step of complexity Nx2d* (not accounting for
SVD, that has a complexity of x3d?). Keep in mind that
truncation is implemented after every gate application:
when the full tensor is split to recover MPS form using
SVD, the eigenvalue array is limited to its x greatest el-
ements.

Overall, this is an extraordinary improvement in com-
puting cost: TEBD time steps scale linearly with system
size, not exponentially. This allows for much more ver-
satile simulation sweeps and lighter memory loads.
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III. RESULTS

In this section the measurements of the ground-state
wavefunctions obtained by TEBD are discussed. Ten-
sor operations have been programmed with Julia and us-
ing the ITensors and ITensorMPS libraries, which allow
for explicit quantum number conservation in finite MPS,
necessary to impose half-filling. A TEBD algorithm for
such MPS objects has been implemented with direct gate
contractions and normalisation, and different observables
have been defined to study the ground-state properties.
Initial wavefunctions were generated with random coeffi-
cients at half-filling. The code is available at [11].

A. Convergence

particle interaction, which is the aim of this project. All
simulations have been run with dr = 0.01 and an energy
convergence precision of 1076,

B. On-site interaction
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Figure 1: Energy per site as a function of TEBD iter-
ations, for N = 10 and U = 4. The full energy of the
system decays in a practically exponential manner, as is
expected from imaginary time evolution. The decay rate
is proportional to the time step, dr.
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Figure 2: Converged energy per site and relative en-
ergy per site error (considering the maximum simulated
bond dimension as the standard value, x = 60 except
for N=40) as a function of bond dimension for different
system sizes (U =4, V = 0).

A bond dimension of 20 has been deemed sufficient to
simulate the following ground states from here on, as a
bond dimension of 60 yields a result with a relative dif-
ference of ~ 0,5%. It’s easy to see that increasing bond
dimension incorporates increasingly low-energy terms, to
a point where their addition becomes trivial. Since the
simulations performed in this work are of open-boundary
conditions and run in a conventional laptop, boundary
effects are unavoidable due to insufficient scaling capa-
bilities, as the N = 40 systems were already time-costly
to simulate: however, a limited number of sites still al-
lows for a heuristic interpretation of the effects of direct
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U

Figure 3: Average expectation value of the Fock basis
states and kinetic energy T' as a function of the on-site
potential U for a lattice of N = 20.

This plot successfully recovers the diagram shown in
the third figure of [8], being the expected result of the
on-site potential repulsion and the display of Mott insu-
lating behaviour. One can see that for U = 0 all states
are equiprobable, no electron organisation is favoured.
However, upon introducing U > 0, doubly-occupied and
empty sites are slightly disfavoured, and this fact be-
comes more notorious for larger values of U. This lo-
calisation comes with a decrease in the kinetic energy:
notice that since the hopping term of the Hamiltonian
is negative, a decrease in absolute value of the measured
kinetic energy translates to a lower tunnelling probabil-
ity between sites. For near-zero values of ny|, recalling
that we have imposed half-filling, the electrons are prac-
tically localised, one in each site, in alternating values
of spin. This alternating ordering can be seen using the
spin-spin correlation function, which gives information of
how similar two expected values of spin are.
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Figure 4: Spin correlation matrix for U = 10 and a lattice
of size L = 10.
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A chequerboard pattern is manifest, indicating neg-
ative spin correlation among nearest neighbours, corre-
sponding to an antiferromagnetic ordering. It can be
shown that the correlation magnitude of two sites decays
exponentially with the distance [9]. The block-diagonal
high correlations are a consequence of the open bound-
ary conditions and can be seen to vanish away from the
boundaries as lattice size is increased.

C. Extended model

A common choice for the order parameter of the
SDW-CDW phase transition is the staggered charge
density[10]:

Acpw = D (=) nigy) (7)

Figure 5: Evolution of the staggered charge density
Acpw as a function of V/U for L = 10.

As is easy to see, this value will increase in the case of
double occupancy in alternating sites, and will approach

zero if electrons are regularly distributed throughout the
lattice (such that the expected number of electrons in one
site is similar to that of its nearest neighbours). This is
a comfortable choice for an order parameter because it
is local: that is, it is a sum of local expectation values,
making it a relatively easy quantity to compute.
Rescaling of N.N. repulsion V' sweeps to the ratio V/U
helps see the point where the phase transition takes
place. The precise value can be more easily seen in the
numerical derivative plot, in which the rescaled peaks
are all centred at V' = U/2, indicating a change in curve
slope. Since the staggered charge density displays very
low values for low V (no spatial charge modulation)
and increases in magnitude with V/U, the plot shows
a phase transition from spin density wave (initial state
with just on-site repulsion) to charge density wave.

IV. CONCLUSIONS

Using an MPS model and Time-Evolving Block Deci-
mation, we have observed two Mott insulating phases in
a half-filled one-dimensional Hubbard lattice. Electron
localisation and spin-spin anti-correlations in the pres-
ence of an on-site repulsion potential have been observed,
characterising the spin density wave phase. After that,
a next-neighbour repulsion term has been incorporated,
which introduced spatial charge modulation and a phase
transition to a charge density wave at V' = U/2. Overall,
this project has helped to see how an explicit consider-
ation of electron-electron repulsion in a lattice gives rise
to insulating phases at half-filling.
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Resum: Aquest treball ha consistit en trobar fases aillants pel model de Hubbard a mig omplir.
Les simulacions s’han dut a terme amb TEBD, un metode de xarxes tensorials. S’han considerat
dos termes d’interaccid: repulsié in situ U i repulsié a primers veins V. La introduccié del primer
ha permes observar una fase d’ona de densitat d’espin que perdia energia cinetica amb la repulsié
in situ, i la segona ha mostrat una distorsié de ’ordenament antiferromagnetic anterior amb una
transicié de fase a V' = U/2, on I'ordenament dels electrons canviava a ona de densitat de carrega.
Els resultats mostren que es poden dur a terme simuacions del model de Hubbard de manera
optima i satisfactoria fent servir el formalisme de xarxes tensorials.
Paraules clau: Model de Hubbard, xarxes tensorials, evolucié en temps imaginari, repulsié de

Coulomb, aillant de Mott.

ODSs: Aquest TFG esta relacionat amb els Objectius de Desenvolupament Sostenible (SDGs)
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El contingut d’aquest TFG, part d’un grau universitari de Fisica, es relaciona amb els Objectius de Desenvolupament
Sostenible 4 i 12. La relacié amb I’ODS 4 és clara, sent educacié de qualitat, ja que contribueix a l’educacié a
nivell universitari, explorant de forma intuitiva la simulacié del model de Hubbard emprant el formalisme de xarxes
tensorials. Tanmateix, el treball també es relaciona amb I’ODS 12, posant emfasi en la necessitat d’optimitzar els
calculs d’un problema de molts cossos per obtenir bons resultats, i la possibilitat de fer-ho fins poder dur a terme

simulacions massives a un ordinador personal.
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