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Abstract: Nucleation is the mechanism controlling first order phase transitions and involves
the formation of a small critical cluster. Its energy of formation dictates the nucleation rate, but
it is difficult to evaluate since the critical cluster is unstable. Here, we develop a new Monte
Carlo simulation technique to study the properties of critical droplets and compute their free
energy of formation. In particular, we studied a Lennard-Jones fluid with truncated and shifted
potential at 2.5 σ (LJTS(2.5 σ)), confined in a small volume at reduced temperature T = 0.625.
We compare our results for the work of formation to previous data for this system obtained with
Umbrella Sampling (US), obtaining good agreement. Our findings suggest that this new technique
is particularly promising for investigating small critical clusters relevant to experimental conditions
and complex atmospheric fluids, where traditional methods are computationally demanding.
Keywords: Phase transitions, Nucleation, Condensation, Lennard-Jones fluids, Monte Carlo
simulations.
SDGs: 6 and 13 (see page 6).

I. INTRODUCTION

One of the main challenges in modern physics is the
study and characterization of nano-systems. These sys-
tems are very important in different areas such as molec-
ular biology or nanotechnology and are distinguished
for having typically a small number of molecules, far
from the usual thermodynamic limit. However, they
can be properly described by the thermodynamics of
small systems [1]. This theory shows how the aver-
age properties of a small (even completely open [2])
system can be obtained from an ensemble of replicas
of the small system. Unlike in macroscopic thermo-
dynamics, the properties of a small system depend on
the ensemble defined by the constraints imposed on it.

An important example of those subtleties appears in
the context of nucleation. Nucleation is the fundamen-
tal mechanism driving first-order phase transitions and
is crucial in many scientific and technological contexts.
It involves the formation of an unstable critical clus-
ter or nucleus, whose size and energy dictate the on-
set and rate of phase transformation. A primary chal-
lenge in nucleation theory is to accurately determine
the work of formation of this critical embryo, as the
nucleation rate depends exponentially on this quantity.
Even minor inaccuracies in its value can lead to de-
viations of several orders of magnitude between theo-
retical predictions and experimental results. However,
since the critical cluster is unstable, it is difficult to
evaluate its properties by experiments or simulations.

In this work, we introduce a novel simulation technique
to evaluate the free energy of formation and properties
of small critical clusters. Our method is an adaptation of
Monte Carlo simulations in a small system with carefully
chosen constraints to make the cluster stable, allowing
direct simulation of the critical cluster without the need
to sample intermediate states or reconstruct the full free
energy landscape.

II. THEORETICAL BACKGROUND

A. Drop formation in a small confined system

As a theoretical basis, we want to describe the thermo-
dynamics of formation of a small drop in a confined vol-
ume. We will use the modified liquid drop (MLD) model
introduced in [3], which is built on classical nucleation
theory (CNT).
Consider a spherical, impermeable and hard boundary

of volume V , with N particles at temperature T . The
center of mass of the system is fixed at center of the
sphere, which sets the origin of coordinates. In order to
find the coexistence conditions, suppose that a drop of
n particles has formed at the center of mass. The MLD
model makes the following simplifying approximations:
The drop is spherical, incompressible, with a sharp inter-
face, and the same density and constant surface tension
as the bulk liquid, γ; the vapor is treated as ideal.
The internal energies of each phase are given by the

fundamental thermodynamic equations:

dU1 = TdS1 − p1dV1 + µ1dN1 (1)

dU2 = TdS2 − p1dV2 + γdA+ µ2dN2. (2)

where Si, pi, Vi, µi and Ni are the entropy, pressure, vol-
ume, chemical potential and number of particles for the
vapor (i = 1) and liquid (i = 2) phases. The Helmholtz
free energy F = U − TS is the proper thermodynamical
potential for a system with fixed N , V , T . An infinitesi-
mal change in the free energy can then be expressed as:

dF = −
(
p2 − p1 −

2γ

r

)
dV2 + (µ2 − µ1)dN2, (3)
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since the volume and total number of particles are fixed.
At equilibrium dF = 0 and we recover the standard me-
chanical and chemical equilibrium conditions:

p2 − p1 =
2γ

r
, (4)

µ1 = µ2. (5)

The chemical potential can be obtained from the Gibbs-
Duhem relation for each phase:

N1dµ1 = −S1dT + V1dp1, (6)

N2dµ2 = −S2dT + V2dp2 +Adγ. (7)

Since we are treating the vapor phase as an ideal gas,
integrating Eq. 6 at constant temperature gives:

µ1(p1)− µeq
1 (peq1 ) = kBT ln

p1
peq1

, (8)

where peq1 = peq2 and µeq
1 = µeq

2 are the pressure and
chemical potential at coexistence. Integration of Eq. 7
assuming incompressibility and constant γ, yields:

µ1(p2)− µeq
1 (peq1 ) = vl(p2 − peq1 ), (9)

where vl ≡ V2/N2 is the volume per particle in the liq-
uid drop. Subtracting Eq. 9 and Eq. 8 and using the
mechanical equilibrium condition (Eq. 4), yields the co-
existence condition:

kBT ln
p1
peq1

=
2γ

r
vl + vl(p1 − peq1 ). (10)

Substituting the implicit dependencies of p1(n) and r(n)
produces a (transcendent) equation for n, which can be
solved numerically, with the system’s volume V as the
control parameter. This equation has two solutions, one
corresponding to the stable coexisting drop and the other
to the unstable one. Note that, for an N,P, T or µ, V, T
system, the equilibrium conditions, Eq. 4 and 5, only
have one solution, corresponding to an unstable solution,
which is the critical cluster in the context of nucleation.

The free energy of formation of the drop in terms of its
size, ∆F (n) ≡ F (n)−F (0), which is the relevant quantity
for nucleation theory, is then (note that n = N2):

∆F (n) = −nkBT ln
p1
peq1

+ γA

+ n(kBT − vlp
eq
1 ) +NkBT ln

p1
p0

, (11)

obtained by integrating Eq. 3 at constant temperature,
assuming that V2 = vln since the drop is incompressible,
and defining p0 ≡ NkBT as the pressure of the homoge-
neous supersaturated phase.

Fig. 1a shows the numerical solution of Eq. 10, ob-
tained using the bisection method, for N = 80 and
T = 0.625 for a LJTS(2.5 σ) fluid in reduced units (see
Appendix A). For large volumes, the system is dilute
and the MLD model predicts that there are no coexis-
tence solutions, indicating a homogeneous vapor phase.
For volumes smaller than Vev ≈ 4560 σ3, there are two
solutions corresponding to a large (stable) and small (un-
stable) drop. For Vco

<∼ 389 σ3 all the particles are in the
liquid phase. Also, Fig. 1b depicts the free energy of for-
mation of the cluster, ∆F (n), for three different volumes.
For small enough volumes, ∆F has two extrema, corre-
sponding to the critical (maximum) and stable (mini-
mum) cluster, respectively. As the volume of the system
increases the stable solution also rises, until both extrema
disappear at Vev and the drop evaporates.
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FIG. 1: (a) Size of the stable and critical cluster vs volume and
(b) free energy of formation vs size for N = 80 and T = 0.625.

The MLD model predicts the existence of a stable drop
in a confined system and the requirements for its stability.
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We will now develop a Monte Carlo simulation algorithm
to evaluate the properties of this stable drop.

III. MAIN RESULTS

We implemented a Fortran code based on [4] to per-
form Monte Carlo (MC) simulations in the canonical
ensemble for a system of particles interacting with a
Lennard-Jones potential truncated and shifted at a re-
duced cut-off radius of rc = 2.5. MC simulations with
N = 80 particles were performed at a reduced tempera-
ture T = 0.625 for different volumes. The simulation box
was spherical without periodic boundary conditions and
with a fixed center of mass. We stabilized the drop and
characterized its average pressure (Fig. 2a), chemical po-
tential (Fig. 2b) and drop size (Fig. 2c) as a function
of the system’s volume. The number of particles in the
drop has been evaluated using a cluster criteria based
on distance and number of neighbors. For specific de-
tails about how the simulations were done, we refer the
reader to Appendix B.

A. Average drop properties

As it can be seen in Figs. 2a-2c, the data presents three
distinguishable regions: At high volumes, the system is
a dilute homogeneous vapor, the pressure converges to-
wards the equation of state (EoS), the drop size is zero,
and the chemical potential monotonically decreases. For
V < 4000 σ3, a liquid drop coexisting with its vapor was
observed. Figs. 2a and 2c show that, as the volume gets
smaller, the size of the drop increases at the expense of
its surrounding vapor and the average pressure decreases
accordingly, implying a negative isothermal compressibil-
ity. Such seemingly strange behavior is characteristic of a
phase transition in a small confined system, and does not
violate any thermodynamic stability condition, as dis-
cussed in [3]. For V <∼ 500 σ3, the system is undergoing
a high compression. This is reflected in the exponential
increase in the pressure.

B. Radial density profiles

The radial density profile, ρ(r), i.e. the average number
of particles per unit volume at distance r from the origin,
was obtained for every simulation, as a way to character-
ize the density inside the liquid drop, its interface with
the vapor, and to compute the chemical potential (see
Appendix B). Fig. 3 shows three distinct representative
cases. For V = 250 σ3, the density at the center of the
drop lightly exceeds its bulk liquid density and the inter-
face is quite sharp. For V = 2675 σ3, we have a liquid
drop with a diffuse interface coexisting with its vapor.
Finally, for V = 4900 σ3, the homogeneous distribution
denotes a single vapor phase.
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FIG. 2: Average values of the (a) pressure, (b) chemical
potential, and (c) number of particles in the drop, as a function of
the volume, for N = 80 and T = 0.625. The dots are the results
of the simulations, and the lines represents the values of the EoS

for the homogeneous fluid.
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FIG. 3: Radial density profiles for volumes 250 σ3, 2675 σ3 and
4900 σ3 (in purple, at the bottom) for N = 80 and T = 0.625. All
the histogram data-points have uncertainties ∆STD

<∼ 10−3. The
bulk liquid density of the LJTS(2.5 σ) is shown as a reference.

C. Free energies of formation

The Helmholtz free energy of formation of the drop was
obtained by numerical integration of the Gibbs-Duhem
relation:

∆F (V ) = −
∫ V

Vmax

[
pMC(V )− pEoS(V )

]
dV, (12)

where the subscripts distinguish between the pressure
measured in the MC simulations and data from the EoS
for the homogeneous vapor [5], and Vmax = 10100 σ3 is
the largest volume simulated for the homogeneous vapor
phase. Eq. (12) represents the free energy of formation
of a stable cluster coexisting with its vapor at a pres-
sure pMC. This cluster fulfills the equilibrium conditions
given by Eqs. 4 and 5. If instead of fixing the volume,
we fixed the value of the pressure to pMC, this cluster ,
which is stable in the canonical ensemble, will correspond
to the critical cluster in the N,P, T ensemble, which is
the only solution of Eqs. 4 and 5. Thus, it is possible
to calculate the Gibbs free energy of formation of the
critical cluster in a supersaturated vapor at pMC from
the Helmholtz free energy of the stable cluster, using the
thermodynamic relation [6]:

∆G(V ) = ∆F (V ) + V∆p(V )−N∆µ(V ), (13)

where ∆p ≡ pMC − pEoS and ∆µ ≡ µMC − µEoS. Figs. 4
and 6 (see Appendix C) show the Helmholtz and Gibbs
free energies of formation as a function of the volume and
drop size, respectively.

In Fig. 4, a ∆F < 0 region appears in the ∼ 300 −
3000 σ3 range, indicating a stable drop, with a minimum
value of ∆Fmin = −15.601 ε at V = 725 σ3. Conversely,
in the same region ∆G > 0. This is in line with the
idea that every stable cluster in a system defined by the

canonical variables N , V and T , corresponds to an un-
stable critical cluster in a system N,P, T ensemble.
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FIG. 4: Drop free energies of formation versus volume, for
N = 80 and T = 0.625.

D. Comparison with Umbrella Sampling

Finally, we contrasted our results with previous data
from Umbrella Sampling (US) Monte Carlo simulations
in the N,P, T ensemble for the same LJTS(2.5 σ) fluid,
evaluating the Gibbs free energy of formation of the crit-
ical cluster for different values of the pressure [7], at re-
duced temperature of T = 0.625. In order to make a com-
parison, the values of the vapor pressure reported in those
simulations were converted to the corresponding chemical
potential using the EoS for the homogeneous vapor [5].
Fig. 5 shows the comparison between the two datasets.

The figure reveals that the Gibbs free energies of forma-
tion are in good agreement, particularly in the region
of interest −3 <∼ µ/ε <∼ −2.8, where the liquid drop is
formed. Nonetheless, for values µ/ε >∼ −2.8, the data
seems to change its slope, relative to the US results.
This discrepancy may be due to three main factors.

First, in our MC simulations we fixed the center of mass,
unlike in the US simulations. Fixing the center of mass
removes the translational degrees of freedom of the clus-
ter, which have a contribution to the energy of formation,
as discussed in [8]. Second, the use of an EoS as a refer-
ence which might be not so accurate for our LJTS(2.5 σ)
with a fixed center of mass. Third, a boundary effect
caused by working with non-periodic boundary condi-
tions may also be a contributing factor.
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FIG. 5: Comparison between the Gibbs free energy of formation
for the US data and our simulations, versus the chemical

potential, for a LJTS(2.5 σ) fluid at T = 0.625.

IV. CONCLUSIONS

We have studied the formation of a small liquid drop
in a confined system. Using the MLD model, we have
shown that it is possible to stabilize a drop within the
canonical ensemble, to then study its properties and en-
ergy of formation. In order to demonstrate this idea,
we have performed Monte Carlo simulations for a system
of N = 80 particles interacting with a Lennard-Jones
potential truncated and shifted at 2.5 σ, inside a spher-
ical volume at reduced temperature of T = 0.625. We
measured the average properties of the cluster, in par-
ticular, the pressure, size, density profile, and chemical
potential. (We also observed a negative isothermal com-

pressibility, a phenomenon not unique to our small sys-
tem [3].) From these data, we computed the Helmholtz
and Gibbs free energies of formation, showing the cor-
respondence between a stable cluster in the canonical
ensemble and a critical cluster in the isobaric-isothermal
ensemble. Finally, we contrasted our findings with litera-
ture data from Umbrella Sampling simulations, obtaining
good agreement.
The interest of the study resides in the context of nucle-

ation, where experiments are typically performed under
fixed pressure. In such conditions, the critical cluster,
which is the embryo of the new phase, is unstable and
estimating its energy of formation ∆G directly would
not be possible unless some sort of additional constraint
is imposed, as in US simulations. However, these sim-
ulations are computationally costly and require a large
number of particles. Instead, we have shown that one
can stabilize a drop in the canonical ensemble, measure
its properties, and then reconstruct the formation energy
in the N,P, T ensemble through Eq. 13.
This new simulation method requires few particles, is

computationally efficient and will be specially useful in
the study of nucleation in fluids with complicated inter-
molecular potentials.
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Resum: La nucleació és el mecanisme que controla les transicions de fase de primer ordre,
involucrant la formació d’un petit clúster cŕıtic. La seva energia de formació dicta el ritme de
nucleació, però és dif́ıcil de calcular donat que el clúster cŕıtic és inestable. Es desenvolupa
una nova tècnica de simulació Monte Carlo per estudiar les propietats mitjanes de gotes petites
cŕıtiques i es calcula la seva energia lliure de formació. En particular, es va estudiar un fluid
generalitzat de Lennard-Jones amb un potencial truncat i desplaçat a 2.5 σ (LJTS(2.5 σ)),
de N = 80 part́ıcules confinades en un volum a una temperatura redüıda de T = 0.625.
Després es comparen els resultats amb dades prèvies per aquest tipus de fluid obtingudes
amb Umbrella Sampling. Els resultats suggereixen que aquesta nova tècnica es particularment
prometedora per la investigació de clústers petits cŕıtics rellevants en condicions experimentals
i fluxos atmosfèrics complexos, on els mètodes tradicionals són computacionalment demandants.
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Appendix A: Lennard-Jones truncated and shifted
fluid using reduced units

In this subsection we introduce the Lennard-Jones fluid
truncated and shifted at rc = 2.5, that we have used in
our simulations.

The Lennard-Jones potential is a popular potential for
pairwise particle interaction, for its simplicity to describe
repulsion at short distances and attraction at moderate
distances. For these reasons, it has been extensively stud-
ied in literature, and its EoS has been already character-
ized [9]. The LJ potential between particles i and j is:

ULJ(ri,j) = 4ε

[(
σ

ri,j

)12

−
(

σ

ri,j

)6]
, (A1)

where σ is the distance at which the potential is zero and
ε the energy minimum of the potential well. Truncat-
ing and shifting this potential means that pairwise par-
ticle interactions separated longer than the cut-off radius
are not computed (truncating) and that we subtract the
value of the potential at the cut-off radius from its value
at any other point (shifting). Then the LJTS potential
is expressed as:

ULJTS(ri,j) =

{
ULJ(ri,j)− ULJ(rc), if r ≤ rc

0, if r > rc
. (A2)

For convenience we write ULJTS(ri,j) ≡ Ui,j . An impor-
tant property of this potential is that it has no disconti-
nuities [4].

In our simulations, reduced units were used so that the
results may describe an entire set of particular systems
(e.g., Ar or Xe) each at some physical temperature and
density. All dimensionless quantities were obtained rela-
tive to the basic units of the LJ particle’s mass, m, and
distance σ and energy ε from Eq. A1. For instance, the
reduced units of pressure and temperature are σ3/ε and
kBT/ε, respectively.

Appendix B: Details of the Monte Carlo simulations

Having introduced the LJTS(2.5 σ) in Appendix A, we
proceed to explain the statistical-mechanical basis of the
Monte Carlo (MC) simulations and the details on how we
performed the simulations for this fluid. We applied MC
simulations with 108 equilibration and production steps,
respectively, at volumes ranging from 75 σ3 to 10100 σ3.
All simulations were done in the Superfe Computing Clus-
ter.

In the canonical ensemble, for a separable Hamiltonian,
the ensemble average ⟨O⟩ of an observable Ô is [4]:

⟨O⟩ =
∫
dNr e−βU(rN )Ô(rN )

Z
, (B1)

where U(rN ) is the system’s energy at state rN ; we as-
sume we can integrate analytically over momenta. The

the Metropolis algorithm is used to generate configura-

tions with relative probability e−βU(rN ), to sample con-
figuration space minimizing the energy, converging to-
wards equilibrium. We generated new configurations by
random displacements of particles from an initial posi-
tion rN0 to a new one, rN1 , using the original Metropolis
detailed balance rule for the acceptance probability [10]:

acc(rN0 → rN1 ) ≡ min(1, exp [U(rN1 )− U(rN0 )]). (B2)

Then, for each simulation, the program initialized the
system as an FCC structure for convenience and cor-
rected its center of mass such that it coincided with the
desired origin of coordinates. No periodic boundary con-
ditions were applied [11], since we want to simulate a
small confined system.
Once the system was initialized, for each MC step a

randomly selected particle was displaced a random dis-
tance, up to a maximum, chosen such that on average
50% of the trial moves were accepted. Then, another ran-
domly chosen particle was displaced by the same amount
but in opposite direction, to maintain the center of mass
fixed.
Then the algorithm would accept or reject the change

of configuration with acceptance probability given by Eq.
B2, with an energy change of δU prior and after displac-
ing particles 1 and 2:

δU = (ϵ′1 − ϵ1) + (ϵ′2 − ϵ2)− (U ′
1,2 − U1,2), (B3)

where ϵi ≡
∑

j ̸=i Ui,j .
The pressure was calculated by averaging the virial.

In order to measure the chemical potential µ, we imple-
mented the Widom insertion method [12] for a spatially
inhomogeneous system, where the chemical potential is
calculated as:

µ = kBT ln

(
ρ(r)

⟨e−βδU(r))⟩

)
, (B4)

We verified that at equilibrium the chemical potential
was homogeneous [4]. ρ(r) is the radial density profile.
In order to compute it, for a given volume, the system’s
radius was divided into 20 regular intervals. Then, ev-
ery 100th MC step, the program sampled each parti-
cle’s position, sorted it into a bin, and updated its his-
togram frequency by 1 unit. The procedure would be
repeated for all particles. Finally, the histogram was
normalized by the shell volume enclosed in each bin.
To measure the drop size (its number of particles), an

already existing C program was integrated in Fortran,
which implements the ten Wolde-Frenkel cluster crite-
rion [13]: The program classifies a particle as forming
part of a liquid-like cluster if it has 5 or more neighbors
within a distance smaller than a cut-off radius (named
also Stillinger radius) of 1.5 σ. Both of these parameters
have been found to be optimal for this type of simula-
tions [7]. Then the program outputs the biggest found
cluster.
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Appendix C: Free energies as a function of the
cluster size

In this subsection we include additional data obtained
from the simulations, presented in Fig. 6. Concretely, we
wanted to characterize the free energy of formation as a
function of the cluster size, n, to complement the results
from Fig. 4 from section III C. In Fig. 6, ∆F is negative
in the ∼ 40 − 60 particle range, which, by inspection
of Fig. 2c, corresponds to the ∼ 2000 − 300 σ3 volume
range, providing further evidence for the presence of a
drop. The drop size at the formation energy minimum is
nmin = 55± 4. As expected, the corresponding values of
∆G are positive.
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FIG. 6: Drop free energies of formation versus cluster size, for
N = 80 and T = 0.625.
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