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Abstract: This work investigates the use of chirped picosecond laser pulses to induce rapid
adiabatic passage (RAP) in a single trapped ion, aiming for population inversion between two
quantum states. A theoretical framework for RAP linearly chirped pulses is developed, and a
novel method to characterise ultrashort pulses is introduced. Numerical simulations solving the
Schrödinger equation confirm that RAP leads to state transitions with 100% probability in the
resonant regime, independent of the pulse area. The effects of a detuning between the transition
and pulse frequencies on the transition probability are also analysed, revealing a linear dependence
between the transition probability curve size and the pulse width.
Keywords: Trapped ion, ultrashort laser pulses, rapid adiabatic passage.
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I. INTRODUCTION

Well-isolated quantum systems are excellent sensors of
electromagnetic fields. Specifically, chirped picosecond
laser pulses can resonantly cause a dipole transition on a
single trapped ion via rapid adiabatic passage (RAP) [1].
This is a population inversion method consisting of the
interaction between the qubit and an ultrashort pulse
with a carrier frequency near the electronic transition
that has been modified linearly through time. If the
process is performed adiabatically, it can produce a
transition between the two quantum states with a 100%
probability [2][3].

This project focuses on two main objectives. The
first is to study the dynamics of a two-level quan-
tum system (qubit) interacting with a chirped laser
pulse, which does not produce crossing of energies,
to achieve a transition between its states through a
RAP [3]. The second objective is to investigate how
this interaction can be used as a quantum sensor to
characterise the temporal shape and properties of the
driving pulse. This is interesting because there are no
similar protocols. Measuring ultra-short pulses usu-
ally compares the pulse with a shifted version of itself. [1]

The study begins with defining the system’s Hamilto-
nian, which models the ion as a two-level quantum sys-
tem and its interaction with a pulse. Then, the numeri-
cal method used to solve the time-dependent Schrödinger
equation is introduced, along with two validation tests
that confirm its reliability. The project focuses on
analysing rapid adiabatic passage with linearly chirped
laser pulses, both without and with a detuning. It is ver-
ified that a transition between the ground and the excited
state of a trapped ion can be driven via RAPs. Finally, a
novel method is proposed to estimate the pulse envelope
from the ion’s response to it.

II. DEVELOPING SECTIONS

A qubit is the smallest useful amount of quantum in-
formation. It is described by a two-level system, meaning
two orthogonal and physically distinguishable states |0⟩
and |1⟩, which form a two-dimensional Hilbert space H.
The qubit can adopt any possible state in this Hilbert
space, either the basis states or an arbitrary superposi-
tion of them α|0⟩+ β|1⟩ with |α|2 + |β|2 = 1 [4].

A. Qubit hamiltonian

In this project, an intrinsically anharmonic energy
spectrum, such as the Ca+ ion, describes the qubit. In
this scene, the ground and first excited and long-lived

states represent |0⟩ =
(
0
1

)
and |1⟩ =

(
1
0

)
, respectively.

When the ion is illuminated with chirped microwaves
E(t) = Ω(t) cos(ω(t)t+ϕ), it induces transitions between
the eigenstates. The dynamics of this qubit, considering
ℏ = 1, is described by the Hamiltonian

H = E01+
∆

2
σz+Ω(t) cos(ω(t)t+ϕ)σx = E01+H0+H

′ ,

(1)
where the energy offset E0 can be ignored and the
parameter ∆ is the qubit gap. It is convenient to
eliminate the qubit’s free evolution at frequency ∆ by
working in the interaction picture [4].

Assuming that the correction is small compared with
the qubit’s free evolution, the temporal unitary oper-
ator is defined as U(t) = U0(t)V (t), where U0(t) =
exp

(
−i∆2 σ

zt
)
. Then, applying the Schrödinger equation,

i
dU

dt
= i

dU0

dt
V + iU0

dV

dt
= HU .
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So finally,

i
dV

dt
=

[
U−1
0 HU0 − iU−1

0

dU0

dt

]
V = HIV . (2)

In this particular case, idU0

dt = H0U0, so the interaction
Hamiltonian is redefinited as

HI = U−1
0 H ′U0 (3)

and the wavefunctions become

|ψI(t)⟩ = U0(t)
†|ψ(t)⟩ [4].

Considering these changes and defining σ+ = |1⟩⟨0|
and σ− = |0⟩⟨1|,

HI = ei
∆
2 σztΩ(t)

[
ei(ω(t)t+ϕ) + e−i(ω(t)t+ϕ)

]
σxe−i∆

2 σzt

= Ω(t)
[
ei(ω(t)t+ϕ) + e−i(ω(t)t+ϕ)

] [
ei∆tσ+ + e−i∆tσ−]

≈ Ω(t)
[
e−i(ω(t)−∆)t−iϕσ+ + ei(ω(t)−∆)t+iϕσ−

]
.

In the last step, the rotating-wave approximation (RWA)
has been used to neglect the rapid oscillations of the
terms (ω(t) + ∆). This is an acceptable estimation as
long as the pulse amplitude is small compared to the
drive frequency ω.

In order to eliminate the time-dependent exponentials,
we need to make a second change of variables. Copying
the above methodology, the temporal operator can be
defined as V (t) = Uback(t)R(t) and using (2), the new
effective Hamiltonian becomes

Heff = U−1
backHIUback − i U−1

back

∂Uback

∂t
. (4)

Supposing that Uback = eiθ(t)σ
z

, the first term leads to

U−1
backHIUback = e−iθ(t)σz

HI e
iθ(t)σz

= Ω(t)
[
ei(ω(t)−∆)t+iϕe2iθ(t)σ− + e−i(ω(t)−∆)t−iϕe−2iθ(t)σ+

]
and taking (ω(t)−∆) t = −2θ(t),

U−1
backHIUback = Ω(t)[cosϕσx + sinϕσy].

Considering the second term in (4),

−i U−1
back

∂Uback

∂t
= −ie−iθ(t)σz

iσz dθ(t)

dt
eiθ(t)σ

z

= σz dθ(t)

dt
= σz

(
−ω(t)−∆

2
− dω(t)

dt

t

2

)
.

Joining both solutions at ϕ = 0,

Heff = σz

(
∆− ω(t)

2
− dω(t)

dt

t

2

)
+Ω(t)σx .

Defining the detuning δ as the difference between the
laser carrier frequency and the transition frequency, and

the chirp factor D as the frequency changing velocity (or
phase acceleration) [5][3];

ω(t)t = ξ(t) = (∆ + δ)t+
1

2
Dt2 (5)

Finally, the Hamiltonian that is going to be used, from
now on called H, is expressed as

H = −δ +Dt

2
σz +Ω(t)σx . (6)

The above Hamiltonian has the following eigenvalues

E± = ±

√(
δ +Dt

2

)2

+

(
Ω(t)

4

)2

. (7)

To be able to work with (6), a Schrödinger equation
solver function for a time-dependent Hamiltonian has
been developed.

B. Schrödinger equation solver

A code has been developed to solve numerically the
time-dependent Scrödinger equation for an arbitrary
time-dependent Hamiltonian. It uses the fifth-order
Runge-Kutta integration method to resolve the differen-
tial equation

dU(t)

dt
= −iH(t)U(t) , (8)

where U(t) is the unitary matrix and H(t) is the Hamil-
tonian of our quantum system. The designed function
begins with an initial condition U(t0) = 1 and evolves
until a final time tf . This iterative solver saves the time
and the unitary matrix calculated at each iteration and
saves them in two vectors that are returned at the end.

To be sure that the solver works correctly, two veri-
fications can be made. The first check is to represent
the temporal evolution of a known quantum system and
compare it with the known exact solution. Taking a con-
stant pulse, H = Ω0σ

x, the temporal operator takes the
form

U(t) = exp(−iΩ0tσ
x) = cos(Ω0t)1− i sin(Ω0t)σ

x . (9)

Both solutions, the one using the solver function and
the one using (9), are illustrated in Fig. (1) with solid
line and dashed line, respectively. As it is seen, both
representations coincide, supporting the use of the solver.

The second check is to compare the evolution us-
ing a Gaussian pulse H = Ω(t)σx, with Ω(t) =
Ω0 exp(−0.5(t/w)2) being Ω0 the amplitude and w the
width of the Gaussian pulse. By aproximating U(t) ≈
exp(−iθ(t)σx) = cos(θ(t))1− i sin(θ(t))σx and using the
Schrödinger equation (8),

−iθ̇σxU = −iΩ(t)σxU ,
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FIG. 1: Time evolution of the qubit state |0⟩ under a constant
pulse with amplitude Ω0 = 1.0. Probability of remaining
in |0⟩ (blue) or transitioning to |1⟩ (green) and the known
solution (9).

FIG. 2: Time evolution of the quantum state |0⟩ under a
Gaussian pulse with width w = 1.0. Probability of remaining
in |0⟩ (blue) or transitioning to |1⟩ (green) and the solution
calculated from the rotation angle (10).

a relation between the pulse area and the rotation angle
can be found. In particular,

θ =

∫ tf

t0

Ω(t′)dt′ . (10)

This equation shows that the transition probability
depends on the pulse intensity, duration and shape only
through one parameter, θ [2]. When the integrated area
of the pulse is equal to π, a complete transition occurs
from one pure state to the other [5].

Using (10) to calculate U as described, the solution is
represented -in dashed lines- with the solver output -in
solid lines- in Fig. (2). This figure shows that, by picking
a proper pulse amplitude, the transition probability can
be consciously modified. [2] Again, it is clear that the
solver is working as expected.

C. RAP pulse

A RAP pulse is when a chirped pulse is applied to an
atom to do a Rapid Adiabatic Passage. This technique
achieves a transition between the two quantum states |0⟩

and |1⟩ while the system remains in the instantaneous
eigenstate of the Hamiltonian, provided the interaction
changes are sufficiently slow relative to the energy gap [3].

To illustrate the atom’s behaviour under a RAP
pulse, the instantaneous eigenenergies and the atom’s
excited state population are plotted in Fig. (3) as a
function of time. In the resonant limit (zero detuning
δ = 0), when Ω0 = 0, the energies of both eigenstates
follow straight lines that cross at t = 0, as expected
from equation (7). However, when Ω0 ̸= 0, the light
pulse opens a gap between the eigenstates’ energies as
shown in Fig. (3)(top, blue). If the speed at which the
eigenenergies change is small compared to the energy
gap, the starting states will evolve adiabatically and
follow the represented blue line, completing a smooth
transition between them. In other words, the atom
transitions from the eigenstate at t → −∞, which is |0⟩
(|1⟩), to the eigenstate at long times, |1⟩ (|0⟩), remaining
at all times on the instantaneous eigenstate subspace.
This passage is observed in Fig. (3)(bottom, blue),
characterised by having almost no oscillations.

FIG. 3: Eigenstates energies and transition probabilities of
the Hamiltonian described in (6) with amplitude Ω0 = 4.0,
width w = 1.0 and chirp D = 5.0. Results obtained for no
detuning and δ = 6.0 are represented in blue and orange,
respectively. In the graphic below, the top lines measure the
probability of staying in the same state, while the other lines
indicate the transition probability.

In the off-resonant limit, a detuning between the
transition and pulse frequencies (δ ̸= 0) modifies the
eigenenergies and state populations through time. Fig.
(3)(top, orange) shows a displacement of the point
where the two energies would cross without a pulse. So,
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when the pulse is applied, its maximum effect does not
coincide with the “cross point”, and the energy gap be-
comes smaller at higher detuning values. Consequently,
the probability for a population inversion is lower
than unity, as confirmed in Fig. (3)(bottom, orange).
Also, the unadiabaticity produces oscillations in the
projections of U(t)|0⟩ over the two initial quantum states.

Based on the discussion for δ = 0, the first hypothesis
to be worked on is the existence of an adiabatic regime
where the RAP pulse produces a transition from |0⟩ to
|1⟩ under resonant conditions. Given that an adiabatic
transition requires the system to evolve more slowly than
the energy gap, it is reasonable to use the chirp factor D,
previously described as the frequency sweep rate, as a
parameter determining the adiabacity. Its dependence is
plotted in Fig. (4), showing there is a limit value that
D should take to be able to produce the adiabatic tran-
sition. Once it reaches this value, it has been confirmed
that U(t)|0⟩ is still an instantaneous eigenvalue of H(t)
throughout the time. Moreover, the pulse area has al-
most no influence on the transition success: it has to take
a minimum value to make the transition possible; how-
ever, once it reaches it, the transition probability does
not depend on the area. This can be seen in Fig. (5).

FIG. 4: Transition probability for a RAP pulse as a function
of the chirp factor D under resonant conditions with ampli-
tude Ω0 = 4.0 and width w = 1.0.

FIG. 5: Transition probability for a RAP pulse as a function
of the amplitude Ω0 under resonant conditions with width
w = 1.0.

At this point, the first hypothesis has been proved.

There is indeed an adiabatic regime where the chirped
pulse drives a RAP in an atom. From Fig. (4) and
Fig. (5), one set of parameters to produce the transition
is: Ω0 = 4.0, D = 5.0, w = 1.0 and δ = 0.0. These
are the thoughtfully chosen values used in Fig. (3)(blue).

From this point, a new look at the matter is going to
be discussed.

D. Novelties

In Fig. (3), it is observed that applying a detuning
modifies the energy diagram and reduces the transition
probability. Taking a deeper look into that second
effect, Fig. (6) compares the probability of a transition
between the qubit states depending on the detuning. It
shows a symmetrical relation that tends asymptotically
to one general curve, which is flattened on the top at
unit probability and decays on both sides. Based on this
behaviour, the second hypothesis is that the response
P0→1(δ) is related to the pulse width. To confirm it, a
graphic showing the relation between the FWHM (full
width at half maximum) of the curves P0→1(δ) in Fig.
(6) and the pulse width is plotted in Fig. (7).

FIG. 6: Transition probability for a RAP pulse as a function
of the detuning δ with chirp D = 5.0 and width w = 1.0.
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FIG. 7: Relation between the probability size in Fig. (6) and
the pulse width for D = 5.0. The linear regression line is also
plotted for each amplitude.

Fig. (7) shows a linear relation between the FWHM
of the transition probability curve and the pulse width
in the adiabatic regime, demonstrating the second
hypothesis. The irregularities for small width values are
a consequence of not being under adiabatic conditions.

The perfect linear relation between the transition prob-
ability curve and the pulse sizes leads to the third hypoth-
esis: the pulse shape can be reconstructed from the re-
lation P0→1(δ) = F (Ω(−δ/D)), where F is an unknown
function. This association has not been found, but its
existence has been demonstrated.

III. CONCLUSIONS

• A function that solves numerically the Schrödinger
equation for a time-dependent Hamiltonian de-
scribed in (8) has been developed, and its correct
functioning has been verified.

• The rapid adiabatic passage (RAP) for an atom
has been described and observed in Fig. (3). It
has been confirmed that the chirp factor D deter-
mines the adiabatic and resonant regime in which
the RAP pulse produces a transition between the
two quantum states of a qubit (Fig. (4)). Also,
from Fig. (5), it has been observed that the transi-
tion probability does not depend on the pulse area.

• Applying a detuning δ between the pulse and tran-
sition frequencies modifies the energy spectrum,
and the transition probability decreases with in-
creasing δ. These effects are shown in Fig. (3).

• Under a finite detuning, the response P0→1(δ)
size is linearly dependent on the pulse width, as
demonstrated in Fig. (7).

• The pulse envelope can be reconstructed from the
relation P0→1(δ) = F (Ω(−δ/D)), where F is an
unknown function.
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tutor, Juan José Garćıa Ripoll, for believing in me from
the beginning and guiding me throughout this project.
His insight, encouragement and constant support have
been essential, and this work would not have been pos-
sible without him. I am also thankful to my academic
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Pols làser amb “chirp” per a una transició adiabàtica ràpida en ions atrapats
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Resum: Aquest projecte elabora una investigació en l’ús de pols làser amb ”chirp” de picosegons
de duració per a produir una transició adiabàtica ràpida (RAP) en un ió atrapat, amb l’objectiu de
produir un intercanvi de població entre dos estats quàntics. S’ha desenvolupat un marc teòric per a
pols lineals en el “chirp” i s’ha introdüıt un nou mètode per a caracteritzar aquests pols. Simulacions
numèriques de l’equació de Schrödinger confirmen que el pols RAP produeix transicions entre els
estats quàntics amb un 100% de probabilitat dins d’un règim adiabàtic, independentment de l’àrea
del pols. També s’han estudiat els efectes d’afegir un desajust entre les freqüències de transició i del
pols elèctric, indicant una dependència lineal entre la mida de la corba de probabilitat de transició
i l’amplada del pols.
Paraules clau: Ió atrapat, pols làser ultracurts, transició adiabàtica ràpida.
ODSs: Aquest TFG està relacionat amb els Objectius de Desenvolupament Sostenible (SDGs).

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible X 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures X

El contingut d’aquest TFG, part d’un grau universitari de F́ısica, es relaciona amb l’ODS 7, i en particular amb la
fita 7.1, ja que contribueix a la modernització de les tecnologies energètiques. També es pot relacionar amb l’ODS 9,
fita 9.4, perquè presenta una tecnologia per a aumentar l’eficiència dels recursos de la indústria. Les dues fites, les
aborda des d’una perspectiva de reduir el temps necessari per a una manipulació dels estats quàntics.
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