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ABSTRACT
◥

Purpose:We analyzed the utility of cell-free DNA (cfDNA) in a
prospective population-based cohort to determine the mutational
profile, assess tumor burden, and estimate its impact in response
rate and outcome in patients with diffuse large B-cell lymphoma
(DLBCL).

Experimental Design: A total of 100 patients were diagnosed
withDLBCLduring the study period.Mutational status of 112 genes
was studied in cfDNA by targeted next-generation sequencing.
Paired formalin-fixed, paraffin-embedded samples and volumetric
PET/CT were assessed when available.

Results: Appropriate cfDNA to perform the analyses was
obtained in 79 of 100 cases. At least one mutation could be detected
in 69 of 79 cases (87%). The sensitivity of cfDNA to detect the
mutations was 68% (95% confidence interval, 56.2–78.7). The
mutational landscape found in cfDNA samples was highly consis-
tent with that shown in the tissue and allowed genetic classification

Introduction
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous entity

from a biological and clinical standpoint. Two main molecular

in 43% of the cases. A higher amount of circulating tumor DNA
(ctDNA) significantly correlated with clinical parameters related to
tumor burden (elevated lactate dehydrogenase and b2-microglo-
bulin serum levels, advanced stage, and high-risk International
Prognostic Index) and total metabolic tumor volume assessed by
PET/CT. In patients treated with curative intent, high ctDNA levels
(>2.5 log hGE/mL) were associated with lower complete response
(65% vs. 96%; P < 0.004), shorter progression-free survival (65% vs.
85%; P ¼ 0.038), and overall survival (73% vs. 100%; P ¼ 0.007) at
2 years, although it did not maintain prognostic value in multivar-
iate analyses.

Conclusions: In a population-based prospective DLBCL series,
cfDNA resulted as an alternative source to estimate tumor burden
and to determine the tumor mutational profile and genetic classi-
fication, which have prognostic implications and may contribute to
a future tailored treatment.

subtypes are recognized according to their cell-of-origin (COO):
the germinal center and activated B-cell subtypes, with up to 15%–
18% of cases being unclassifiable (1, 2). More recently, new genetic
subtypes have been identified beyond COO, incorporating muta-
tions, copy-number alterations (CNA), and structural variants,
aimed at grouping patients based on common mechanisms of
lymphomagenesis (3–5).

Genetic studies are usually performed in tumor tissue. However, in
recent years, the interest for the detection and study of cell-free DNA
(cfDNA) has provided a noninvasive tool for diagnosis, disease
monitoring, clinical decision-making, and treatment selection in
oncology (6). In the field of lymphoid neoplasms, some studies have
highlighted the potential of cfDNA in determining the mutational
profile ofDLBCL, as well as the COOmolecular subtype (7, 8), whereas
others have focused on the prognostic utility of the amount of
circulating tumor DNA (ctDNA), as a surrogate of tumor burden,
compared with CT or PET imaging (9–11). Moreover, Kurtz and
colleagues (12) showed that pretreatment ctDNA levels andmolecular
responses, either at diagnosis or relapse, were independent prognostic
markers in DLBCL.

On the other hand, new biomarkers obtained at baseline PET/
CT are under investigation, the total metabolic tumor volume
(TMTV) and the total lesion glycolysis (TLG; ref. 13). High TMTV
has been associated with a worse progression-free survival (PFS)
and/or overall survival (OS) in DLBCL and other lymphoma
subtypes (13–15).

The aim of this study was to prospectively study in a real-life setting
the utility of plasma cfDNA to determine themutational profile, assess
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tumor burden, and estimate its impact on response and outcome of
patients with DLBCL.

Materials and Methods
Patients

A total of 100 patients consecutively diagnosed with DLBCL
according to the World Health Organization classification (1) were
prospectively enrolled from September 2016 to March 2019. High-
grade B-cell lymphoma not otherwise specified (NOS) and high-grade
B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements
were also included, whereas primary mediastinal large B-cell lym-
phomas, posttransplant lymphoproliferative disorders or other
immune-related lymphomas, and cases with a low-grade lymphoma
component were excluded. Sufficient cfDNA to assess the muta-
tional profile was obtained from 79 cases, which constituted the
subjects of the study. Sample collection and processing are detailed
in Supplementary Materials and Methods.

The main clinicobiological and evolutionary characteristics were
recorded and analyzed as described previously (16). These variables
included: (i) clinical data: age, gender, performance status (PS) accord-
ing to the Eastern Cooperative Oncology Group (ECOG) scale,
presence of B symptoms, and bulky disease (defined as a tumor
diameter >7 cm); (ii) hematologic and biochemical parameters: white
blood cell and lymphocyte counts, hemoglobin, serum lactate dehy-
drogenase (LDH), and b2-microglobulin levels; (iii) tumor burden
data: nodal and extranodal involvement, number of extranodal
involved sites, palpable splenomegaly, bone marrow infiltration, and
Ann Arbor Stage; and (iv) the International Prognostic Index (IPI).

Staging was performed according to standard procedures, including
PET/CT and unilateral bonemarrow biopsy (17). All, but two patients,
who died before starting therapy, were treated with chemoimmu-
notherapy, mostly (N ¼ 62, 78%) R-CHOP (rituximab, cyclophos-
phamide, doxorubicin, vincristine, and prednisone; Table 1).
Responses were assessed by end-of-therapy PET/CT according to
standard guidelines (18). The median follow-up for surviving patients
was 23.5 months (range, 8.6–42 months). Patients provided written
informed consent in accordance with the Declaration of Helsinki, and
the study was approved by the institutional review board.

Histologic review
Histologic diagnosis, including morphology and IHC, was reviewed

by O. Balagu�e, N. Castrej�on de Anta, and E. Campo. The percentage of

Abbreviations: R-CVP, rituximab, cyclophosphamide, vincristine, and predni-
sone; R-GEMOX, rituximab, gemcitabine, and oxaliplatin.
aThe number of patients in whom the variable was available: bone marrow
infiltration, 73; COO, 66.
bPET/CT was available in 63 cases.

tumor infiltration and the expression of MYC, BCL2, BCL6, and
p53 were semiquantitatively estimated. MYC, BCL2, and BCL6 rear-
rangements were routinely assessed by FISH using both fusion
and break-apart probes. COO assessment was performed by means
of Lymph2Cx Assay (NanoString Technologies; Supplementary
Materials and Methods).

Mutational profile
The mutational status of 112 recurrently mutated genes in B-cell

lymphoma was examined by targeted next-generation sequencing
(NGS; Supplementary Table S1). Libraries were performed with 15–
30 ng of cfDNA and 150 ng of genomic DNA (gDNA) obtained from
plasma and formalin-fixed, paraffin-embedded (FFPE) biopsy, respec-
tively, using molecular-barcoded library adapters (ThruPLEX Tag-seq
Kit, Takara) coupled with a custom hybridization capture–based
method (SureSelect XT Target Enrichment System Capture strategy,
Agilent Technologies Inc.) and sequenced in an MiSeq Instrument

Table 1. Main baseline features, treatment, and response of the 79
patients with DLBCL.

Characteristics N (%)

63 (20–94)
42/37 (53/49)

Median age (range)
Male/female
Histology

63 (80)
8 (10)

DLBCL, NOS
High-grade B-cell lymphoma, NOS
High-grade B-cell lymphoma with MYC and BCL2
and/or BCL6 rearrangements

8 (10)

COO classificationa

39 (59)
19 (29)

Germinal center B-cell
Activated B-cell
Unclassified 8 (12)

29 (37)
31 (39)

ECOG PS ≥ 2
B symptoms
Stage

12/17 (15/22)
7/43 (9/54)
20 (27)
21 (27)
45 (57)

I/II
III/IV

Bone marrow infiltrationa

Bulky mass (>7 cm)
LDH > normal
IPI

24 (30)
17 (21.5)
17 (21.5)

Low risk
Low–intermediate risk
High–intermediate risk
High risk 21 (27)

207 (0–4,171)
1,525 (0–26,295)

PET/CT baseline parametersb

Median TMTV (range)
Median TLG (range)

Treatment
62 (78)
7 (9)
8 (10)

R-CHOP
Intensive chemoimmunotherapy
R-CVP/R-GEMOX
Died before starting treatment 2 (3)

Response to treatment
59 (75)
4 (5)

Complete response
Partial response
Progressive disease 16 (20)

Translational Relevance

Previous studies have highlighted the potential of cell-free DNA
(cfDNA) to assess the mutational profile in diffuse large B-cell
lymphoma (DLBCL). This population-based prospective study
showed that cfDNA is a reliable source for DLBCL genotyping,
allowing us to classify the cases into the recently described genetic
subtypes, providing evidence to use cfDNA as a source for molec-
ular classification. Also, baseline circulating tumor DNA (ctDNA)
levels significantly correlated with clinical and volumetric PET/CT
parameters of tumor burden. Moreover, high ctDNA levels (>2.5
log hGE/mL) were associated with lower complete response,
shorter progression-free, and overall survival. To our knowledge,
this is the first confirmation of this finding in a prospective single-
center real-life series.

Rivas-Delgado et al.
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(Illumina, 2 � 150 bp). Sequencing data have been deposited at the
European Genome-Phenome Archive (http://www.ebi.ac.uk/ega/),
which is hosted at the European Bioinformatics Institute, under
accession number EGAS00001004733.

The bioinformatic analysis was performed using an updated version
of our previously validated pipeline (19). Synonymous and intronic
variants were removed. Because of the lack ofmatched germ lineDNA,
potential polymorphisms were filtered out on the basis of public
databases and by using a three-step algorithm designed to predict the
somatic origin of the mutations (Supplementary Materials and
Methods).

Molecular groups classification
The LymphGen probabilistic classification tool was used to classify

our DLBCL cases into the recently described genetics subtypes (5). To
this aim, we used themutations identified in 79 cfDNA samples as well
as BCL2 and BCL6 translocations. Because the A53 subtype is defined
primarily by CNA, this subtype was excluded from the LymphGen
classification algorithm in our series.

ctDNA quantitation
ctDNA levels were reported as haploid genome equivalents per

mL of plasma (hGE/mL), determined as the product of total cfDNA
concentration (fluorometry by Qubit, Thermo Fisher Scientific) and
the mean allele fraction of somatic mutations (Supplementary
Materials and Methods). This value was expressed as a base-10
logarithm (log hGE/mL). We used the 2.5 hGE/mL threshold to
classify patients into low or high ctDNA amount as published
previously (12).

2[18F]Fluoro-2-deoxy-D-glucose–PET/CT parameters
TMTV was calculated by adding up the metabolic volumes of

all nodal and extranodal lesions. TLG was calculated as the sum
of the product of the metabolic volume of each local tumor based on
its SUVmean. Quantitative analysis of TMTV was performed using
the semiautomatic MIM software and supervised by X. Setoain,
S. Rodríguez, M. Sim�o, and S. Casanueva-Eliceiry, with a fixed SUV
> 2.5 thresholding method for segmentation. According to previous
publications, the optimal cutoff to classify into low and high TMTV
was established as 400 cm3 (20, 21).

Statistical analysis
We used standard definitions for complete response (CR), PFS, and

The failure to obtain DNA was due to start of treatment prior to
sample extraction (n ¼ 13) and concomitant diagnosis of a second
neoplasm (n ¼ 2). Moreover, in six additional cases, the mutational
profile could not be assessed because of the low amount of cfDNA
(n ¼ 2) or other technical issues (n ¼ 4; Supplementary Fig. S1).
Finally, the mutational landscape was assessed in 79 patients, whose
main clinicobiological characteristics are listed in Table 1. Fifty-
four percent of patients had stage IV disease, including 27% with
bone marrow infiltration, and 48.5% showed high-intermediate- or
high-risk IPI. After first-line treatment, 59 (75%) patients achieved
a CR, 4 (5%) patients achieved a partial response, and 16 (20%) were
refractory, including 7 early deaths. Among CR patients, 6 of
59 (7%) eventually relapsed at a median of 14 months from CR
achievement (range, 10–20 months). Patients not included in the
cfDNA analyses showed significant differences in terms of initial
features (they were older, had a higher risk IPI, and a poorer PS)
and outcome, with a lower CR rate and shorter PFS and OS
(Supplementary Table S2).

Mutational profile assessed in cfDNA
The mean coverage of the cfDNA samples was 329 � (range,

91 �–737 �) with more than 80% of the target regions covered at
>100 � in 75% of the samples. At least one mutation was detected
in 69 of 79 cases (87.3%; Supplementary Table S3). The median
number of mutations per sample was six (range, 0–41) and the
mean allele fraction was 26% (range, 2.4%–58.6%; Supplementary
Table S4). Figure 1 shows the mutational profile of the series,
restricted to genes mutated in more than 5% of the cases. The most
frequently mutated genes were KMT2D, BCL2, TP53, TNFRSF14,
MYD88, CREBBP, EP300, SOCS1, MYC, and PIM1 (the complete
list of mutations is detailed in Supplementary Table S3). The
distribution according to COO, MYC and BCL2 double expression,
MYC, BCL2, and BCL6 rearrangement, and double-hit status is also
shown in Fig. 1. Moreover, we were able to classify 43% of the cases
according to the genetic subtypes proposed by Wright and collea-
gues (5), as detailed in Supplementary Fig. S2.

Validation of mutations in tissue biopsies
To validate the cfDNA mutational analysis, we performed targeted

NGS in 45 paired FFPE samples. Mean percentage of tumor content
was 80% (range, 30%–100%). Themean coverage in these samples was
509 � (range, 77 �–1,050 �). In 28 of 45 cases (62%), the majority
(≥69%) of the mutations were observed both in the cfDNA and FFPE
samples. In the remaining 17 cases, the number ofmutations identified
in cfDNAwas lower than that observed in the paired FFPE samples. In
10 cases, additional mutations were only detected in cfDNA compared
with gDNA (Fig. 2). The sensitivity of cfDNA to detect the mutations
present in paired FFPE samples was 68% [95% confidence interval
(CI), 56.2–78.7]. When we considered mutated genes instead of
individual mutations, cfDNA genotyping was able to detect 71% of
mutated genes. When taking into account only the mutations present
with >20% allelic frequency in the FFPE samples, we detected up to
77% of the mutations in cfDNA. Of note, most cases in which
mutations could not be detected in the cfDNA corresponded to
localized stages [mutations were detected in 3/14 (21%) localized
stages vs. 24/30 (80%) of disseminated stages; P < 0.001]. In addition,
among the four cases in which cfDNA sample was obtained after
excisional biopsy of the primary tumor, in two of these cases less than
50% of mutations observed in the paired FFPE sample could be
detected in the cfDNA, while none of the mutations were detected
in the remaining two cases.

Cell-free DNA in Diffuse Large B-Cell Lymphoma

OS (18). x2 method was used for categorical variables and Student t test
for continuous variables. Nonparametric tests were applied when
necessary. Logistic regression was used to select the best variables
predicting CR. Actuarial survival analysis was performed by the
Kaplan–Meier method and differences were assessed by the log-rank
test. The optimal cut-off point for TLG for PFS was determined by using
the maximally selected rank statistics (maxstat R package). Multivariate
Cox regression analysis was used to assess the independent prognostic
impact of different variables in terms of PFS and OS. Only patients
treated with curative intent were included in the prognostic analyses. P
< 0.05 was considered statistically significant. Statistical analyses were
carried out using R (version 3.6.2; R Foundation).

Results
Clinical features, treatment, and outcome of the patients

cfDNA could be obtained from 85 of the 100 (85%) patients
prospectively diagnosed with DLBCL during the period of the study.

AACRJournals.org Clin Cancer Res; 27(2) January 15, 2021 515



Tumor burden assessment
ctDNA

The median amount of ctDNA was 2.64 log hGE/mL (range, 1.29–
4.27). Higher quantity of ctDNA significantly correlated with the
presence of B symptoms, elevated LDH and b2-microglobulin serum
levels, advanced Ann Arbor stage, and high-risk IPI (P < 0.05 in all
cases; Fig. 3A; Supplementary Table S5). However, there was no
significant correlation between the amount of ctDNA and the presence
of bulky mass or primary extranodal disease. Of note, the number of
detected mutations was not related to the amount of ctDNA (mean,
7.2 vs. 7.8 for low and high ctDNA, respectively).

PET/CT
Volumetric PET/CT determinations could be assessed in 63

cases. Median pretreatment TMTV was 207 cm3 (range, 0–4,171
cm3), whereas median TLG was 1,525 (range, 0–26,295). As
expected, high TMTV and TLG correlated with bulky disease,
presence of B symptoms, elevated LDH serum levels, b2-micro-
globulin, advanced stage, and IPI (P < 0.05 in all the cases;
Supplementary Table S5). The ctDNA concentration significantly
correlated with the TMTV (R¼ 0.56; P < 0.001) and TLG (R ¼ 0.43;
P < 0.001), confirming that ctDNA measurements are related to the
lymphoma tumor burden (Fig. 3B). The optimal cutoff for PFS as
determined by maxstat for TLG was 7,898.

Impact of initial variables, including mutational profile and
tumor burden, on response and outcome

Initial variables predicting the achievement of a CR in the 69
patients treated with curative intent included poor ECOG PS,
advanced stage (III–IV), elevated LDH and b2-microglobulin, and
high-intermediate- or high-risk IPI (all P < 0.05; Supplementary
Table S6). The following single mutations predicted a low CR rate:
SETD1B, CIITA, and FOXO1 (P < 0.03). The previously described
genetic subtypes and the number of mutations did not predict CR.We
also examined the impact of pretreatment ctDNA levels on outcome,
using 2.5 log hGE/mL of ctDNA as threshold. Patients with high
ctDNA levels had a significantly lower CR rate than those with low
ctDNA levels (65% vs. 96%, respectively; P < 0.004). Patients with high
TMTVandTLG also had a significantly lower CR rate (TMTV, 56%vs.
97%; P < 0.001 and TLG, 36% vs. 94%; P < 0.001). In a multivariate
analysis, including IPI, ctDNA amount, and TMTV, only TMTV (HR,
0.56; P¼ 0.009) maintained its predictive value for CR achievement in
the final model with 50 cases.

Clinical variables associated with a shorter PFS in the univariate
analysis were: high serum LDH and b2-microglobulin, double expres-
sion of MYC and BCL2, advanced stage, and high-risk IPI
(Table 2; Fig. 4A). Mutations of the following genes were related
to a poor PFS: CIITA, SETD1B, OSBPL10, and MYC (P < 0.05).
Patients with high ctDNA levels had a significantly inferior 24-
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Abbreviation: ULN, upper limit of normal.
aP < 0.05.

month PFS than those with low levels (65 vs. 85%, respectively; P ¼
0.038; Fig. 4B). Higher TMTV and TLG predicted for a lower 24-
month PFS (TMTV, 56%vs. 80%;P¼ 0.012 andTLG, 36%vs. 81%;P<
0.001; Table 2; Fig. 4C). A multivariate analysis was performed,
including IPI, ctDNA (low vs. high), and TMTV (low vs. high). In
the final model with 50 patients, only TMTV [HR, 3.32 (95% CI, 1.22–
9.0); P ¼ 0.018] retained independent prognostic value for PFS
(Supplementary Fig. S3).

Nine patients eventually died during follow-up, with a 24-monthOS
of 86% (95% CI, 79%–93%). Initial variables predicting OS were older
age (>60 years), poor ECOG PS, presence of B symptoms, extranodal
involvement, advanced stage, high b2-microglobulin serum levels,
higher IPI, double expression of MYC and BCL2, high ctDNA level,
and TMTV (all P < 0.05). PIM1, FOXO1, DTX1, CIITA, SETD1B,
OSBPL10, and MYC mutations were associated with poor OS (P <
0.05). Patients with high ctDNA levels had a significantly inferior
24-month OS than those with low levels (73% vs. 100%, respec-
tively; P ¼ 0.007; Fig. 4B). Higher TMTV, but not TLG, predicted
for a poorer 24-month OS (TMTV, 75% vs. 94%; P ¼ 0.0478 and
TLG, 71% vs. 91%; P ¼ 0.071; Table 2; Fig. 4C).

Discussion
Liquid biopsy, particularly cfDNA, has been increasingly used for a

wide variety of applications in oncology, including diagnosis, prog-
nosis, and the identification of therapeutic targets (6). In addition,
ctDNA provided information regarding tumor burden with a good
correlation with other clinical parameters and the metabolically active
tumor mass as assessed by PET (12, 22).

We have conducted a population-based prospective study showing
that cfDNA is a reliable source for DLBCL genotyping. Although the
study was designed to enroll all cases consecutively diagnosed with

DLBCL at a single institution, 15% of the potential candidates could
not be included, mostly due to the start of treatment before sampling.
Of note, these cases corresponded to a high-risk population, with poor
initial features, lowCR rates, and unfavorable outcome.Obviously, this
represents a bias in an attempted “real-life” study. Nevertheless, it is
likely that this bias is also present in previous studies based on
retrospective series (9, 12).

One of the aims of this study was the assessment of ctDNA to
objectively estimate tumor burden. We have confirmed that baseline
ctDNA levels are significantly associated with well-described clinical
parameters of tumor burden, including serum LDH and IPI, and also
with b2-microglobulin level and advanced stage, which were not
clearly associated in previous series (7, 11, 12). The prognostic value
of PET has been demonstrated in different lymphoma subtypes,
particularly by using quantitative assessment of TMTV and TLG (13).
We have confirmed the prognostic value of these two factors in this
cohort. Furthermore, a correlation between baseline ctDNA levels and
TMTV was observed, indicating that ctDNA levels might be a surro-
gate for tumor burden. Kurtz and colleagues (12) showed that pre-
treatment ctDNA levels and molecular responses both after first-line
and salvage therapy were independent prognostic markers. Using the
same cutoff, we observed that patients with high ctDNA levels had
significantly inferior 24-month PFS (65% vs. 85%; P ¼ 0.038) and OS
rates (73% vs. 100%; P ¼ 0.007) than those with low levels. To our
knowledge, this is the first confirmation of this finding in a larger
prospective single-center series. Finally, the multivariate analysis
showed that TMTV, but not ctDNA, retained independent prognostic
impact on PFS. Although this is somewhat different from previous
studies (12, 22), it is not surprising because both ctDNA and TMTV
likely reflect the active mass of the tumor. Considering the relatively
small number of cases included in this multivariate analysis, larger
studies are needed to confirm the potential independent prognostic
value of these highly correlatedmeasurements and to further clarify the
role of ctDNA in the clinical setting.

Median TMVT was lower than in previous series (20, 21). The
median value is crucially dependent on the segmentation method, the
patient population characteristics, and the efficacy of treatment. There
is no agreement on the best method. We employed the SUV ≥2.5
method, which according to previous reports has the best interobserver
agreement and is the easiest to apply (20).Mikhaeel and colleagues (21)
analyzed the prognostic value of quantitative PET measurements,
particularly metabolic tumor burden, in a retrospective study includ-
ing 147 consecutive patients treated with R-CHOP at a single insti-
tution. They used an in-house software to automatically segment
tumor volumes with SUV ≥ 2.5. Median TMTV of this series was
592 cm3; however 40% of the patients had bulky disease at diagnosis
and 68% of patients had stage III–IV.

Previous studies have shown that cfDNA could provide an accurate
picture of the genetic landscape of lymphoprolipherative disorders.
This is of great interest since the expansion of NGS has highlighted the
importance of gene mutations and CNA beyond the COO and FISH
alterations. In fact, new genetic classifications that incorporate such
data have been recently proposed, with the objective of grouping the
patients according to common mechanisms of lymphomagenesis
susceptible of potential specific target therapies (3–5). Indeed, cfDNA
might be useful not only at diagnosis when tissue biopsy is mandatory,
but also at relapse when excision biopsy is frequently unavailable.

At least one mutation was detected in plasma in the majority (87%)
of the cases. This finding is consistent with previous publications, in
which the rate of detection varied from 63% to 85% (7, 11). We also
aimed to determine the reliability of the technique by comparing the

Table 2. CR rate, PFS, and OS according to parameters reflecting
tumor burden in the 69 patients with DLBCL treated with curative
intent.

Variable N CR (%) 2-year PFS 2-year OS

Bulky disease
No 52 43 (83) 75 86
Yes 17 12 (71) 61 88

LDH
Normal 30 29 (97)a 84a 97a

>ULN 39 26 (67) 63 79
b2-microglobulin

Normal 30 30 (100)a 88a 100a

>ULN 39 24 (63) 61 76
IPI

Low/intermediate-low 39 36 (92)a 83a 97a

30 19 (63) 60 73Intermediate-high/high
ctDNA

Low 25 24 (96)a 85a 100a

34 22 (65) 65 73High
TMTV

35 34 (97)a 80a 94aLow
High 25 14 (56) 56 75

TLG
46 43 (94)a 81a 91Low

High 14 5 (36) 36 71
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NGS of 50 diagnostic plasma samples. They were able to detect in
plasma, 83% of the mutations seen in the tissue biopsy in 18 paired
cases. This slight difference could be explained by the lower sequencing
coverage of our series (mean depth, 329� vs. >1,000�), together with
a substantially higher number of tested genes (N¼ 112 vs. 59). In this
regard, most of the biopsy mutations not detected in the cfDNA had a
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Cell-free DNA in Diffuse Large B-Cell Lymphoma

information obtained from cfDNA with that from the tumor tissue. In
our hands, the sensitivity of cfDNA to detect mutations present in the
paired FFPE samples was 68%. This proportion increased to 71%when
the number of mutated genes was taken into consideration, instead of
the number of mutations. In a previous study, Rossi and colleagues (7)
determined the basal genetic profile of DLBCL by ultra-deep targeted
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low representation in the tissue suggesting that they could be present
below the limit of detection in the cfDNA due to the low sequencing
depth. In fact, when we considered only mutations with >20% allelic
frequency in the tumor biopsy, we were able to detect up to 77% of the
mutations in cfDNA. On the other hand, we observed that in localized
stages or after excisional diagnostic procedures, the sensitivity of
cfDNA to detect tumor mutations was significantly lower.

The mutational landscape described from cfDNA in our study was
highly consistent with that previously published in different DLBCL
series, including a different cohort from our institution (3, 4, 7, 23). It
included genes with prognostic impact and related to targeted drugs,
such as TP53, MYD88, EZH2, NOTCH1, CD79B, or CREBBP that
could be relevant in the near future in the treatment of these patients.
Note that we did not analyze CNA because of our NGS panel was not
designed to capture regions effected by chromosomal alterations and
the lack of baseline cfDNA samples to be used in the analyses. Recently,
Wright and colleagues (5) proposed a new genetic system able to
classify up to 63.1% of DLCBL cases (47.6% core cases, 9.8% extended
cases, and 5.7% genetically composite cases). Applying this algorithm
with the mutations identified in the cfDNA, we were able to classify
43% of our cases, providing evidence to use cfDNA as a source for
molecular classification. The lower percentage of cases classified in our
series could be explained by the limited number of genes studied
together with the lack of information regarding CNA, which impaired
the assessment of the entire classification proposed. This also might
explain the fact that molecular classification had no significant impact
on the response to treatment.

The identification of predictive biomarkers is an urgent need to
allow a rational selection of the most effective therapies in the future
clinical practice. It is proposed that the DLBCL genetic subtypes differ
strikingly in their response to standard chemoimmunotherapy and
may also respond differently to targeted therapies (5). In the last years,
different agents have been combined with standard chemoimmu-
notherapy without an improvement in response or survival (24–26),
although only COO classification was used. The incorporation of this
molecular classification for treatment selection into the design of
clinical trials, and eventually in the real-life setting, is a first step of
improvement in the era of personalized medicine.

In summary, cfDNA was easily accessible and useful for estimating
the tumor burden and tumor mutational profile in our prospective
cohort of patients with DLBCL. Evaluating its relationship with the
mutational burden or particular genetic profiles could provide decisive
information to tailor therapeutic approaches.
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Abstract: High-throughput sequencing of cell-free DNA (cfDNA) has emerged as a promising
noninvasive approach in lymphomas, being particularly useful when a biopsy specimen is not
available for molecular analysis, as it frequently occurs in primary mediastinal large B-cell lymphoma
(PMBL). We used cfDNA for genomic characterization in 20 PMBL patients by means of a custom
NGS panel for gene mutations and low-pass whole-genome sequencing (WGS) for copy number
analysis (CNA) in a real-life setting. Appropriate cfDNA to perform the analyses was obtained in
18/20 cases. The sensitivity of cfDNA to detect the mutations present in paired FFPE samples was
69% (95% CI: 60–78%). The mutational landscape found in cfDNA samples was highly consistent
with that of the tissue, with the most frequently mutated genes being B2M (61%), SOCS1 (61%),
GNA13 (44%), STAT6 (44%), NFKBIA (39%), ITPKB (33%), and NFKBIE (33%). Overall, we observed
a 75% concordance to detect CNA gains/losses between DNA microarray and low-pass WGS. The
sensitivity of low-pass WGS was remarkably higher for clonal CNA (18/20, 90%) compared to
subclonal alterations identified by DNA microarray. No significant associations between cfDNA
amount and tumor burden or outcome were found. cfDNA is an excellent alternative source for the
accurate genetic characterization of PMBL cases.

Keywords: cell-free DNA; primary mediastinal large B-cell lymphoma; mutational profile; copy
number analysis

1. Introduction

Primary mediastinal large B-cell lymphoma (PMBL) is recognized as a specific entity by
the World Health Organization (WHO) classification, with particular clinical, histological,
and molecular features. It accounts for 2% to 3% of all non-Hodgkin lymphomas [1].
Typically, patients present with a large mass in the anterior mediastinum, which often
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makes it difficult to perform a biopsy. Occasionally, histological samples can initially be
non-diagnostic due to extensive fibrosis and necrosis, leading to patients either undergoing
mediastinoscopy or thoracoscopy to reach the diagnosis [2]. PMBL has recurrent genomic
alterations, including somatic gene mutations and copy number alterations (CNA), as well
as a characteristic gene expression profile. Constitutive activation of the nuclear factor-kB
(NF-kB) and JAK/STAT pathways are recognized as a hallmark of this disease [3,4].

Cell-free DNA (cfDNA) has emerged as a noninvasive tool, complementary to tissue
biopsies, particularly in cases in which a tumor biopsy is clinically difficult to obtain [5].
In Oncology, cfDNA has demonstrated its utility in monitoring the response to treatment
real time, guiding therapy, and detecting early recurrence [6]. In recent years, cfDNA
has been investigated in Hodgkin and non-Hodgkin lymphomas, using next-generation
sequencing (NGS) for genetic analysis, providing a straightforward and easier detection
method for assisting in the molecular profiling of tumors. In addition, cfDNA baseline
levels have proven to be a remarkably useful tool to predict response to treatment and
clinical outcomes [7]. Several studies of cfDNA in diffuse large B-cell lymphoma (DLBCL)
using NGS customized gene panels have shown that the mutational landscape from cfDNA
samples was highly consistent with that observed in tissue biopsies, and also highlighted
mutations only present in cfDNA, a fact that could be explained by the spatial heterogeneity
of the tumor [8–11]. Although some of these studies include PMBL [9,11,12], the low
number of cases analyzed and the lack of PMBL-specific analyses preclude any solid
conclusion about the use of cfDNA for PMBL genomic characterization.

Genetic studies are difficult in PMBL mainly due to the scarce available material.
This is particularly relevant both at diagnosis, when the biopsy is obtained by a large
core needle leading to sufficient material for establishing a diagnosis but not for further
analysis, and at relapse. In this setting, the use of cfDNA might overcome this limitation
and become a reliable ground for genetic studies in PMBL. Thus, the aim of this study
was to assess the use of cfDNA as a reliable source for genomic characterization using a
custom NGS panel for gene mutations and low-pass whole-genome sequencing (WGS) for
CNA in newly diagnosed patients with PMBL in a real-life setting and its correlation with
clinical parameters.

2. Methods

2.1. Patients

Twenty-four patients were diagnosed with PMBL in two institutions between 2015
and 2020. Using the availability of plasma for cfDNA assessment, we selected the 20 cases
with available plasma samples at diagnosis. The mutational profile could be evaluated in
cfDNA in 18 cases with enough cfDNA quantity after extraction (at least 15 ng of cfDNA
for library construction), which constituted the subjects of the present study.

Staging was performed according to standard procedures, including positron emission
tomography/computed tomography (PET/CT) and unilateral bone marrow biopsy [13].
The main clinico-biological and follow-up characteristics were recorded and analyzed
(variables studied are detailed in Supplementary Methods) (Table 1). All patients were
treated with chemoimmunotherapy, including R-CHOP (rituximab, cyclophosphamide,
doxorubicin, vincristine, and prednisone) or DA-EPOCH-R (dose-adjusted etoposide,
prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab), followed by
consolidative radiation therapy in selected cases (Table 1). Responses were assessed by
end-of-therapy PET/CT according to standard guidelines [13].

2.2. Histologic Review

Cases were reviewed for the present study by G.F., L.C., and E.C. Morphological and
immunohistochemical analyses were carried out according to the WHO classification [1]
using the following markers: (1) B-cell differentiation antigens: CD10, CD19, CD20, CD22,
CD23, CD79a, BCL6, and IRF4/MUM1, (2) T-cell antigens: CD2, CD3, CD4, CD5, CD7,
CD8, and CD45RO, and (3) cell proliferation and apoptosis: Ki67, CD30, and BCL2.
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Table 1. Main baseline features, treatment, and response of the 18 patients with PMBL.

Characteristics N (%)

Median age (range) 30 (19–68)
Female/Male 11/7 (61/39)
ECOG-PS ≥ 2 2 (11)
B symptoms 8 (44)
Stage

I/II 12 (67)
III/IV 6 (33)

Bone marrow infiltration 0 (0)
Bulky mass (>7 cm) 14 (78)
Lactate dehydrogenase > normal 14 (78)
IPI

Low risk 10 (56)
Low-Intermediate risk 5 (28)
High-Intermediate risk 2 (11)
High risk 1 (5)

Treatment
R-CHOP 13 (72)
DA-R-EPOCH 5 (28)

Consolidative radiotherapy 10 (56)
Response to treatment

Complete response 10 (56)
Partial response 4 (22)
Progressive disease 4 (22)

ECOG: Eastern Cooperative Oncology Group. IPI: International Prognostic Index. R-CHOP: rituximab, cy-
clophosphamide, doxorubicin, vincristine, and prednisone. DA-EPOCH-R: dose-adjusted etoposide, prednisone,
cyclophosphamide, vincristine, doxorubicin, and rituximab.

2.3. Sample Collection and DNA Extraction

Plasma samples were collected at diagnosis, before the start of treatment, using EDTA
tubes or PAXgene Blood ccfDNA tubes (PreAnalytiX, Hombrechtikon, Switzerland) and
were processed within the first four hours after blood extraction (Supplementary Methods).
cfDNA was extracted from 2–4 mL of plasma using the QIAamp circulating nucleic acid kit
(Qiagen, Hilden, Germany) or the MagMax Cell Free DNA isolation kit (Thermo Fisher Scientific,
Waltham, MA, USA). In parallel, genomic DNA (gDNA) was isolated from diagnostic formalin-
fixed paraffin-embedded (FFPE) tissue biopsies using the AllPrep DNA/RNA FFPE Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions.

Levels of cfDNA are reported as haploid genome equivalents per mL of plasma
(hGE/mL), determined as the product of total cell-free DNA concentration and the mean
allele fraction of somatic alterations, and expressed as a base-10 logarithm (log hGE/mL).
We selected the 2.5 log hGE/mL threshold for pretreatment cfDNA level according to
previous publication [12].

2.4. Mutational Profile and Copy Number Alterations

NGS was performed using a panel of 112 recurrently mutated genes in B-cell lym-
phoma as previously described (Supplementary Table S1) [10]. Briefly, libraries were
performed with 15–30 ng of cfDNA and 150 ng of gDNA using molecular-barcoded library
adapters (ThruPLEX Tag-seq kit; Takara, Tokyo, Japan) coupled with a custom hybridiza-
tion capture-based method (SureSelect XT Target Enrichment System Capture strategy,
Agilent Technologies Inc., Santa Clara, CA, USA) and sequenced in a MiSeq instrument
(Illumina, San Diego, CA, USA, 2 × 150 bp) (Supplementary Methods). The bioinformatic
analysis was performed using our in-house NGS pipeline [10,14,15]. Synonymous and
intronic variants, as well as potential polymorphisms, were removed from downstream
analyses [10]. A detailed description on sample processing, library preparation, sequencing,
and bioinformatic analysis can be found in the Supplementary Files.
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Libraries for low-pass WGS were performed with the ThruPLEX Tag_seq kit using
30 ng of cfDNA in only two cases (cases 4 and 5) due to the availability of cfDNA for library
constructions. Libraries were sequenced in a NextSeq550 (2 × 75 bp, Illumina) aiming at
mean coverage of 0.5×. Raw reads were mapped to the human reference genome (GRCh37)
using the BWA-mem algorithm (v0.7.17) [16]. BAM files were generated, sorted, and
indexed using samtools (v1.9) [17]. PCR duplicates were flagged using Picard tools (v2.17.0).
FastQC (v0.11.5) and Picard tools were used to extract quality control metrics. Mean
coverage was 0.97× [range 0.34–2.41×]. CNA were extracted using ichorCNA (v0.3.2) [18]
following authors’ recommendations. Copy number neutral -loss of heterozygosity (CN-
LOH) were not evaluated using low-pass WGS.

CNA were also analyzed from gDNA using the Affymetrix Genome-wide Oncoscan
CNV FFPE arrays. Gains, losses and copy neutral loss of heterozygosity (CN-LOH) were
evaluated using Nexus version 9.0 Discovery Edition software (Biodiscovery, El Segundo,
CA, USA) using the GRCh37 human reference genome. CNA with a minimum size of
100 kb and telomeric CN-LOH larger than 10 Mb were considered.

2.5. Statistical Analyses

We used standard definitions for complete response (CR), progression-free survival
(PFS), and overall survival (OS) [13]. The chi-square method was used to compare cate-
gorical variables and the Student’s t-test for continuous variables. Non-parametric tests
were applied when necessary. Logistic regression was used to select the best variables
predicting for CR. Actuarial survival analysis was performed by the Kaplan–Meier method
and differences were assessed by the log-rank test. Statistical analyses were carried out
using R (version 3.6.3; R Foundation, Vienna, Austria).

3. Results

3.1. Detection of Genetic Alterations in cfDNA

cfDNA was obtained in 20 patients. However, as previously indicated, the mutational
profile of two cases could not be assessed due to the low amount of cfDNA or low quality
of DNA (one case each). Thus, the mutational landscape was finally assessed in 18 cases
with a mean coverage of the cfDNA samples of 363× (range: 114–616×). The median
number of mutations per sample was 15 (range: 1–30). Figure 1 shows the mutational
profile of all the patients, restricted to genes mutated in ≥2 cases (more than 10%). The
most frequently mutated genes were B2M (61%), SOCS1 (61%), GNA13 (44%), STAT6 (44%),
NFKBIA (39%), ITPKB (33%), and NFKBIE (33%). The complete list of mutations is detailed
in Supplementary Table S2.

3.2. Validation of Mutations in Tissue Biopsies

We performed targeted NGS in paired FFPE samples to validate the cfDNA mutational
analysis. Sufficient DNA for library constructions could be obtained from FFPE samples in
9 out of 18 cases. The remaining 9 cases were excluded due to insufficient material for DNA
extraction (n = 6) or insufficient quantity and/or quality for library preparation (n = 3).

The mean coverage in FFPE samples was 687× (range: 110–1520×). In 7 out of 9 cases
(78%), most mutations (>80%) were observed both in the cfDNA and the FFPE samples.
In the remaining 2 cases, the number of mutations identified in cfDNA was lower than
that observed in the paired FFPE sample. Of note, these 2 cases corresponded to localized
disease (Ann Arbor stage I). In 4 cases, additional mutations were only detected in cfDNA
compared to gDNA (Figure 2). Overall, the sensitivity of cfDNA to detect the mutations
present in paired FFPE samples was 69% (95% CI: 60–78%).
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Figure 1. Mutational profile in the cfDNA of the 18 patients with PMBL. Each column represents
one tumor sample, and each row represents one gene. Cases are grouped by response to first-
line treatment.

Figure 2. Concordance between mutations detected in cfDNA and matched tumor gDNA.
(A) Number of mutations by case. Mutations are coded by color according to whether they were
detected in both samples (blue), only in the FFPE sample (green), or only in cfDNA (red). The
percentage of concordance is showed for each case; (B) Prevalence of somatic mutations detected by
NGS in cfDNA and gDNA.
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3.3. Copy Number Alterations

We investigated CNA using OncoScan arrays in 2 FFPE samples. Several CNA
were detected in both samples, corresponding to a total of 8 and 16 alterations per case
(Supplementary Table S3). In both cases, we observed gains of 5p, 7q, and trisomy 9, 21,
and X, as well as losses of 7p. We compared the CNA results from the arrays with the
CNA obtained from the low-pass WGS of cfDNA. Overall, we observed a 75% concordance
to detect CNA between OncoScan and low-pass WGS. The sensitivity of low-pass WGS
was remarkably higher for clonal CNA (18/20, 90%) compared to subclonal alterations
identified by OncoScan (absolute probe median ≤0.1; 0/4 alterations) (Figure 3).

Figure 3. Copy number profile of primary mediastinal large B-cell lymphoma. The first line refers to
CNA from cell-free DNA low-pass WGS, followed by the CNA of FFPE Oncoscan. Chromosomes are
sorted from 1 to X and p to q (chromosome Y was excluded). Gains and losses are depicted in blue
and red, respectively. The subclonal CNA are highlighted by low color brightness.

3.4. Tumor Burden Assessment by cfDNA

The median amount of cfDNA was 2.65 log hGE/mL (range, 1.77–3.60). There was
no significant association between the amount of cfDNA and the presence of B symptoms,
elevated LDH, advanced Ann Arbor stage, or the presence of a bulky mass. Of note, the
number of detected mutations did not correlate with the amount of cfDNA (mean 7.2 vs. 7.8
for low and high cfDNA, respectively).

3.5. Clinical Features, Treatment, and Outcome of the Patients

The main clinico-biological features of the 18 patients in whom mutational analyses
were performed are listed in Table 1. Seventy-eight percent of patients had bulky disease,
33% had advanced stage (III/IV), and the majority (84%) showed low- or low-intermediate-
risk International Prognostic Index. After frontline treatment, 10 (56%) patients achieved a
CR, 4 (22%) partial response and 4 (22%) were refractory. None of the patients achieving
a CR relapsed during follow-up. None of the initial clinical variables predicted for the
obtention of a CR, nor did the total number of gene mutations. PTPRD mutation predicted
for a higher CR rate (100% mutated vs. 39% wild-type; p = 0.029). After a median follow-up
of 44 months, 3-year PFS was 56% (95% CI: 37–84%). No clinical variable predicted PFS,
whereas the single mutation at PTPRD predicted for a longer PFS (2-year PFS 100% vs. 39%
for mutated and wild-type PTPRD, respectively; p = 0.035). Overall, three patients died
during follow-up, with a 3-year OS of 85% (95% CI: 63–99%). No clinical or genetic variables
were able to predict OS.

4. Discussion

Analysis of cfDNA has been increasingly used for assessing molecular profiling at
diagnosis, to define prognosis, and for identification of therapeutic targets in oncology,
including patients with lymphoma [19]. Here, we have analyzed the applicability of
cfDNA as a reliable source for mutational and CNA assessment of PMBL patients in whom
diagnostic biopsies are often difficult to obtain. Indeed, the information about the utility of
cfDNA in PMBL is scarce, with only one recently published report [20].

In the present series, we were able to detect mutations in the cfDNA in 18 out of 20
(90%) cases, a similar rate to that reported in other lymphoma series, including a DLBCL
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cohort from our own institution [10,11]. Camus et al. [20] reported the mutational profile
of 44 patients with PMBL using an abridged targeted panel of nine genes, detecting at
least one mutation in 32 (73%) patients. The higher detection rate obtained in our study
could be explained by the fact that we have used a broader gene panel including analysis
of CNA and we have used molecular-barcode technology to improve background removal
in the analysis of sequencing data and increase sensitivity. We also aimed to determine
the reliability of the technique by comparing the mutational profile obtained from FFPE
samples. In our hands, the sensitivity of cfDNA to detect mutations present in the paired
FFPE samples was 69%. Once more, this is in line with previous publications on DLBCL by
us and others [9–11].

Different genetic alterations have been described in PMBL, including constitutive
activation of the NF-kB and JAK-STAT pathways, along with genetic alterations that
promote immune evasion [21]. The mutational landscape described from cfDNA in our
study was highly consistent with that previously published in different series, including
two integrative genetic analyses [3,22]. Thus, members of the JAK-STAT and NF-kB
pathways, including SOCS1, STAT6, NFKBIA, NFKBIE, and TNFAIP3 were among the most
frequently altered genes. Recurrent CNA have been described in PMBL including gains
of 9p (CD274 and PDCD1LG2), 2p (REL), chromosome 6, and 11q. Importantly, we were
also able to detect CNA from cfDNA using low-pass WGS, with high accuracy for clonal
CNA compared to matched FFPE tumoral tissue samples. The usefulness of cfDNA for
CNA has been previously assessed on lymphoma. Rushton and colleagues [23] evaluated
CNA from 45 relapsed/refractory DLBCL (rrDLBCL) derived liquid biopsies collected after
relapse using low-pass WGS, identifying nine regions enriched for recurrent amplifications
or deletions among rrDLBCL, providing insight into the biology of rrDLBCL from easily
accessible sources such as the peripheral blood.

Due to the limited number of fully studied cases, it was difficult to find significant
correlations with prognosis in the current study. In fact, even the main clinical variables
did not show a predictive impact. Nevertheless, it is noteworthy that patients with PTPRD
mutation had a higher CR rate and prolonged PFS. PTPRD encodes the receptor-type-
protein-tyrosine-phosphatase-δ, a tumor suppressor gene involved in cell growth regulation
through the JAK-STAT signal pathway. It has been previously described in indolent
and aggressive lymphomas, including marginal zone lymphoma and the primary central
nervous system DLBCL [24]. PTPRD mutations were associated with better PFS and OS
in patients with non-small cell lung cancer treated with immune checkpoint blockade,
providing evidence for exploring the role of this mutation in the PMBL patients who
receive immune checkpoint blockade in the era of immunotherapy [25].

Besides the genetic characterization of the mutational profile and CNA, the quantifi-
cation of cfDNA has been associated with well-recognized clinical parameters of tumor
burden (LDH, beta-2-microglobulin, total metabolic tumor volume), CR rate, and survival
in DLBCL and other lymphoid malignances, including a series from our institution [9,10,12].
However, in the present series, this correlation could not be established.

Tissue biopsies represent a bottleneck in the genetic characterization of the PMBL due
to the location of the tumors. Surgical biopsy by cervical mediastinoscopy, anterior medi-
astinotomy, or thoracoscopy is preferred over core biopsy [26], and sometimes samples are
scarce or exhausted during the diagnostic process, limiting further molecular studies [27].
Plasma is an accessible source of tumor DNA when DNA cannot be retrieved from the
diagnostic biopsy tissue and, indeed, cfDNA might be useful not only at diagnosis (when
tissue biopsy is mandatory), but also upon relapse, when excision biopsy is frequently
unavailable. In this sense, our study supports the use of cfDNA for an accurate genetic
characterization of PMBL tumors.
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Supplementary Materials: The following supporting information can be downloaded at: https://
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of synonymous variants, intron variants and known polymorphisms. Table S3. CNA in PMBCL.
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