Deep Learning Tools for image classification in Cryo-electron microscopy

Author: Joshua Lorenzana Santuyo, jsantulo7@alumnes.ub.edu
Facultat de Fisica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisor: Dr.

David Maluenda

Abstract: Cryo-electron microscopy is an imaging technique used for 3D reconstruction of
biomolecules, enabling researchers to study their structures. However, due to low signal-to-noise
ratios in captured images, 2D classification is a critical preprocessing step. This thesis explores the
application of a deep learning approach, specifically a similarity network, to address this challenge.
A Siamese model, trained with a Triplet Loss function, is used to differentiate between similar and
dissimilar images. The model was trained on a dataset with known ground truth and tested on
two types of unseen data: a similar dataset with ground truth and a different dataset without the
ground truth. This study demonstrates the potential of deep learning to complement traditional 2D

classification methods in cryo-EM.
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I. INTRODUCTION

Since its discovery, cryo-electron microscopy (cryo-
EM) has become an essential tool across numerous sci-
entific disciplines [1]. It allows researchers to visual-
ize molecular structures, particularly biomolecules, at
atomic resolution [2]. Unlike traditional electron mi-
croscopy, cryo-EM uses low-energy electrons and pre-
serves samples by freezing them, protecting delicate
structures from damage. Although the technique offers
high-resolution imaging, it yields a low signal-to-noise
ratio, necessitating a critical step known as 2D classifi-
cation [3]. By grouping and averaging similarly oriented
samples, this process enhances the signal and minimizes
noise in the combined images, ultimately clarifying their
molecular structures.

Joachim Frank, a Nobel laureate, approached the 2D
classification problem through classical statistical and
computational techniques which is slow and computa-
tional heavy [2]. However, recent advances in deep learn-
ing present promising alternatives to these traditional
methods [4]. Convolutional Neural Networks (CNNs)
have shown remarkable success in tasks like object de-
tection and recognition but are often designed for classi-
fication with explicit labels rather than similarity-based
grouping.

This thesis explores the potential of similarity net-
works, specifically Siamese Networks trained with triplet
loss [5] to tackle the unique challenges of cryo-EM 2D
classification. Commonly used in fields like facial recog-
nition and fingerprint analysis, these networks excel at
learning similarity relationships. By evaluating their per-
formance on noisy and clear cryo-EM datasets, this study
aims to establish an embedding-based similarity frame-
work that could complement or even replace conventional
approaches.

The code for this thesis can be found in my repository
[6].

II. SIAMESE MODEL

Standard CNNs address computer vision tasks by clas-
sifying objects into predefined categories. However, as
mentioned earlier, this project adopts a different ap-
proach by employing similarity-based neural networks.

The idea is to train the Siamese Network using the
Triplet Loss Function to generate feature vectors, known
as embeddings. These embeddings are produced by pass-
ing input images through three identical neural networks
with shared weights as depicted in Figure 1. The three
input images are:

1. Anchor: The reference image.

2. Positive: An image from the same class as the
anchor.

3. Negative: An image from a different class from
the anchor.

When projected into the embedding space, similar im-
ages are clustered closely together, while dissimilar im-
ages are separated.

The basic architecture of the Siamese Network used
in this project is illustrated in Figure 1. Its principal
components are as follows:

e Embedding Generator: It consists of a convo-
lutional base using the ResNet50 backbone pre-
trained on the ImageNet database which weights
are frozen and excludes the top layer. Then, it is
followed by a custom and trainable top layer con-
sisting of 3 dense layers to finally obtain an embed-
ding vector of 256 dimensions (default settings).

e Distance Layer: A custom layer that computes
the Euclidean distance between the embeddings of
anchor-positive and anchor-negative pairs.
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FIG. 1: A basic representation of the Siamese Model used
in this project: The first image is the anchor (reference), the
second is the positive (from the same class as the anchor),
and the third is the negative (from a different class).

e Triplet Loss Function: Used to optimize the em-
bedding space, using the distance layer it ensures
that anchor-positive pairs are closer than anchor-
negative pairs by a margin.

L(A,P,N) =
maz (|| f(A) = f(P)|[* = [|f(A) = F(N)[[* +m,0),

where A represents the anchor image, P the positive
image, N the negative image, and m the margin, which
ensures that there is sufficient distance between similar
and dissimilar images. The f(-) represents the embed-
ding function that generates embedding vectors of di-
mensions 256 from input images of size 128 x 128 pixels.

(1)
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FIG. 2: The loss function optimizes this process by bring-
ing positive pairs closer while pushing negative pairs further
apart. Notice how the positive pair (blue and green) are
brought closer together after training while the negative pair
(blue and red) are brought away from each other. This figure
is illustrative and does not represent the real points.

The Triplet Loss function plays a crucial role in opti-
mizing the embedding space. It works by comparing an
anchor image with a positive (similar) and a negative
(dissimilar) sample, ensuring that the anchor-positive
distance is minimized and the anchor-negative distance
is maximized, as illustrated in Figure 2.

This kind of network is scalable as it does not require
retraining to differentiate similar from dissimilar images
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in unseen data. However, a model trained on one dataset
may not form distinct clusters when applied to an unseen
dataset. This uncertainty is one of the key aspects to be
explored later.

The entire Siamese model was implemented using
Keras and TensorFlow API [7] and trained using a cus-
tom training loop based on the documentation provided
by Keras official website [8].

III. METHODOLOGY
A. Experimental Setup

The experiments were conducted on a personal lap-
top with a GPU NVIDIA RTX 3050 running on Win-
dows 11. To enable GPU, the system was config-
ured with Windows Subsystem for Linux (WSL), run-
ning Ubuntu 24.04.1 LTS. The experiments were imple-
mented in Python 3.12.3, with libraries including Keras,
TensorFlow-GPU, Scikit-learn, NumPy, and Matplotlib.

B. Dataset preparation for training.

The dataset used consists of images of the COVID-19
virus’s spike protein from [9], formatted as .png files. The
use of computer-generated images enables us to acquire
data in two conditions: a) free of noise (clear dataset) and
b) with added Gaussian noise (noisy dataset) to simulate
real low signal-to-noise ratio images. A traditional clas-
sifier is used to further divide each dataset into four dis-
tinct classes to establish a ground truth. Images within
the same class are considered to be similar, forming a
positive pair, while those from different classes are dis-
similar, forming a negative pair.

Key pre-processing steps included:

1. Dataset Splitting: The samples were divided into
training (80%) and validation (20%) subsets.

2. Triplet Preparation: Triplets consisting of (an-
chor, positive, negative) images are generated. Ad-
ditionally, the class labels of the anchor image are
also included, but solely for evaluation purposes.
However, only the triplet is used for training.

C. Training parameters
The default parameters of the training are the follow-
ing, most of which are chosen to fit the GPU’s memory:
1. Batch Size: 8 triplets per batch.

2. Early Stopping: Training was monitored using
validation loss with a patience of 5.

3. Optimizer: Adam optimizer with a learning rate
of 0.0001.
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4. Margin: In the training loop, 0.5 is defined for the
margin.

5. Custom Top Layer for the convolutional
base: The innermost layers produce outputs of
512, 256, and finally a 256-dimensional embedding
vector.

D. Model evaluation analysis

After training the model, two evaluation methods were
employed to ensure the model has effectively learned: (a)
confusion matrix and (b) Dimensionality-reduction visu-
alization.

The confusion matrix evaluates the model by calcu-
lating the cosine similarity between embeddings between
batches grouped by the ground truth classes. The cosine
similarity of embeddings from the same class should ap-
proach or equal 1, while the cosine similarity of embed-
dings from different classes should be significantly less
than 1. However, due to the high dimensionality of the
vectors, specifically 256 dimensions, the cosine similarity
for negative pairs can approach values near 1.

7Y - F0Y)
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Equation (2) represents the cosine similarity, the cross
product between two vectors.

This matrix helps identify whether the embeddings dis-
play diagonal dominance and symmetry, which are key
indicators of effective model training as presented in Fig-
ure 3 .

cosine similarity =

class1 class2 class3 class4
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FIG. 3: An example of the confusion matrix using the cosine
similarity to compare different classes by batches using the
clear dataset. It is symmetric and shows a diagonal domi-
nance. Note that it differs by little due to the embedding
vectors’ high dimensionality.

Given the high dimensionality of the embedding vec-
tors, visualizing them directly is challenging. To address
this, a dimensionality reduction is performed. In this
case, the dimensionality reduction is carried out in two
steps using techniques provided by SciKit-learn library.

Treball de Fi de Grau

The first step involves reducing the original embed-
ding vector to 50 dimensions using Principal Component
Analysis (PCA) which is frequently applied for data clus-
terization.

The next step involves further reducing the embedding
vectors to two dimensions using t-distributed stochas-
tic neighbor embedding or t-SNE. This technique is
specifically chosen for its suitability in visualizing high-
dimensional data.

In a well-trained model, embeddings of the same class
should form distinct clusters as seen in Figure 4 (a).

E. Hyper-parameter tuning

Tuning a model’s parameters is a standard practice to
ensure effective training, particularly for Siamese mod-
els, which are susceptible to over-fitting. To address this
challenge, the following prioritized strategies were em-
ployed:

1. Optimizer value:
from 1073 to 1074,

Varying the optimizer value

2. Margin value: Using the default 0.5 and changing
it to 0.75 and 1.0.

3. Lowering the number of parameters: Chang-
ing the output Dense layers of the embedding gen-
erator from 512 — 256 — 256 to 256 — 128 — 128.

4. Data Augmentation Generating additional data
by introducing Gaussian noise into the training set.

F. Model evaluation

After training a model and selecting the best-
performing model, it is used to calculate the embeddings
for the two types of datasets previously mentioned.

Evaluating the model on the similar dataset allows us
to assess whether the Siamese model is capable of learn-
ing this type of data. This is determined by applying
the k-means algorithm to our calculated embeddings us-
ing the trained model and verify whether they coincide
with the samples knowing its ground truth. On the other
hand, testing it on unseen data can help us explore its
potential to cluster or group data meaningfully.

To determine the optimal number of k clusters to use,
a visual guide called the elbow plot is used. The elbow
plot represents the inertia against the number of clusters.
The inertia is the sum of squared distances of each data
point to its closest cluster center meaning the lower the
inertia the better clusterization. However, this approach
is subjective due to it being a visual interpretation. The
optimal k is selected where the change in inertia becomes
negligible compared to the previous changes. For the
similar dataset, it is expected for k = 4, reflecting its
four classes. For the dissimilar dataset, the absence of
ground truth makes k& more ambiguous.
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IV. RESULTS AND DISCUSSION
A. Validation Dataset

For the the following prediction and evaluation, ” train-
ing_008” is chosen for achieving the highest resolution in
cosine similarity. Further information on its parameters
can be found in the Supplementary Material.
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FIG. 4: (a) Dimension reduction done with the validation
dataset of the clear images. (b) Dimension reduction done
with the validation dataset of the noisy images.

Although the clear dataset did not require extensive
hyperparameter tuning, as the model learned with the
default settings, hyperparameter tuning was performed
nonetheless.

The visualization of the embeddings in Figure 4 (a)
after the dimension reduction confirms the presence of
four distinct classes, aligning with the real dataset used
in this study.

The elbow plot in Figure 5 (a) supports the use of
four clusters, consistent with the dataset’s structure.

On the other hand, the embedding space of the noisy
dataset represented in Figure 4 (b) reveals some con-
fusion between certain classes, particularly classes 1 and
3. This highlights the challenging nature of the dataset,.

For this reason, hyper-parameter tuning was required.
Unfortunately, none of the fine-tuning made the model
learn to distinguish said classes.

Number of Clusters Number of Clusters

FIG. 5: (a) Elbow plot for the clear dataset (b) Elbow plot
for the noisy dataset.

The elbow plot in Figure 5 (b) suggests that there
are at least 3-5 clusters.

Finally, to conclude our findings, the selected model is
used to calculate the embeddings which are then passed

Treball de Fi de Grau

through the k-means algorithm to cluster them into k = 4
clusters to coincide with the ground truth. Then, we
compare random average of different classes with the av-
erage of the samples with ground truth and the average
of the samples belonging to the same group cluster found
using k-means.
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FIG. 6: The first column represents the average of N samples
from the whole clear (a) and noisy (b) dataset. The second
column indicates the class to which the next two columns
belong to. The third represents the ground truth average of
N samples of each class while the last column represents the
average for N samples from each class by applying kmeans
algorithm to the embeddings calculcated using the selected
model, the result of this work. Note that model trained on
clear images has definitely learned while for the noisy dataset,
classes 1 and 3 are more ambiguous.
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B. New dataset application

Using the same model, the embeddings calculation and
visualization is also performed to an unseen and different
type of dataset corresponding to the S. cerevisiae dimer
[10]. Compared to the COVID-19 virus, this is a com-
pletely different molecule but having a similar shape.

The embeddings space of the clear dataset in Figure 7
(a) show that the embeddings are continuous. Neverthe-
less, k-means was performed, with the optimal k cluster
selected using the elbow plot. However in Figure 7 (b)
it reveals a disorganized clusterization.
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FIG. 7: (a) Embeddings of the clear dataset visualized with-
out labels. (b) Embeddings of the clear dataset visualized
with labels. (c) Embeddings of the noisy dataset visualized
without labels. (d) Embeddings of the noisy dataset visual-
ized with labels.

The same conclusions can be said for the noisy dataset
in Figure 7 (c) and Figure 7 (d).

V. CONCLUSIONS

For the similar dataset, the model trained on the clear
dataset learned better than the one trained on the noisy
dataset. Notably, the noisy dataset struggled to distin-
guish between classes 1 and 3.

While similarity networks do not necessarily form dis-
tinct clusters on unseen data, the model is nevertheless
applied for its embeddings visualization. As anticipated,

it failed to distinguish between classes based on their em-
beddings.

Despite these challenges, the Siamese Network is a vi-
able alternative for the 2D classification when trained on
data with ground truth. However, further training on
a bigger dataset is required to determine whether the
model can ultimately succeed in this task.

On the contrary, the lack of clear clustering might sug-
gest additional investigation is needed to verify whether a
Siamese model trained on a one type of data can reliably
to differentiate similar and dissimilar images of another
type of data.

Acknowledgments

I would like to express my heartfelt gratitude to my
advisor, Dr. David Maluenda, for granting me the oppor-
tunity to explore this topic and for his ceaseless guidance
throughout the project. I am also deeply thankful to
my parents and friends for their constant encouragement
during this journey.

[1] Joachim Frank, Generalized single-particle cryo-EM — a
historical perspective, Microscopy, Volume 65, Issue 1,
Pages 3-8 (February 2016).

[2] Joachim Frank and Christian M T Spahn Rep.
Prog. Phys. 69 1383, DOI 10.1088/0034-4885/69/5/R03,
(2006).

[3] C. Sorzano, et al. Structural Proteomics, High-
Throughput Methods: Image Processing in Cryo-
Electron Microscopy of Single Particles: The Power of
Combining Methods, 3rd. ed. (2021).

[4] Sanchez-Garcia, R., Segura, J., Maluenda, D., Carazo,
J. M. and Sorzano, IUCrJ, 5, 854-865. Deep Consensus,
a deep learning-based approach for particle pruning in
cryo-electron microscopy, C. O. S. (2018).

[5] S. Das, Image similarity using Triplet Loss, (2019).

[6] J. Lorenzana, Deep Learning
https://github.com/AmFruitY/DeepLearningCryo.

[7] F. Chollet, Deep Learning with Python, 2nd edition
(2021).

Cryo,

Treball de Fi de Grau

[8] H. Essam and S. Valdarrama, Image similarity esti-
mation using a Siamese Network with a triplet loss,
https://keras.io/examples/vision/siamese_network/,
(2021).

[9] M Berlinguer, et. al., SARS-CoV-2 Spike protein in
complex with the single chain fragment scFv76-77,
https://www.ebi.ac.uk/emdb/EMD-50417 (2024).

[10] N Noskova, et. al. Cryo-EM structure of S. cerevisiae
Rail-Ratl dimer. https://www.ebi.ac.uk/emdb/EMD-
18199 (2024).

Barcelona, January 2025



Deep Learning Tools for image classification in Cryo-electron microscopy Joshua Lorenzana Santuyo

Deep Learning tools for Cryo-electron microscopy

Author: Joshua Lorenzana Santuyo, jsantulo7@alumnes.ub.edu
Facultat de Fisica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisor: Dr. David Maluenda

Resum: La microscopia crioelectronica és una teécnica utilitzada per a la reconstruccié 3D de
biomolecules, la qual permet 'estudi detallat de les seves estructures. A causa de la baixa relacid
senyal-soroll de les imatges capturades, és imprescindible una classificacié 2D d’aquestes. Aquest
treball examina ’aplicacié d’un model de Deep Learning, concretament una xarxa de similitud, per
afrontar aquest repte. Un model siames utilitza una funcié de perdua aplicada a triplets per distingir
entre imatges similars i diferents. Es entrenat amb una base de dades que inclou el ground truth i es
prova amb dos tipus de dades: una base de dades similar amb el seu ground truth i una altra d’una
naturalesa diferent sense el ground truth. Aquest estudi posa de manifest la possibilitat d’utilitzar
eines de Deep Learning com a complement o fins i tot com una alternativa als metodes tradicionals
de classificacié 2D en microscopia crioelectronica.

Paraules clau: Deep Learning, Machine Learning, Xarxa Neuronal siames, model siames, Triplet
Loss.
ODSs: Industria, innovacid, infraestructures. Vida terrestre.

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducci6 de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i produccié responsables

4. Educacié de qualitat 13. Accié climatica

5. Igualtat de genere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre X
7. Energia neta i sostenible 16. Pau, justicia i institucions solides

8. Treball digne i creixement economic 17. Alianga pels objectius

9. Industria, innovacié, infraestructures|X

El contingut d’aquest TFG es relaciona amb I’ODS 9, fent emfasi sobretot amb la fita 9.3 ja que investiga una
alternativa a la solucié actual de classificacié 2D de la microscopia crioelectronica. El TFG proposa una tecnica
computacional més eficient i per tant, energéticament més sostenible. A més a més, també es podria relacionar
amb 1’0ODS 15, concretament aquelles fites relacionades amb la proteccié d’animals com la fita 15.7. La microscopia
crioelectronica s’utilitza molt en la fabricacié de medicaments i el contingut d’aquest TFG dona una proposta de
solucié rapida que podria contribuir a evitar la necesitat de fer assajos amb animals.
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SUPPLEMENTARY MATERIAL

Training Number - Dataset - Optimizer - Optimizer Value - Margin - Densel - Dense2 - Dense3 - EarlyStopping - Patience - Distance - Data Augmentation? -

training_000_clear Clear Adam 0.0001 0.5 512 256 256 Val _loss 5 Euclidean FALSE
training_000_noisy  Noisy Adam 0.0001 0.5 512 256 256 Val_loss 5 Euclidean FALSE
training_001_clear Clear Adam 0.00001 0.5 512 256 256 Val loss 5 Euclidean FALSE
training 001 noisy Noisy Adam 0.00001 0.5 512 256 256 Val loss 5 Euclidean FALSE
training 002 clear Clear Adam 0.00001 0.75 512 256 256 Val _loss 5 Euclidean FALSE
training_002_noisy  Noisy Adam 0.00001 0.75 512 256 256 Val_loss 5 Euclidean FALSE
training_003_clear Clear Adam 0.00001 0.75 512 256 256 Val loss 5 Euclidean TRUE
training 003 noisy  Noisy Adam 0.00001 0.75 512 256 256 Val loss 5 Euclidean TRUE
training 004 _clear Clear Adam 0.00001 1 512 256 256 Val_loss 5 Euclidean TRUE
training_004_noisy  Noisy Adam 0.00001 1 512 256 256 Val_loss 5 Euclidean TRUE
training_005_clear Clear Adam 0.0001 0.5 256 128 128 Val_loss 5 Euclidean FALSE
training_005_noisy  Noisy Adam 0.0001 0.5 256 128 128 Val loss 5 Euclidean FALSE
training_006_clear Clear Adam 0.00001 0.5 256 128 128 Val_loss 5 Euclidean FALSE
training_006_noisy  Noisy Adam 0.00001 0.5 256 128 128 Val_loss 5 Euclidean FALSE
training 007 clear Clear Adam 0.00001 0.75 256 128 128 Val loss 5 Euclidean FALSE
training_007_noisy  Noisy Adam 0.00001 0.75 256 128 128 Val loss 5 Euclidean FALSE
training_008_clear Clear Adam 0.00001 0.75 256 128 128 Val_loss 5 Euclidean TRUE
training_008_noisy  Noisy Adam 0.00001 0.75 256 128 128 Val_loss 5 Euclidean TRUE
training 009 clear Clear Adam 0.00001 il 256 128 128 Val _loss 5 Euclidean TRUE
training_009_noisy  Noisy Adam 0.00001 1 256 128 128 Val_loss 5 Euclidean TRUE

FIG. 8: Training parameters modified to see with which parameters, the model learned best.
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