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Abstract: Self-avoiding walks (SAWs) are central to modeling excluded-volume effects in poly-
mers and related systems. SAWs are typically defined with local, nearest-neighbor steps, and their
statistical behavior is well studied. In contrast, less is known about SAWs involving nonlocal mo-
tion. We study how introducing nonlocality — in the form of fixed-length jumps inspired by the
knight’s move in chess — affects kinetic self-avoiding walks (GSAWs), where paths grow irreversibly.
The resulting model, called the Self-Avoiding Random Knight (SARK), replaces local propagation
with constrained long-range steps. Using large-scale simulations, we examine how this dynamic
influences key properties of the walk. We find that nonlocality increases the walker’s lifetime and
spatial extent. The end-to-end distance shows a crossover in scaling behavior, approaching that of
the GSAW at long times. Clustering analysis reveals a dominant connected component in small lat-
tices, which vanishes in larger ones. These results offer insight into how nonlocal constraints shape
the geometry and growth of SAWs, with possible applications in ecological foraging and transport
in constrained environments.
Keywords: Random walks, scaling laws, universality, lattice models.
SDGs: Life below water and life on earth.

I. INTRODUCTION

The random walk framework was first introduced by
Karl Pearson in 1905 to describe the random migration of
insects [1]. Since then, it has become central to the study
of stochastic processes such as diffusion, search behavior,
and even financial markets. For instance, in mathemat-
ical ecology it is used to model animal foraging and mi-
gration. Despite its conceptual simplicity, the random
walk gives rise to remarkably rich behavior.

Among its many variants, the self-avoiding random
walk (SAW) plays a significant role in understanding
systems with excluded volume effects, such as polymer
configurations [2]. Unlike the classical random walk, a
SAW forbids revisiting previously visited sites, introduc-
ing strong memory effects and long-range correlations in
the trajectory. This self-avoidance alters the geometry of
the path, resulting in spatially complex structures with
a characteristic fractal dimension [3].

It is important to distinguish between the equilibrium
formulation of the SAW — as typically treated in math-
ematical combinatorics — and the growing self-avoiding
walk (GSAW), also known as the kinetic SAW [4]. The
canonical SAW is defined by the ensemble of all self-
avoiding paths of a given length on a lattice, with each
path typically assigned equal statistical weight. In con-
trast, the GSAW is a stochastic, irreversible process in
which the path is constructed step-by-step: at each step,
the walker selects randomly among the unvisited sites
accessible from its current position, and the walk ter-
minates when no further moves are possible (trapping).
While the set of valid paths of a given length is the same
in both models, the statistical weights assigned to those
paths differ. As a result, certain properties — such as
scaling exponents — can differ from those of the classical

SAW. This kinetic version is the framework adopted in
this work.

In this study, we explore a non-traditional version
of the kinetic SAW, in which the walker takes non-
local, fixed-length steps modeled after the knight’s move-
ment in chess — L-shaped jumps that skip over imme-
diate neighbors. The idea originated from the classical
Knight’s Tour problem [5], a long-standing combinato-
rial puzzle where a knight must visit every square of a
chessboard exactly once. By interpreting knight tours as
self-avoiding paths on a lattice, we recast this problem in
a statistical physics context and investigate its properties
using tools from random walk theory.

Our model, which we refer to as the Self-Avoiding
Random Knight (SARK), combines self-avoidance with
structured non-locality: the walker selects randomly
among allowed knight moves that lead to unvisited sites.
Unlike nearest-neighbor SAWs, the SARK can reach dis-
tant sites in a single move, leading to qualitatively dif-
ferent exploration patterns.

Because self-avoiding walks are already difficult to
study analytically, the additional complexity introduced
by non-local, knight-like steps makes exact treatment
even more challenging. For this reason, we adopt a com-
putational approach. By simulating a large number of
SARKs on finite lattices, we study several observables:
the distribution of trapping times, which reveals how long
the walker typically survives before getting stuck; the
end-to-end distance scaling, from which we extract an
effective Flory exponent and estimate the fractal dimen-
sion of the paths; and the cluster structure of visited sites,
to investigate whether percolation-like behavior emerges
in the spatial footprint of the walk.
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(a) Knight steps (b) Trapping (c) End-to-end distance (d) Cluster structure

FIG. 1: (a) Knight steps pattern and main observables of the SARK: (b) trapping times, (c) end-to-end distance,
and (d) spatial clustering.

II. THE SELF-AVOIDING RANDOM KNIGHT

The random walks studied in this work are models
defined on discrete lattices, where a walker moves from
site to site according to a set of rules. In our case, the
underlying space is a two-dimensional square lattice of
lateral size L, equipped with periodic boundary condi-
tions. This means the lattice has a toroidal topology: the
site at position (x, y) is identified with those at (x±L, y)
and (x, y ± L). As a result, all sites are equivalent, and
boundary effects are eliminated.

In the classical GSAW, the walker starts from an ini-
tial site and makes local, nearest-neighbor steps — that
is, displacements of the form (±1, 0) or (0,±1) — while
avoiding previously visited sites. This constraint intro-
duces memory into the system and alters its scaling be-
havior compared to the unconstrained random walk.

In our model, we modify this dynamics by allowing
the walker to perform non-local, fixed-length moves cor-
responding to the knight’s movement in chess. At each
time step, the walker attempts to move to one of the
eight possible target sites at displacements (±1,±2) or
(±2,±1) (see FIG. 1a). Among these, only those not yet
visited are considered valid. One of the valid options is
selected uniformly at random, and the walker proceeds.
The process terminates when no legal move remains —
a condition we refer to as trapping (FIG. 1b).

We simulate many independent realizations of the
Self-Avoiding Random Knight (SARK) to estimate key
statistical properties. A central observable is the sur-
vival time (τ), defined as the number of steps the walker
takes before becoming trapped. Unlike the classical SAW
framework, where one studies the ensemble of all self-
avoiding configurations of a fixed length, kinetic walks
like the SARK and the GSAW are dynamic and once
the walker is trapped, the process ends. As a result,
survival time is a fundamental quantity that determines
how long the walk can grow and how far it can explore
the lattice on average. For the standard GSAW in two
dimensions, the average survival time is approximately
71 steps [6], which effectively sets a limit on the maxi-
mum length of walks that can be realistically generated.

This constraint inherently localizes the process in space.
By studying the survival time statistics of the SARK, we
aim to understand two things: first, how the non-local
and constrained nature of the knight’s movement influ-
ences the mechanisms of trapping; and second, how large
(in both time and space) typical walks can grow, which
determines the degree of localization of the process.

Another central observable is the end-to-end distance
(Rτ ), defined as the Euclidean distance between the
walker’s current position and its starting point (FIG. 1c).
The average end-to-end distance typically scales as

⟨Rτ ⟩ ∼ τν , (1)

where ν is sometimes called the Flory exponent [2]. This
exponent characterizes how the spatial extent of the walk
grows with time. It is inversely related to the fractal
dimension Df of the walk via

Df =
1

ν
. (2)

For the SAW in two dimensions, ν = 3/4, yielding
Df = 4/3. For the GSAW, the exponent is lower: ν is
approximately 0.68 [4], corresponding to a more compact
walk with Df around 1.47. One of the goals of this work
is to determine how the non-local nature of the SARK
affects these exponents.

Finally, we analyze the geometric structure of the re-
gion visited by the walker by studying its cluster prop-
erties. At a given time step, we identify all lattice sites
visited so far and apply a clustering algorithm to group
together connected components. Here, connectivity is
defined in terms of nearest-neighbor adjacency on the
lattice (not based on knight-move reachability). This
distinction is important: while the walker moves via
the knight’s functional network, a non-local connectivity
graph, the spatial clusters are measured using the local
lattice adjacency (FIG. 1d). In this way, we aim to under-
stand how dynamics on the functional network translates
into clustering properties on the underlying lattice.

Unlike the classical GSAW, which grows a single con-
nected cluster due to local steps, the SARK can create
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new disconnected clusters at each step by jumping over
unvisited regions. This gives rise to richer spatial struc-
tures. We track the sizes of the largest clusters at spec-
ified time steps. In particular, the size of the largest
connected component can be informative: in percolation
theory, the emergence of a dominant or infinite cluster
signals a connectivity phase transition. By observing
whether such a component emerges in the SARK, we
gain insight into the connectedness of the walk’s spatial
footprint.

III. RESULTS

A. Survival time

In finite systems, survival time is affected not only
by the walker’s intrinsic dynamics but also by the size of
the lattice. For small system sizes L, the knight walker is
more likely to become trapped early, not because of the
self-avoidance constraint alone, but due to the limited
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FIG. 2: Survival time analysis of the SARK. (a) Mean
survival time ⟨τ⟩ as a function of lattice lateral size L.
The curve shows saturation for large L, indicating that
trapping is intrinsic and not driven by finite-size effects.
(b) Distribution of survival times τ for N = 107 SARKs
on a lattice of size L = 106. The distribution has a mean
⟨τ⟩ = 3209.0 ± 0.8 and an exponentially decaying tail.
The plot is truncated at τ = 15,000 for clarity, as very
few walks exceed this value; the longest recorded walk
reached τ = 36,236.

number of available sites and the increased likelihood of
re-entering already explored regions.

To study the intrinsic trapping behavior of the SARK,
independent of finite-size effects, we must ensure that the
walker has access to a space that is effectively infinite. To
identify the minimum lattice size required to suppress
these finite-size effects, we simulate N = 500, 000 walks
on lattices of increasing size L and compute the mean
survival time ⟨τ⟩ for each case. Results are shown in
FIG. 2a.

Since ⟨τ⟩ saturates as L increases, this indicates that
the knight walker typically becomes trapped due to its
intrinsic dynamics. In this regime, ⟨τ⟩ becomes an in-
tensive quantity: giving the walker more space no longer
significantly changes its expected lifetime.

Once a suitable lattice size is identified — that is,
once ⟨τ⟩ stops growing significantly with L — we per-
form high-statistics simulations to characterize the sur-
vival time distribution in the asymptotic regime. We
simulate N = 107 walks on a lattice with size L = 106,
which is well beyond the saturation threshold and thus
effectively corresponds to an infinite system. We com-
pute the survival time τ for each walk and obtain the full
distribution. Results are shown in FIG. 2b. The mean
survival time is found to be ⟨τ⟩ = 3209.0± 0.8.

The survival time distribution shows an exponential
tail, indicating that although long-lived walks are pos-
sible, they become increasingly rare. Compared to the
kinetic SAW, where the average survival time is approxi-
mately 71 steps [6], the SARK exhibits a dramatic exten-
sion in lifetime. This highlights the effect of non-locality:
the ability to make knight-like jumps allows the walker
to bypass crowded regions and escape local traps more
efficiently, thereby postponing the onset of confinement.
In contrast to the GSAW, where the walker typically be-
comes trapped in a compact region, the SARK explores
a much larger area before terminating. This illustrates
how the introduction of non-local movement patterns al-
ters the fundamental trapping mechanism of kinetic self-
avoiding walks.

B. End-to-end distance and fractal dimension

In the same simulation used to obtain the survival
time distribution (with N = 107 walks on a lattice of
size L = 106), we compute the end-to-end distance Rτ

at each step of the walk. Specifically, we measure the
Euclidean distance between the walker’s current position
and its starting point after τ steps. After collecting this
data across all walks, we compute the average value ⟨Rτ ⟩
for each τ .

To extract the scaling behavior of the walk, we plot
⟨Rτ ⟩ as a function of τ in a log-log plot. The scaling
relation is expected to follow (1). The slope of the curve
in the log-log plot provides an estimate of ν, which is
related to the fractal dimension of the walk through (2).
The results are shown in FIG. 3.
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FIG. 3: Log-log plot of the mean end-to-end distance
⟨Rτ ⟩ as a function of survival time τ , measured over
N = 107 walks on a lattice of size L = 106. A crossover
between two scaling regimes is observed. The short-time
regime (τ <∼ 600) yields an exponent ν = 0.536 with R2 =
0.99999, while the long-time regime (5000 < τ <∼ 15000)
yields ν = 0.672 with R2 = 0.9998.

The resulting log-log plot reveals the presence of a
crossover between two distinct scaling regimes. For short
walks (typically up to a few hundred steps), the ex-
tracted ν exponent is lower than that of the GSAW
(νGSAW ≈ 0.68), indicating a higher effective fractal di-
mension. In this regime, the non-local character of the
knight moves has a strong influence on the geometry of
the path, leading to denser, more space-filling configura-
tions.

In contrast, for longer walks — particularly those ex-
ceeding the mean survival time — the scaling behavior
converges toward that of the GSAW, suggesting the emer-
gence of a universal behavior at long times, largely inde-
pendent of the microscopic details of the step dynamics.
It is known that the GSAW and SAW share the same
universality class in the asymptotic limit [7, 8], although
this convergence requires extremely long walks that are
difficult to generate due to the short survival time of the
GSAW. Whether the SARK also belongs to the same
universality class as the SAW for very long trajectories
remains an open question, given the computational limits
on producing such long walks. Nonetheless, the numeri-
cal evidence provided suggests that this could indeed be
the case.

C. Clustering properties

To better understand the spatial organization of vis-
ited sites, we analyze the formation and growth of clus-
ters during the walk. At selected time steps, we take
a snapshot of the set of all visited lattice sites and
group them into connected components based on nearest-
neighbor adjacency. Specifically, two sites are considered
to belong to the same cluster if they are connected via
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FIG. 4: Size of the largest four clusters as a function
of time for the SARK. (a) Results for a small lattice
(finite-size regime) show the emergence of a dominant
cluster, with the remaining ones vanishing, indicating a
connectivity transition. (b) In contrast, results for a large
lattice show all clusters growing independently, with no
clear dominance, suggesting that the transition observed
in (a) is a finite-size effect.

a sequence of adjacent lattice sites with displacements
of the form (±1, 0) or (0,±1). This definition is inde-
pendent of the knight’s movement pattern and instead
reflects standard spatial connectivity on the lattice.

For each sampled configuration, we keep track of the
the sizes of the four largest clusters. The goal is to iden-
tify whether a connectivity transition takes place during
the evolution of the walk, in which many initially discon-
nected clusters merge into a dominant, system-spanning
component. A hallmark of such a transition is the sud-
den emergence of a giant component, characterized by
a rapid increase in the size of the largest cluster and a
concurrent decrease in the sizes of the remaining ones.

To investigate this, we compare simulations per-
formed on both small and large lattices. In both cases
500, 000 walks were simulated. The small lattice has lin-
ear size L = 70, where finite-size effects are expected
to play a significant role, while the large lattice has size
L = 300, in which finite-size effects are largely reduced,
as evidenced by the saturation behavior observed in the
survival time analysis. Results are shown in FIG. 4.

In small systems, we observe a clear transition: af-
ter a certain number of steps, the largest cluster grows
rapidly and overtakes all others, which vanish in compar-
ison. This indicates that the disconnected components
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generated by the non-local knight dynamics eventually
become connected into a single dominant structure — a
behavior consistent with a percolation-like transition.

However, in simulations on large lattices (where
finite-size effects are suppressed, as discussed in previous
sections), this behavior is no longer observed. Instead, all
clusters appear to continue growing independently until
the walker becomes trapped. The size of the largest clus-
ter increases steadily, but no abrupt emergence of a dom-
inant component is observed. This suggests that in the
asymptotic regime, the system does not spontaneously
self-connect within the typical survival time of the walk.
In other words, the walker generates a fragmented spatial
footprint, and the merging of clusters — if it occurs at
all — happens on timescales longer than the accessible
lifetime of the process.

These findings suggest that the transition observed in
small systems is likely a finite-size effect rather than an
intrinsic feature of the walk dynamics. Whether a gen-
uine connectivity transition exists in the infinite-lattice
limit for extremely long walks remains an open question,
currently inaccessible due to the computational difficulty
of generating such long-lived trajectories.

IV. CONCLUSIONS

• We have studied a variation of the GSAW in which
the walker moves using knight-like, non-local steps
on a two-dimensional square lattice. Through ex-
tensive simulations, we analyzed three main aspects
of the process: the survival time, the end-to-end
distance scaling, and the spatial clustering of vis-
ited sites.

• Our analysis of survival time reveals that the non-
locality of the step rule significantly increases the
typical lifetime of the walker compared to the clas-
sical GSAW. This allows the SARK to explore
much larger regions before becoming trapped. Al-
though the survival time distribution retains an ex-
ponential tail — indicating that very long walks re-
main rare — the overall increase in accessible space
and duration highlights how non-locality alters the

trapping dynamics by enhancing the walker’s ex-
ploratory capacity.

• In the study of end-to-end scaling, we observed a
crossover between two regimes. At short times, the
walk is denser than the GSAW, with a higher ef-
fective fractal dimension. At longer times, how-
ever, the scaling behavior converges to that of the
GSAW, suggesting that a form of universal behav-
ior emerges at large scales, regardless of the micro-
scopic step rule.

• Finally, our cluster analysis shows a striking con-
trast between small and large lattice sizes. While
small systems display the emergence of a dominant
cluster, this behavior disappears in larger lattices.
In the large-size limit, no clear connectivity tran-
sition is observed within the typical lifetime of the
process.

• These results highlight how non-locality modifies
the local and global features of self-avoiding walks,
while also suggesting that universal scaling laws
may still govern the asymptotic behavior. An open
question remains as to whether a true connectivity
transition or convergence to the SAW universality
class emerges in even longer walks, which are cur-
rently beyond reach due to computational limita-
tions. It would be interesting to explore methods
such as those proposed in [9], which allow for in-
definitely growing walks; adapting such techniques
to the SARK could offer access to the asymptotic
regime. Additionally, an analytical treatment of
the model could yield further insight into its scal-
ing behavior and universality.
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Resum: Els caminants autoevitants (SAWs) són emprats per modelitzar els efectes d’exclusió de
volum en poĺımers entre altres sistemes. Normalment es defineixen amb passos locals entre primers
vëıns, i el seu comportament estad́ıstic ha sigut àmpliament estudiat. En canvi, se sap molt menys
sobre els SAWs que incorporen moviments no locals. En aquest treball estudiem com la introducció
de no-localitat —en forma de salts de longitud fixa inspirats en el moviment del cavall dels escacs—
afecta els caminants autoevitants cinètics (GSAWs), en els quals el camı́ creix de manera irreversible.
El model resultant, el qual anomenem cavaller autoevitant aleatori (SARK), substitueix la propa-
gació local per passos llargs i restringits. Mitjançant simulacions a gran escala, examinem com
aquesta dinàmica influeix en diverses propietats del camı́. Trobem que la no-localitat incrementa
significativament la vida mitjana i l’abast espacial del procés. L’escalament de la distància end-to-
end mostra una transició que tendeix cap al comportament dels GSAW en temps llargs. L’anàlisi
de clústers revela una component dominant en xarxes petites que desapareix en xarxes més grans.
Aquests resultats aporten nova comprensió sobre com les restriccions no locals afecten la geometria
i el creixement dels SAWs, amb possibles aplicacions en ecològia i en fenòmens de transport en
entorns limitats.
Paraules clau: Caminants aleatòris, lleis d’escala, universalitat, modèls de xarxa.
ODSs: Vida submarina i vida terrestre

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de les desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina X

6. Aigua neta i sanejament 15. Vida terrestre X

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures
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