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Abstract: A random field of cosmological perturbations may have rare high peaks which evolve
non-linearly after they cross the horizon during the radiation dominated era, forming primordial
black holes (PBH). Using recent results for the statistics of large initial overdensities, we will consider
a family of well motivated profiles for such overdensities, determining the critical amplitude which
causes them to collapse gravitationally. This is relevant for determining the abundance of PBH for
a given primordial power spectrum of cosmological perturbations.
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page 6).

I. INTRODUCTION

Primordial black holes (PBH) may have formed from
the collapse of rare high density peaks during the radi-
ation dominated epoch [1]. They are a promising dark
matter candidate, particularly in the asteroid mass range,
M ∈ [1017g, 1023g]. Such scenarios are currently under
active investigation, see e.g. [2] for a recent review and
a summary of observational constraints.

Here we elaborate on a recent approach to finding the
mass function of PBH starting from the power spectrum
of primordial cosmological perturbations [3]. In Section
II we will present the Misner-Sharp equations, describing
spherically symmetric gravitational collapse of a perfect
fluid. We comment on the initial conditions for numerical
evolution in Section III. In Sections IV we introduce the
compaction function, which is a useful tool for character-
izing overdensities. In Section V we will introduce a one
parameter family of profiles for the overdensities which
will be of particular relevance in our context. We also
introduce a specific form of the power spectrum, suitably
enhanced within a range of scales so as to give a rele-
vant abundance of PBH. In section VI we will present
the numerical results for the threshold values of critical
collapse, for our chosen family of profiles. In Section VII
we calculate the abundance of PBH, by integrating over
the Gaussian random field of initial perturbations, com-
paring our results with the approach recently presented
in [3]. We summarize or conclusions in Section VIII.

II. MISNER-SHARP EQUATIONS

The Misner-Sharp equations [4] are a set of relativistic
differential equations describing a spherically symmetric
perfect fluid undergoing gravitational collapse. We will
apply these equations to the cosmological context, within
a Friedmann-Lemaitre-Robertson-Walker (FLRW) back-
ground. We consider the energy-momentum tensor of a

perfect fluid to be Tµν = (p+ρ)uµuν+pgµν , where p and
ρ are the pressure and energy density of the fluid, respec-
tively. They are related by the equation of state p = wρ,
where w = 1/3 in a radiation dominated Universe. The
line element is given by,

ds2 = −A(r, t)2dt2 +B(r, t)2dr2 +R(r, t)2dΩ2, (1)

where dΩ2 = dθ2 + sin2 θdφ2 is the metric on the unit
2-sphere, and R(r, t) the areal radius. The Misner-Sharp
mass is defined as,

M(r, t) ≡
∫ R

0

4πR2ρ

(
∂R

∂r

)
dr, (2)

and satisfies the following equality,

Γ =

√
1 + U2 − 2M

R
, (3)

where we have introduced

U ≡ DtR =
1

A

∂R

∂t
, Γ ≡ DrR =

1

B

∂R

∂r
. (4)

The Misner-Sharp (MS) equations can be expressed in
the following manner [5],

U̇ = −A

(
w

1 + w

Γ2

ρ

ρ′

R′ +
M

R2
+ 4πRwρ

)
, (5a)

Ṙ = AU, (5b)

ρ̇ = −Aρ(1 + w)

(
2
U

R
+

U ′

R′

)
, (5c)

Ṁ = −4πAwρUR2, (5d)

M ′ = 4πR2ρR′, (5e)

A′ = −A
w

1 + w

ρ′

ρ
=⇒ A(r, t) =

(
ρb(t)

ρ(r, t)

) w
w+1

. (5f)

Here, ρb(t) = ρ0(t0/t)
2 is the energy density of the FLRW

background, and ρ0 = 3H2
0/8π. Note that we used the



Primordial perturbations Matteo Gabriel Marrone

boundary condition A(r → ∞, t) = 1 so that we recover
FLRW at large r. For reference, we recall that the expan-
sion rate is given by H(t) = H0t0/t and the scale factor
in the radiation era is given by a(t) ∝

√
t.

The set of equations (5) will be solved using the pub-
lic numerical code developed by A. Escrivà (see [5, 6]
for a detailed discussion of the method). This is based
on a pseudo-spectral Chebyshev collocation method for
computing the spatial derivatives, while the time evolu-
tion is solved with a fourth-order Runge-Kutta method.
Equation (5e) corresponds to the Hamiltonian constraint,
which we can utilize to monitor the numerical accuracy
of time evolution.

III. LONG WAVELENGTH APPROXIMATION

At early times, the characteristic lengthscale L of the
cosmological density fluctuations can be considered to
be much larger than the corresponding Hubble radius,
L ≫ H−1. Within this regime, we can expand the exact
solutions for the initial metric and hydrodynamic vari-
ables in powers of a dimensionless small parameter [5],

ϵ(t) ≡ 1

H(t)L(t)
≪ 1. (6)

In the limit where ϵ → 0, the perturbed FLRW metric
reduces to

ds2 = −dt2 + a2(t)e2ζ(r)(dr2 + r2dΩ2), (7)

where we have considered explicitly spherical symme-
try, and where the function ζ(r) is the so-called gauge-
invariant curvature perturbation, which is time indepen-
dent in this limit. To lowest order, the long wavelength
solution to the MS equations (5) can be expressed in the
following way [7],

U = H(t)R(1 + ϵ2Ũ), (8a)

ρ = ρb(t)(1 + ϵ2ρ̃), (8b)

M =
4π

3
ρb(t)R

3(1 + ϵ2M̃), (8c)

R = a(t)reζ(r)(1 + ϵ2R̃), (8d)

where the tilde variables are defined as follows [7],

Ũ =
1

5 + 3w

e2ζ(rm)

e2ζ(r)
ζ ′(r)

(
2

r
+ ζ ′(r)

)
r2m, (9a)

ρ̃ = −2(1 + w)

5 + 3w

e2ζ(rm)

e2ζ(r)

[
ζ ′′(r) + ζ ′(r)

(
2

r
+

ζ ′(r)

2

)]
r2m,

(9b)

M̃ = −3(1 + w)Ũ , R̃ = − w

(1 + 3w)(1 + w)
ρ̃+

Ũ

1 + 3w
.

(9c)

and where rm is the comoving lengthscale of the pertur-
bation, defined from L(t) = a(t)rmeζ(rm) = H−1(t)/ϵ.

Equations (8) will specify the initial conditions for nu-
merical evolution of the MS equations, for a given initial
perturbation ζ(r) (5).

IV. COMPACTION FUNCTION

A useful estimator to investigate PBH formation from
the collapse of high density peaks is the so-called com-
paction function [8],

C(r, t) ≡ 2(M −Mb)

R
=

2δM

R
, (10)

defined as the mass excess δM within a given R [9].
Within the long wavelength approximation, the value of
the compaction function is time independent, given by,

C(r) = g(r)

(
1− 3

8
g(r)

)
, (11)

where g(r) = − 4
3rζ

′(r) [10]. From these definitions it
can be seen that the super-horizon compaction function
satisfies C ≤ 2/3, with g = 4/3 saturating the inequal-
ity. This value separates fluctuations of Type I (g < 4/3)
from Type II (g > 4/3), where the latter are character-
ized primarily by a non-monotonic behavior of the areal
radius1 as a function of r. Typical initial overdensities are
weak, dissipating as sound waves once they fall within the
horizon, without forming PBH’s. However, for rare ini-
tial fluctuations, the maximum value of the compaction
function at some scale r = rm may eventually grow to a
large enough value C(rm, t) ≈ 1. By that time, a trapped
surface with 2M/R > 1 has formed, signaling the immi-
nence of gravitational collapse and the formation of a
PBH. Here we will be interested in studying the thresh-
old values gc (or Cc) above which a black hole will even-
tually form, and below which the overdensity dissipates,
for different families of curvature profiles ζ(r).

V. CURVATURE PROFILE ζ(r)

The curvature perturbation random field ζ(x) can be
decomposed in its Fourier modes ζk,

ζ(x) =

∫
d3k

(2π)3
eik·xζk, (12)

where here we consider ζk to be Gaussian distributed,
fully determined by the correlator ⟨ζkζk′⟩, or equivalently

1 This implies that, for some r, R′(r) = 0, and the set of equations
(5) will be inadequate due to 0/0 indeterminacies. This is solved
in [6] with a new approach where an additional auxiliary variable
is introduced in the time evolution.
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the dimensionless power spectrum Pζ(k). Both are re-
lated by,

⟨ζkζk′⟩ = (2π)3δ(3)(k+ k′)
2π2

k3
Pζ(k). (13)

The power spectrum represents the variance of the ran-
dom field per logarithmic interval in k,

⟨ζ2⟩ =
∫

dk

k
Pζ(k) =

∫
Pζ(k)d log k. (14)

For instance, the mean profile conditioned to a given
value µ at the origin is given by [9, 11],

ζmean(r) = µ
⟨ζ(r)ζ(0)⟩

⟨ζ2⟩
=

µ

⟨ζ2⟩

∫
dk

k
sinc(kr)Pζ(k).

(15)
Here, instead, we will consider a one parameter family
of profiles which is motivated by the optimization of the
estimator g(r), whose relevance will be discussed in Sec-
tion VII. The mean profile conditioned to a large value
of g > gc ∼ 1 at a certain scale rm (which is the free
parameter), and normalized to the value µ at the origin,
is given by

ζmean(r; rm) ≡ µ
⟨ζ(r)g(rm)⟩
⟨ζ(0)g(rm)⟩

(16a)

∝ µ

∫
dk

k
Pζ(k)

sin kr

kr

(
sin krm
krm

− cos krm

)
. (16b)

For definiteness, we consider a nearly scale-invariant en-
hancement in the primordial power spectrum, between
an infrared scale kIR and an ultraviolet scale kUV,

Pζ(k) = AsΘ(k − kIR)Θ(kUV − k). (17)

With As ∼ 0.01, this leads to a significant abundance of
PBH. We note that ζmean ∼ 1, while typical deviations

from the mean profile are small, of order A
1/2
s ∼ 0.1.

VI. THRESHOLDS

Before presenting the numerical results for the thresh-
old values gc(rm) in the family of profiles (16b), we briefly
outline the so called “q-approach” introduced in [12].
This provides an estimate of the threshold based on the
behavior of the initial compaction function near its max-
imum [10], by considering a fiducial fitting function [12],

Cfit(r) = C(rm)
r2

r2m
e

1
q (1−r2q/r2qm ). (18)

This has a maximum at r = rm with normalized cur-
vature q ≡ −r2mC ′′(rm)/[4C(rm)(1− 3C(rm)/2)]. It also
has the standard properties of decaying to 0 at sufficiently
large r and having a r2 dependence near the origin. The
average of this fitting function,

C̄(r) ≡ 3

r3m
Θ(r − rm)

∫ rm

0

Cfit(r
′)r′2dr′, (19)

can be used to infer the fate of the perturbation. In-
terestingly, for the case of a radiation dominated Uni-
verse, gravitational collapse will occur (approximately)
for C̄ ≥ C̄c ≡ 2

5 , independently of q [12]. By inverting
(19) and taking advantage of this universality, one ob-
tains that the critical value of the original compaction
function, Cc, is of the form,

Cc(q) =
4

15
e−

1
q

q1−
5
2q

Γ( 5
2q )− Γ( 5

2q ,
1
q )

, (20)

where Γ(x) and Γ(x, y) are the Euler gamma and upper-
incomplete gamma functions, respectively. This expres-
sion predicts a lower bound given by Cc ≥ 2/5, and a
saturating value of Cc = 2

3 in the large q limit, i.e. the
threshold value will remain in the Type I region. Expres-
sion (20) has been tested [12] in the low q <∼ 20 regime,
agreeing with the results of numerical evolution within a
few percent. In Ref.[3], this estimate was used, extrapo-
lating it to large q. However, very recent numerical re-
sults for different families of profiles [13] indicate that the
q-approach no longer holds in the high curvature regime.
In this work we confirm a similar behaviour by using the
profiles (16b).
Instead of q, we will use the dimensionless curvature

of the linearized estimator g(r) at its maximum, defined
as,

w ≡ −r2m∂2
rg(rm) = 4qCc(q)

√
1− 3

2
Cc(q), (21)

(see Eq. (58) of [10] for a derivation of the last relation),
so that the q-approach prediction for the threshold gc(w)
is given by [10],

gc(w) =
4

3

(
1−

√
1− 3

2
Cc(q(w))

)
. (22)

In the family of profiles (16b) a larger size rm implies
a larger dimensionless curvature w. Figure 1 shows the
threshold values gc(w) we have obtained from numerical
evolution for different lengthscales rm. Note that the q-
approach, given by Eqs. (20) and (22), underestimates
the thresholds in the high-curvature regime, and that the
numerical values enter the Type II region for w >∼ 43.
This is in qualitative agreement with the results of [13].

VII. PBH ABUNDANCE

The study of threshold values for different families of
primordial perturbation profiles provides a better under-
standing of the PBH abundance, since only perturbations
with initial g(rm) > gc will contribute. For quantitative
estimates, we must now introduce the statistical frame-
work for initial conditions. Following [10], the initial g is
assumed to be a Gaussian random field, constrained to
the following three conditions:
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FIG. 1. Threshold values gc = g(rm, µc) and their depen-
dence with the normalized curvature around its maximum,
ω = −r2m∂2

rgc(rm), comparing the q-approach prediction with
the numerical results, fitted using a power-law scaling curve,
gc(w) = 0.631w0.2, with deviations only up to 3% for the
values of w studied. The case shown corresponds to a scale
hierarchy of α ≡ kUV/kIR = 25.

1. Noting that high peaks of a Gaussian random field
are nearly spherically symmetric [11], we require
that there is a spatial point x⃗ = x⃗p around which C

has a peak as a function of x⃗, i.e ∇⃗C(r, x⃗)
∣∣
x⃗=x⃗p

= 0,

with ∇2C(r, x⃗)
∣∣
x⃗=x⃗p

< 0. Here r = ∥x⃗− x⃗p∥ is the

comoving distance to the center of symmetry.

2. We require C(r, x⃗p) to have a maximum at r = rm.

3. We require C(rm, x⃗p) ≥ Cc.

From these three conditions, and within the statistical
framework of peak theory [11], a formula for the abun-
dance of PBH was obtained in [10]. Such formula consid-
ered only Type I black holes, neglecting the contribution
of Type II to the total abundance. Note that, for Type II
conditions, corresponding to g(rm) > 4/3, the maximum
of g transforms into a local minimum of C, so the second
condition cannot be implemented. The non-monotonic
behavior of C with g will also make the third condition
unphysical, since black holes will form for g > gc, which
means C < Cc. A simple way to include Type II black
holes in the expression for the total abundance, which we
adopt here, is to express these three conditions in terms
of the variable g, and then integrate g from the thresh-
old to arbitrarily large values. The formula for the total
abundance of PBH is similar to the one obtained in [10],
with the difference that Type II will also be included.
Following the discussion of [10], the density of “peaks”
located at x⃗ = x⃗p, constrained to have a maximum value

of g at r = ∥x⃗− x⃗p∥ = rm is

dnpeaks|rm
dr

=
∑

x⃗p,rm

δ(x⃗− x⃗p)δ(r − rm), (23)

where it is assumed that a peak and a maximum of g
does not happen at more than one smoothing scale, which
is indeed reasonable for the profiles studied numerically.
Integrating over the location x⃗p of the peaks appropri-
ately, and over the location of the maximum rm,[10], a
formula for the density of peaks of given size r = rm can
be derived. This results in the following expression for
the contribution of PBH to the present cold dark mat-
ter density parameter ΩPBH, including both Type I and
Type II, 2

ΩPBH =

∫ req

rmin

d log r

∫ ∞

0

w dw (24)∫ ∞

gc(w)

dg
M(r, g, w)

MH(r)

4πreq
3r

f(χ/σχ)p(g, w, v = 0)

(2π/3)3/2(σ1/σ2)3
. (25)

Here, and in what follows, we have dropped the subindex
m in rm, so r is the lengthscale at which we condition
the profile g(r) to have its maximum We also have w ≡
−r2∂2

rg and v ≡ r∂rg, while χ ≡ −r2∇2gr = 2g+w is the
trace of the Hessian around the peak. The function f(x)
comes from a phase space integration over the traceless
part of the Hessian, at the position x⃗p of the peak’s center
[3], and is given by the following expression [11],

f(x) ≡ x3 − 3x

2

[
erf

(√
5

2
x

)
+ erf

(√
5

2

x

2

)]
+ (26)√

2

5π

[(
31x2

4
+

8

5

)
e−5x2/8 +

(
x2

2
− 8

5

)
e−5x2/2

]
.

rmin is the minimum lengthscale of a black hole that has
not yet been evaporated, and req = H−1

eq is the horizon
size at matter radiation equality [10]. The probability
distribution p(g, w, v = 0) is given by,

p(g, w, v = 0) =
p(g, w)√
2πσ2

v

, (27)

where the distribution of v is Gaussian, centered at v = 0,
and the joint distribution of w and g is bivariate Gaus-

sian. Setting σ2
x ≡ ⟨x2⟩, σ2

xy ≡ ⟨xy⟩, γxy ≡ σ2
xy

σxσy
, and

defining σ̃2
x = σ2

x(1− γ2
vx), and σ̃2

wg = σ2
wg −

σ2
wvσ

2
vg

σ2
v

then

the joint distribution can be explicitly written as [3],

p(g, w) = N (g|0, σ̃2
g)N (w|w̄, σ̃2

w(1− γ̃2)), (28)

2 In [3], the integral in g is performed only up to g = 4/3. An-
other difference is in the expression of the mass M , which here
is assumed to have critical scaling with g, not C.

Treball de Fi de Grau 4 Barcelona, June 2025



Primordial perturbations Matteo Gabriel Marrone

FIG. 2. Abundance of PBH per log r, for the q approach pre-
diction and for the numerical power law fit gc(w). Dashed
lines correspond to the same abundance considering only
Type I, and the black lines correspond to a critical scaling
of the type M ∝ (C − Cc)

γ , as done in [3], considering also
Type I only. The curves shown correspond to As = 0.01 and
α ≡ kUV/kIR = kUVrIR = 25.

where γ̃ = σ̃2
wg/(σ̃wσ̃g) and w̄ ≡ γ̃(σ̃w/σ̃g)g. The above

correlators are integrals over the power spectrum Pζ(k)
defined in (17), and can all be expressed (see [10]) in
terms of the momenta σj , defined as

σ2
j ≡ 16

81

∫
d log k(kr)4+2jW 2(kr)Pζ(k), (29)

for j = 0, 1, 2, where W (x) ≡ 3(sinx − x cosx)x−3. Fi-
nally, for the mass of the PBH we assume the critical
scaling [6]

M(r, g, w) = KMH(r)(g − gc(w))
γ , (30)

with γ ≈ 0.36. For illustrative purposes we assume the
fiducial value K = 6 for the prefactor. Here, MH(r) ∝ r2

is the mass of radiation within a Hubble radius when the
comoving scale r falls within the horizon.

The results for the abundance (25) per logarithmic in-
terval of r are displayed in Figure 2. The results from
numerical evolution are compared with the q-approach
predictions. This comparison raises questions about the
unexpected shape of the PBH mass function found in [3],
with a second peak of the mass function at the infrared
scale kUV r ∼ α. May this be an artifact due to the use of
the q-approach estimate for gc(w)? With the power law
fit to gc(w) which is obtained from the numerical evo-
lution of our one-parameter family of profiles (we recall
that these are motivated by the primordial power spec-
trum (17) and the 3 conditions displayed in Section VII),
the infrared peak does not appear.

VIII. CONCLUSIONS

In this paper, we have considered the time evolution
of a one parameter family of initial overdensity profiles,
given by (16b). This is motivated by a broad power spec-
trum of the form (17), and the condition that the lin-
earized smoothed density contrast g(r) has a high peak
well above its root mean square at some scale rm. Within
this family, a larger value of rm corresponds to a larger
value of the dimensionless curvature w = −r2m∂2

rgc. We
find gc(w) ∼ 0.631w0.2 to be a good fit to the values
obtained from numerical evolution of our profiles. The
abundance of PBH per logarithmic interval of r, based
on this new fit, is compared with the results of [3], which
were based on the the q-approach. This raises the ques-
tion of whether the unexpected infrared peak found in
[3] may perhaps be an artifact due to extrapolation of
the q−approach to very large w. Further work is needed
in order to assess the true form of the mass function in
the infrared regime. This might require integration over
a more generic set of initial overdensity profiles.
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Resum: Un camp aleatori de pertorbacions cosmològiques pot tenir pics alts i rars que evolucio-
nen de manera no lineal després de creuar l’horitzó durant l’era dominada per la radiació, formant
forats negres primordials (PBH). Utilitzant resultats recents per a les estad́ıstiques de grans sobre-
densitats inicials, considerarem una famı́lia de perfils ben motivats per a aquestes sobredensitats,
determinant l’amplitud cŕıtica que fa que col·lapsin gravitacionalment. Això és rellevant per determi-
nar l’abundància de PBH per a un espectre de potència de pertorbacions cosmològiques determinat.
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8. Treball digne i creixement econòmic 17. Aliança pels objectius
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