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Note-by-note predictability modulates
rhythm learning and its neural

components
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Rhythm production requires the integration of perceptual predictions and performance monitoring
mechanisms to adjust actions, yet the role of auditory prediction remains underexplored. To address
this, electroencephalography was recorded from 70 non-musicians as they synchronized with and
reproduced rhythms containing notes of varying predictability. Participants were split into three
groups, each receiving different visual cues to aid rhythm perception. Behaviorally, higher asynchrony
occurred with less predictable notes. However, participants who viewed rhythms as distances
between lines showed improved timing. EEG revealed that the Error Negativity component seems to
reflect prediction error, increasing only when errors were clear and expected. When perceptual
predictability was low, Ne response was reduced. The Error Positivity component, however, was
heightened by both performance errors and unpredictable stimuli, highlighting the salience of such
events. Overall, predictability plays a key role in shaping the neural and behavioral mechanisms

underlying rhythm production.

Prediction plays a pivotal role in understanding human behavior. By
extracting regularities from our environment and generating expectations
about future events, we establish the groundwork for perception and other
cognitive processes, including learning. The Active Inference Framework'
posits that both perception and action strive to minimize prediction errors
—the discrepancies between predicted and actual sensory input. This
mechanism is particularly relevant in musical rhythm perception™’. When
auditory stimuli related to musical rhythm reach the auditory system,
predictive internal models come into play. These models, shaped by sta-
tistical regularities derived from music enculturation®, anticipate temporal
patterns and relate to metrical structures—an accented isochronous pattern
superimposed on auditory information—aiding our comprehension of
thythmic structure’. Interestingly, they are linked to motor planning
activity’, as shown by the activation of motor regions during rhythm
perception®’.

While the impact of predictability on rhythm perception is well-
established’, its influence on rhythm production remains less explored.
Indeed, rhythm production relies on a precise temporal template that must
be translated into motor commands’. Therefore, it might be assumed that
notes whose timing is better predicted will be produced more easily than
those with a more unpredictable temporal appearance. Previous studies
have shown that complex rhythms, particularly those presenting more
syncopations (notes that deviate from metrical regularity”'*"'), are more

difficult to learn and present higher inaccuracies than rhythms without
syncopations". Additionally, predictions of temporal information also
integrate interval-based information, as it is possible to anticipate event
occurrences by tracking transitional changes between intervals''. In other
words, rhythm complexity affecting production could be derived from the
mismatch of the sequence events with an underlying isochronous accented
pattern (beat and meter) or the sequence of intervals that conform the
pattern.

Importantly, predictability also plays a role in the different stages of
learning to produce a rhythm, although it has never been explicitly
studied. Therefore, in the initial learning stages when the temporal
template is not apprehended, there is less clear the exact timing in which
the response has to be produced, resulting in increased inaccuracy' and
modulation of the component associated with error-monitoring and
conflict processing’. Previous research has shown that this initial inac-
curacy is linked to an increase in the Error Negativity (Ne), a fronto-
central Event-Related Potential (ERP) peaking 50-100 ms. This ERP has
been related to the commission of errors, both in cognitive control tasks
such as flanker and Simon tasks' as well as in rhythm-learning tasks’.
Although initial theories proposed that Ne was associated with
responses to errors, current accounts propose thatit captures the conflict
between the activation of the correct and other concurrent potential
responses”’.
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Once the rhythm template is consolidated across repetitions, errors
decrease, and their associated Ne neural components diminish. Accord-
ingly, inaccuracies are more clearly detected. This is reflected in another ERP
component, Error Positivity (Pe), a centroparietal positive deflection
occurring between 100 and 300 ms after an erroneous response. Different
studies have linked the appearance of Pe after an erroneous response to the
awareness of this error, which may elicit changes in attentional allocation,
resulting in a reorienting response toward subsequent actions'*. However,
while these two components (Ne and Pe) reflect different cognitive control
mechanisms critical for rhythm production, they have primarily been stu-
died in relation to response accuracy in rhythm production tasks. However,
their relationship with the predictability of the note to be produced remains
unexplored.

Previous research on rhythm learning and its associated cognitive
control mechanisms has primarily focused on global aspects of rhythm
predictability, such as the difficulty of producing a rhythm based on the
degree of syncopation'’, or how accuracy evolves with repetition’. However,
no studies have specifically examined how the predictability of individual
notes influences the accuracy of their production. To fill this gap, the present
study investigates the role of individual note predictability in rhythm
learning and production, as well as its impact on the underlying cognitive
control processes. Given that rhythm templates derive from temporal
information perception, we hypothesize that predictability significantly
influences rhythm production, both during synchronization and repro-
duction trials in a rhythm-learning task. To investigate this, we manipulated
the temporal predictability of individual notes within rhythms and analyzed
them using the Information Dynamics of Music (IDyOM)" computational
model, which captures statistical features of music. IDyOM provides the
information content of each note—a measure of the temporal predictability
of the note—based on the probability distribution of a predefined corpus, as
well as the rhythms listened to during the experiment. In the rhythm
domain, IDyOM allows for the assessment of note predictability not only in
terms of syncopation, which is related to beat-based predictions, but also by
integrating interval-based predictions of the sequence itself. Simultaneously,
we created different learning contexts through images that provided dif-
ferent degrees of temporal information about the rhythms that could benefit
their learning. Specifically, we created a graphical representation in which
time was represented as distance and a categorical representation in which
different intervals were represented as distinct geometrical figures. Addi-
tionally, a control group where images did not provide meaningful infor-
mation was included.

We hypothesized that the predictability of individual notes would be a
critical factor in rhythm production and its associated cognitive control
mechanisms. Specifically, we predicted that the information content (IC) of
individual notes, reflecting their degree of surprise regarding their timing as
computed using IDyOM, would influence note accuracy. Notes with higher
IC would be more difficult to produce, leading to greater asynchrony
compared to notes with lower IC. Furthermore, we hypothesized that more
unpredictable notes would elicit an increased magnitude of the Ne and Pe
ERPs, reflecting an increase in motor conflict. Additionally, we predicted
that increasing note predictability through the use of meaningful images—
particularly in the graphical group—would enhance rhythm accuracy,
facilitate rhythm learning, and reduce the cognitive control required for the
task. This reduction in cognitive control would, in turn, be reflected in a
decreased magnitude of the Ne and Pe ERPs.

Results

In this study, participants learned to produce nine different rhythms. Each
trial consisted of three phases: first, the rhythm was presented without any
action; next, participants tapped along with the rhythm (synchronization);
finally, they tapped the rhythm without auditory feedback (repetition). This
sequence was repeated ten times for each rhythm in a row. Our goal was to
investigate how the perceptual predictability of individual notes influenced
rhythm production, learning, and the associated cognitive control
mechanisms. The predictability of each note was quantified using

information content (IC) as computed by IDyOM, a measure of how
expected the timing of a note was within the given context.

Additionally, participants were assigned to different groups based on
the type of visual information provided, which varied in its potential to
enhance note predictability: (1) the graphical group received high-
enhancement visual cues (rhythmic values represented as spatial informa-
tion), (2) the categorical group received low-enhancement cues (rhythmic
values as shapes), and (3) the control group received meaningless visual
information (random dot points). The performance during the task was
assessed using the absolute asynchrony, that is, the time difference between
the produced and the auditory onsets. In the behavioral analysis, the
asynchrony of each note was used as a dependent measure in the LMM, with
the IC (surprise) of the note, repetition of the rhythm and group as factors.
In addition, cognitive control mechanisms, as reflected by the Ne and Pe of
each response, were also analyzed following a similar procedure using the
amplitude as dependent measure and asynchrony, IC, repetition and group
as factors.

Synchronization sequences behavioral results

Performance accuracy was analyzed for sequences where synchronization
was done with sounds. In particular, we hypothesized that asynchrony in
this condition would increase with unpredictability of the notes and accu-
racy would increase with repetition. As expected, asynchrony decreased
across repetitions (F(1,68) = 131.65, p < 0.001), indicating that participants
learnt to perform more accurately through the task. On the other hand,
Information content was associated with higher asynchrony overall
(F(1,56570) =4482.4, p <0.001). There was also an interaction between
repetition and information content. As can be seen in Fig. 1a, the obtained
learning curves show different patterns across IC levels, with higher IC
resulting in steeper curves. There was an interaction between repetition and
IC (F(1,56585) = 136.76, p < 0.001). In other words, notes that were more
predictable were performed more accurately since the beginning and did not
change much throughout repetitions (Fig. 1b).

Moreover, as expected, the visual representations showed an effect
(F(2,67) =11.32,p < 0.001) on accuracy. This aide that presented intervals
as distances between lines (graphical group) helped participants to have
overall less asynchrony with an estimated mean of 0.08 compared to the
No Information group (0.093, z = —3.23, p <0.035) and the Categorical
group (0.097, z=3.23, p <0.001). There was no statistically significant
difference between the No Information and Categorical group (z = —1.0,
p =0.58). Additionally, this representation also reduced the effect of other
variables, with an interaction between group and IC (F(2,56570) = 64.40,
p<0.001) and group and repetition (F(2,68)=3.81, p=0.03). For
instance, repetitions for the graphical group reduced the asynchrony
repetition (P = —0.003) compared to the categorical group ( = —0.005) or
the no information group (= —0.005). Only the comparison between
Graphical and Categorical (z=—2.35, p=0.048) was statistically sig-
nificant, while the comparison between Graphical and No Information
was marginal (z = —2.09, p = 0.09). Graphical group reduced the impact of
IC in increasing asynchrony (B =0.15) compared to No Information
(B=0.2) and Categorical group (p=0.22). The comparison between
groups showed that both Graphical compared to No Information (z = 8.3,
P <0.001) and Graphical compared to Categorical (z = 10.64, p <0.001)
were statistically significant. In other words, the visual representation
reduced the learning associated by repeating the rhythms and the effect of
unpredictability by boosting the accuracy in performance through con-
gruent visual information. Additionally, a triple interaction was found
between group, repetition and IC (F(2,56595) = 3.36, p < 0.03). Changes in
nIC trends by repetition changed differently by group: No Information
group changed by an estimate of 0.02, Categorical group by 0.02 and
Graphical by 0.01. Pairwise comparison showed statistically significant
change compared to Graphical Group (No-Information vs Graphical
z=28.26, p<0.001; Categorical vs Graphical z=10.64, p <0.001). The
conditional R* of the model was 0.12, and the marginal R* was 0.08
(Supplementary Table 1).
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Fig. 1 | Behavioral results. a Asynchrony across repetitions for three levels of
information content of the Synchronization trials. Asynchrony was grouped for
visualization purposes in learning stages (early: 1st to 3rd repetitions, mid: 4th to 7th
repetitions, late: 8th to 10th repetitions) and information content (low: lowest tertile
of IC, medium: medium tertile of notes, high: highest tertile). Asynchrony decreases
by repetition, increases by IC. Graphical group shows a reduction of asynchrony and
a diminishing effect on repetition and IC. b Predicted values of the model for
asynchrony of Synchronization Trials. ¢ Asynchrony across repetitions for three
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levels of information content of Reproduction Trials. Asynchrony was grouped for
visualization purposes in learning stages (early: 1st to 3rd repetitions, mid: 4th to 7th
repetitions, late: 8th to 10th repetitions) and information content (low: lowest tertile
of IC, medium: medium tertile of notes, high: highest tertile). Asynchrony decreases
by repetition, increases by IC. Graphical group shows a reduction of asynchrony and
a diminishing effect on repetition and IC. d Predicted values of the model for
asynchrony of Reproduction Trials.

ERP results of synchronization sequences

Visual inspection of the response-related evoked potentials associated with
the tapping responses of the participants showed a series of components
compatible with rhythm-learning literature (Fig. 2a).

Increased activity in the first time window compatible with an Ne
component was found peaking around 50 ms after the response. We
expected an increase for this component’s magnitude with asynchrony due
to the relationship between the Ne and error, and a reduction of this
component through repetition. In addition, we expected an increase in the
Ne with IC due to its potential relationship with conflict. Finally, we also
expected a reduction of Ne in the graphical group due to an increase in the
predictability of the rhythms in this condition.

Contrary to what we expected, the mixed-effect linear model
(Supplementary Table 3, Fig. 2b) predicted a reduction in the
negativity for this component with IC values (Bnornfomation = 0.24,
Beategorical = 022, Baraphical = 0.13, F(1,78)=12.03, p<0.001) and
aSYHChTOHY (ﬁNoInfomation =-022, BCategorical =0.08, ﬁGraphical =-0.19,
F(1,53424) = 4.1, p=0.04). There was also an interaction between repe-
tition and asynchrony (F(1,55267) = 15.62, p <0.001) and IC and Asyn-
chrony (F(1,52373) =4.37, p=04). The trend of asynchrony at first
repetition (3=0.24) and the last (B=—0.43) one changed (t=4.08,
P <0.001). This suggests that in later repetitions, asynchrony decreases the
component as sign of error. The trends of asynchrony at low IC (—0.01)
compared to high IC (—0.41) changes (t=1.95, p =0.5). This suggests an
increased magnitude for high IC and high asynchrony.

Finally, there was also an interaction between group x repetition x
asynchrony (F(2,52981) =4.14, p =0.02), although pairwise comparisons

are not statistically significant. Additionally, repetition x IC x Asynchrony
(F(1,54059) = 7.24, p <0.01). The conditional R? of the model was 0.02
(marginal R* = 0.002).

Then we analyzed the Pe component at the Cz electrode in the
90-150 ms range (Fig. 2a). As this component has been linked with error
awareness, we expected to increase with asynchrony and information
content, and to be reduced in the graphical group. The model (Supple-
mentary Table 4, Fig. 2c) showed an increase in the positivity for higher
values of information content (Bnomfomation=0.72, Bcategorical = 0.47,
BGraphicat = 0.69,  F(1,55046) =218.42, p<0.001) and asynchrony
((—)’Nolnfomation =0.50, BCategorical =091, BGraphical =—0.58, F(1,75)=52.86,
P <0.001). Additionally, there was a significant negative interaction between
IC and asynchrony(F(1,44601) = 12.69, p < 0.001) and repetition and IC
(F(1,55253) = 6.40, p =0.01). Components magnitude increased by asyn-
chrony in lower IC notes (0.82) than high IC notes (0.10) (t=3.56,
p<0.001). Additionally, Pe magnitude increased less at early repetitions
more by IC (0.45) rather than in later repetitions (0.80) (t = —2.54, p = 0.01).
Also, there was an interaction between group x repetition x asynchrony
(F(2,53960) = 6.22,  p<001).  Bromformation = 049  Bcategorical = 0.90,
BGraphical = 0.58, although pairwise comparisons do not reach statistical
significance. The total explanatory power of the model was R*=0.03
(conditional), and the fixed effects power (marginal R?) was 0.01.

Behavioral results of reproduction sequences

Reproduction sequences were produced without auditory information, just
after each synchronous trial. Participants repeated the previously listened-to
and tapped stimuli with only the visual aids on the screen. The asynchrony
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Fig. 2 | Error negativity and error positivity for a
synchronization trials. a Grand average of the
response-locked evoked potentials for synchroni-
zation trials. In gray, the time windows used for the
note-by-note analysis with their topographic maps.
The first window corresponds to the Error Nega-
tivity (frontocentral negativity between 0 and

50 ms), and the second window corresponds to the
Error Positivity (central positivity between 90 and
150 ms). b Predicted values of the Error Negativity
for Information content and degree of asynchrony
corresponding to its response. Information Content
reduces the component, while asynchrony increases
it for high information content notes. ¢ Predicted
values of the Error Positivity for Information con-
tent and degree of asynchrony corresponding to its
response. Information content increases the com-
ponents’ magnitude, while asynchrony increases the
component only for low IC notes.
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across learning stages showed a similar pattern to the synchronization
sequences (Fig.1c).

Asynchrony for reproduction sequences was analyzed with a mixed-
effect linear model (Fig. 1d, conditional R’ =0.07, marginal R* of 0.05).
Linear mixed-effect model (Supplementary Table 2) showed that asyn-
chrony decreased with repetition (p = 0.003, F(1,65) = 36.56, p < 0.001) and
increased with information content (F(1,67) = 587.5, p < 0.001).

A group effect was found (F(1,67) =7.91, p <0.001). The graphical
group presented an overall lower mean asynchrony of 0.09, compared to the
mean asynchrony of 0.10 of Categorical and No Information. Comparisons
between No Information and Graphical (z = 3.01, p < 0.01) and Categorical
and Graphical (z = 3.7, p < 0.001) showed statistical differences. Moreover,
there was an interaction between group and IC (F(2,67) = 3.52, p = 0.03).
Pairwise comparison of the trend slopes (Bnomfomation = 0.16,
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Fig. 3 | Error negativity and error positivity for a -
reproduction trials. a Grand average of the
response-locked evoked potentials for reproduction -3 1
trials. In gray, the time windows used for the note-
by-note analysis with their topographic maps. The 2 Time (ms)
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Bcategorical = 0-18, Paraphical = 0.14) was only statistically significant between
Categorical and Graphical groups (z = 2.68, p < 0.2). This shows that in this
case, the visual representation compared to the categorical representation
reduced the effect of the note unpredictability in asynchrony. No significant
effects were found for the no-information group compared to the
categorial group.

ERP results of reproduction sequences

In the EEG domain, the Ne component (Supplementary Table 5, Fig.3b,
conditional R* = 0.02, marginal R’ of 0.002) was modulated by asynchrony
(F(1,51298) = 7.05, p < 0.01) and repetition (F(1,51274) =4.30, p=0.04).
No statistically significant differences between groups were found regarding
aSYnChronY (ﬁNoInfomaﬁon =-0.07, ﬁCategorical =-0.14, ﬁGraphical =—0.19)
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and repetition (BNoInfomation =011, ﬁCategorical =0.12, BGraphical =0.01). On
the other hand, the Pe component (Supplementary Table 6, Fig.3c) was
increased with  repetition  (Bnomfomation = 021, Bcategoricat = 0.18,
BGraphical = —0.05,  F(1,51256) =7.09, p<0.01), information content
(BNoInfomation =0.29, BCategorical =0.18, BGraphical =045, F(1)77) =36.07,
P < 0~001) and aSYnChIOHY (BNolnfomation =—0.49, BCategorical =0.5,
BGraphical = 0.44, F(1,51310) = 84.25, p<0.001), conditional R* of the
model = 0.02 (marginal R* = 0.004), as expected. Additionally, there was an
interaction between group and repetition (F(2,51256) = 5.06, p < 0.01). Only
statistically significant differences between groups were found for repetition
between graphical group and the other two groups (Graphical vs No
Information z = —2.73, p < 0.02; Categorical vs Graphical z = 2.42, p < 0.04).
This indicates that for graphical group, the nIC does not increase the
magnitude compared to the other groups. There was also an interaction
between asynchrony and information content (F(1,50830) = 5.95, p < 0.05).
Asynchrony estimates at low IC (p =0.58) to high IC changes ( =0.13),
indicating that Pe magnitude does not increase much for asynchrony of
higher IC notes (t =2.40, p <0.2).

Discussion

Learning to produce a rhythm is a complex skill that depends on the
development of robust motor templates. The timing predictability of each
note is crucial, yet research on its influence on rhythm production is limited.
Our study explored this by examining the information content of each note
and improving precision through visual cues provided to participants. We
found that note predictability was associated with performance accuracy,
with more surprising notes being produced with less precision (higher
asynchrony) across all learning stages. Moreover, providing visual timing
information resulted in a marked reduction of asynchrony. Notably, the Ne
component was reduced in notes with higher IC complexity only when
rhythms were produced with their corresponding sound. Conversely, the Pe
component escalated with note complexity and asynchrony. These findings
underscore the pivotal role of the predictability of individual notes in
learning new rhythms.

The first main finding of the study is the significant effect of predict-
ability in rhythm production, with unpredictable notes showing less syn-
chronization accuracy. These notes, however, showed the most significant
improvements with practice, especially in synchronization tasks. Previous
studies have described reduced performance in complex rhythms, parti-
cularly those presenting more syncopation. However, our study linked
differences in performance to specific notes and its associated surprise,
which it was not only related to syncopation but to other temporal aspects
captured by IDyOM model, such as inter-onset intervals and metric accent
of the notes. This general measure, IC, which reflects the surprise of indi-
vidual rhythms, directly influences the difficulty of accurately tapping a
note. Therefore, rhythm’s internal template for each note hinges upon the
note’s information content, with greater difficulty in processing notes that
are less predictable, suggesting that they initially demand more from
performance-monitoring systems, a demand that decreases as learning
progresses. As the internal rhythm template refines, it allows for more
accurate timing of note production, especially for challenging notes. An
important question is how the IC of a note might influence taps preceding its
onset. This could be puzzling if participants were encountering the rhythm
for the first time. However, in our experiment, participants had already
heard the rhythm before tapping, even in the first trial. Our findings suggest
that IC captures the difficulty of tapping a previously heard note, high-
lighting its role in shaping rhythmic performance. Crucially, the manip-
ulation of the internal template by providing explicit information on the
temporal representation of the notes in the graphical group yielded, on one
hand, a global reduction of the asynchrony and, on the other, a reduction in
the effect of learning, supporting the effectiveness of this procedure to
reduce the uncertainty in rhythm templates and enhancing performance.
However, since we did not include a group without any visual information,
we cannot determine whether the graphical procedure improved accuracy

compared to the absence of a visual aid. Future studies incorporating such a
control group could help assess the effectiveness of this intervention.

The relationship between the predictability of the individual notes and
performance-monitoring mechanisms is supported by the modulation of
the Ne component. The main result is the modulation of the Ne with the IC.
Unexpectedly, Ne amplitude during synchronization trials was inversely
related to IC, being smaller for notes with higher IC. In addition, Ne was also
enhanced in more complex notes when the asynchronies were high.
Therefore, Ne was not related solely to erroneous responses, as previously
suggested in performance-monitoring'® and rhythm production’ tasks, but
associated with the predictability or the notes to be produced. Therefore, we
propose that Ne is signaling a discrepancy between expected and actual
response modulated by the predictability of the note, which would be
indexed by the IC. We propose that notes with low IC would generate highly
precise prediction errors that would be further translated to higher levels in
the hierarchy to induce changes in the generative models and improve
internal templates. Therefore, the results of the current study show that
modulation of Ne is related to those notes that are more likely to be used to
update the model. Ne is higher for notes with low IC, independently of their
asynchrony, as prediction errors in those notes are very precise and,
therefore, according to the model, likely to be used to update internal
models. In contrast, more unpredictable notes at a perceptual level (that is,
those presenting higher IC) yield to imprecise prediction errors, which
would be virtually ignored and not sent to higher levels of the hierarchy
unless the errors are very large, in which case they can be clearly detected and
will be useful for updating the model. This also corresponds to the mod-
ulation of Ne, with lower amplitude for low asynchronies compared to high
asynchronies in notes with high IC.

Interestingly, these results nicely fit within the active inference
framework’. In the music domain, this framework proposes that prediction
errors in the incoming notes are associated with precision. Precise predic-
tion errors would be translated to higher levels in the hierarchy to induce
changes in the generative models, while unprecise ones would be discarded.
In our study, the precision of the prediction errors would likely inversely
escalate with IC, with prediction errors of low IC notes being more precise
than the high IC ones.

Current results are at odds with previous results on rhythm-learning
production’ in which responses with higher asynchrony (labeled as errors in
that study) showed an increase in Ne in the early stages of learning. This
finding is not replicated in our current study in the no-information group in
the synchronization trials, which is the one that only relies on auditory
information. Our findings show an increased negativity overall for
responses that were more asynchronous without the reduction in latter
repetitions. This discrepancy could be related to the fact that in this study,
the IC of the sounds was not considered, with the possibility of mixing the
different factors affecting the Ne. In addition, this study divided the trials
into correct and erroneous responses, while we have not categorized the
responses, but used asynchrony and repetition as factors in the linear mixed-
effects model. Our results suggest that the Ne is not evaluating responses
only on the basis of accuracy, but also on the relationship to the surprise of
the notes to be produced. Therefore, the categorization of the trials could
overlook the modulation of the Ne.

Additionally, the modulations of Ne observed during synchronization
trials by IC disappear in reproduction trials, making the role of the Ne in the
reproduction trials similar to previous literature’. In contrast, in these trials,
this component is modulated by repetition and asynchrony, suggesting that
a comparison between the expected and actual response is still taking place.
Di Gregorio and colleagues'® found that when the explicit expected response
was absent, but an error was detected through other contextual cues, the Ne
disappeared while the Pe persisted. In this context, the representation of the
expected response—specifically, the timing of the perceived note—is
maintained in memory rather than actively perceived. This distinction could
resultin a less precise expected response, weakening the comparison process
and removing the effect of IC on the reproduction trials.
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In contrast, the modulation of Pe follows a different pattern than Ne. It
was expected that the Pe would increase its amplitude along repetitions and
asynchrony. Our findings aligned with these expectations. These results fit
with previous literature suggesting that once the rhythm template is learnt,
error awareness increases’. In addition, responses that produced notes that
were more unpredictable also presented higher amplitudes in this compo-
nent. The Pe has been proposed to index the accumulation of evidence that
an error has occurred and its conscious awareness”’, integrating information
of different sources'. This awareness leads to an orienting response to
unprovable events in the environment that will require a behavioral
adjustment'®. According to our results, the Pe would increase for those notes
that arouse higher saliency, either because they are surprising (higher IC),
the response was not precise (higher asynchrony), or a combination of both
(e.g., low complexity but high asynchrony). Therefore, Pe could signal sal-
iency of the response rather than awareness of error per se.

Predictability modulating the Ne and Pe may indicate effects at dif-
ferent stages of the cognitive control processing. Stimulus to goal-
appropriate action mapping takes place in the pre-Supplementary Motor
Area (pre-SMA)/Supplementary Motor Area (SMA), where predicted
action forward models are transferred to be selected in the basal ganglia and
effected in the motor cortex". In addition, in the basal ganglia, a copy of the
motor command is generated and transferred back to pre-SMA/SMA,
where an evaluation is made to update the action models'’. Our results
support the idea that complexity in the auditory level weights the com-
parison to the copy of the motor command. This is reflected by the weighted
prediction error indexed by the Ne. However, the Pe might be signaling the
recruitment of attentional resources in the feedback controllers to adjust the
behavior-integrating saliency aspects of the given response. Additionally,
visual information about the timing of the notes in the graphical group
reduces asynchrony without presenting a main effect on Ne and Pe. This
behavioral effect and the modulation of asynchrony, repetition and IC on
the Ne and Pe components by visual information suggest that explicitly
representing the temporal structure of the rhythm might influence other
stages of the performance control processing. Specifically, visual informa-
tion could be affecting the feedback controllers by modifying attentional
resources required to update control forward models or by enhancing the
action-selection mechanisms by which the appropriate motor command
will be chosen. Future research is needed to understand how integrating
visual information in auditory-motor tasks affects performance monitoring
processing.

Methods

Participants and experimental design

Seventy-two subjects (M = 22.24, SD = 4.15, 52 women) were recruited for
this study. All participants reported having less than 3 years of musical
training and were not currently learning to play any instrument. Partici-
pants also reported no psychological or neuropsychiatric disorders or motor
dysfunction of the superior limbs. All participants signed a written informed
consent, were paid €10 per hour and were randomly allocated to one of the
three groups corresponding to each visual representation. All procedures
were approved by the Institutional Review Board of the University of Bar-
celona (IRB0003099), in accordance with the Declaration of Helsinki. Two
participants were excluded due to data loss, with a final sample of 70 par-
ticipants (24 in categorical group, 24 in graphical group and 22 in no
information group).

The experimental paradigm consisted of an adaptation of the
Rhythm Synchronization Learning Task™"’. The participants had to first
listen to an auditory rhythm. Subsequently, they listened to the same
rhythm and tapped simultaneously using a response pad (RB-840 Cedrus
Response Pad). Finally, they were required to reproduce the rhythm
without sound using the same pad. Each of the three sequences was
preceded by two beeps separated by 0.5s each, which indicated the
beginning of the rhythm (Fig. 4a). These three sequences were repeated
ten times for each of the nine rhythms in a block design. After the 2nd, 4th,
7th, and 10th reproduction trials, participants were asked to rate on a

Likert scale how much they liked the rhythm that they were listening to
and tapping.

While participants had to listen to, synchronize with, or reproduce a
rhythmic sequence, an image was presented on the screen. Therefore, visual
information appeared in all three sequences, whereas auditory information
only appeared in the listening and synchronization conditions.

After the Rhythm Synchronization Learning Task, participants were
asked to rate the stimuli after listening to each in the lab using a rating scale
like the one used in the pre-test phase. Participants of the categorical and
graphical groups also had a test phase in which they had to reproduce three
new rhythms using only visual information, without previously hearing
them. This test phase was presented to assess whether the participants were
able to decode visual representations of the rhythms. This data is not ana-
lyzed in the present manuscript.

The duration of the experiments was approximately 1 h. The rhythms
were presented in a block design with a fix order (see Table 1 for the
characteristics of the rhythms). Every time the rhythm changed (block of 10
repetitions), there was a pause for participants to rest. Before starting the
task, the participants practiced with an easy rhythm. In this practice, they
were presented with two repetitions of a sequence of three parts. Once the
practice was finished, the task began.

The task was built using PsychoPy software (version 3.0.5) in Python
programming language'™’ on a PC, and the sound was presented using
stereo headphones at a comfortable intensity level adapted for each
participant.

Stimuli

The rhythms were adapted from previous experiments™”'” and consisted of
11 snare drum notes of 200 ms generated using the online software of music
edition Bandlab. Each rhythm had the following rhythmic category inter-
vals: five eighth notes (IOI =250 ms), three quarter notes (500 ms), one
dotted quarter note (750 ms), one half note (1000 ms) and one dotted half
note (1500 ms). These 11 intervals were randomly scrambled to generate a
pool of 300 different rhythms varying in complexity.

The 9 selected rhythms were chosen according to their information
content (Table 1), a predictability measure given by the Information
Dynamics of Music model. Information content (IC) gives a quantitative
measure of the unpredictability of an event based on extracting the statistical
properties of a corpus of music by which the model is trained. In this study,
the model was trained in extracting the probabilities of onsets, inter-onset
intervals and metric accent of the notes of 185 chorale melodies by Bach".
The result was a note-by-note measure of the rhythm, in which higher values
indicated more unpredictability. The IDyOM model tries to simulate the
process of musical enculturation and statistical learning of musical features
of humans, and IC measure is related to surprise and prediction error
produced by the analyzed event.

In our study, we used three specific viewpoints of the IDyOM model to
analyze temporal structure and its predictability. Specifically, onset, metric
accent and Inter-onset interval were used. Probabilities of each viewpoint
were extracted from the corpus and the actual stimuli to understand their
structure. Onset viewpoint represented the timing of a note event, analyzing
its time of onset. Inter-Onset Interval (IOI) viewpoints consider the spacing
between notes, analyzing how different intervals can be followed from one to
another. Lastly, metrical accenting analyzed the strength of the note given a
metrical framework, assigning stronger accenting to events that occur in the
downbeat or relevant metrical positions.

We opted for analyzing note-by-note predictability instead of static
overall complexity measure because musical rhythms are perceived
sequentially. This approach allows a fine-grained analysis of the dynamic
interplay between expectation and occurrence that can be critical in
performance.

Meaningful visual representations (Fig. 4b) of the rhythms were pro-
vided for two of the three groups. The first one consists of a categorical
transcription of musical notation used in Western music (categorical
group). A geometrical figure was associated with each of the five intervals: a
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Fig. 4 | Paradigm and visual representations. a Experimental paradigm: rhythms
were presented in sequences of 3 trials. Listening Trials required participants to
listen to and watch the visual representation. Synchronization Trials required to
synchronize pressing a button to the auditory rhythm with the help of the visual
presentation. Reproduction Trials required participants to reproduce the rhythm
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without sound, helped only by the representation. This sequence was repeated 10
times for each rhythm. b Types of visual representation and their correspondence to
Western musical notations. Categorical: different geometric figures representing the
different intervals. Graphical: distance represents the intervals between notes. No
Information: no correspondence with auditory rhythm.

Table 1 | IC for the rhythms used in the experiment

Rhythm Mean SD Min Max
1 2.28 2.48 0.11 7.96
2 2.25 1.98 0.16 5.71
3 2.29 2.17 0.18 6.92
4 2.69 2.39 0.18 6.95
5 3.62 3.74 0.16 12.29
6 4.30 3.26 0.19 10.95
7 3.98 3.45 0.12 10.74
8 4.02 2.16 0.16 7.86
9 2.72 2.51 0.15 6.85

Information content of the 9 rhythms used in the experiment: mean information content, standard
deviation, minimum and maximum value of the IC of the notes of the rhythm.

square was associated with an eighth note, an inverted triangle represented a
quarter note, a circle represented a dotted quarter note, arhomb represented
a half-note, and an upward-pointed triangle represented a dotted half-note.
The figures are evenly spaced. The second group of participants (graphical
group) received a graphical representation consisting of marking each
sound with a vertical line, where the distance between lines represented the
time between the sounds (e.g., twice the distance represented twice the time

between the sounds). We hypothesized that in this group, participants
would extract the temporal information more easily and that it would be
more useful in the performance of the rhythm. Finally, the third group (no
information group) received a series of dots on the screen that had no
relationship with the rhythm they were listening to. Participants were
randomly assigned to one of three groups before starting the experiment.

Behavioral analysis

To quantify the performance of the participants, we used the asynchrony
computed as the absolute difference between the produced and the real
auditory onsets in the case of the synchronization phase or the onset
where the note would appear in the case of reproduction. A window was
selected with half of the duration of the interval before the onset of the
note and half of the duration of the interval after the onset of the note. All
the responses given during this window were selected, and their asyn-
chrony was calculated’. Only those responses with minimum asyn-
chrony for each window were computed as actual responses and
considered for behavioral and EEG analysis. Only rhythms between 8
and 14 taps were analyzed.

Note-by-note asynchrony was computed separately for the trials that
required synchronization to the actual sounds and those that required the
participant to reproduce them. A linear mixed-effect model was built to
predict asynchrony as a function of the predictability of each note in the
rhythm (IC), the repetition in which this sound was produced, and the visual
aid that was concurrent with learning and their interactions. Repetitions and
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ICs were normalized to reduce fitting problems due to the different scales of
the variables.

Linear mixed-effect models were selected due to the repeated nature of
the sequences being learned and the repetition effect. Also, some produced
rhythms that had fewer notes than sounds were listened to, so missing values
were not avoided in this experimental design.

For all models, the maximum random effect structure was selected with
random slopes for each variable and reduced using rePCA function™ until
the overfitting of the model was solved. The starting random structure of
each model was participants and groups as random intercepts, while
rhythm, IC and Repetition were accounted for as random slopes. We run an
ANOVA to assess the statistical significance of the variables of the models
and report the means and trends of the significant variables’ slopes.

EEG analysis

EEG signals were recorded from an active electrode cap with 29 electrodes
mounted at a standard position (Fp1/2, Fz, F7/8, F3/4, Fc1/2, Fc5/6, Fez, Cz,
C3/4,T3/4,Cpl/2,Cp5/6, Pz, P3/4, T5/6,PO1/2, Oz) with the FCz electrode
as reference. Eye movement was monitored using an electrode at the
infraorbital ridge of the right eye. The electrode impedances were kept to less
than 10 kQ) during the entire experiment. The signal was digitalized at a rate
of 250 Hz and filtered online between 0.01 and 70 Hz. All the electrodes were
re-referenced offline to the mastoids. While performing the rhythms, par-
ticipants were instructed to look at the visual representations of the rhythms.
Between each sequence, they had 2 s to blink before continuing the task.

The selected epochs were locked to the motor response from —1000 to
1000 ms. The baseline was corrected from —200 to —50ms according to
previous studies’. Trials exceeding 100 pV were rejected offline. The EEG
signal was band-filtered between 0.1 and 30 Hz. Visual inspection and
previous literature analysis of similar responses showed the following
evoked activity: a negativity between 0 and 50 ms around the frontal region,
and a positivity between 90 and 150 ms at central regions’. These compo-
nents corresponded to error negativity and error positivity waveforms,
respectively, and have been described in the context of a skill acquisition
process, such as rhythm learning. In this situation, learning to synchronize
with or reproduce different rhythms does not produce an error or correct
response but a continuity from less to more accurate responses. Regarding
that, changes in amplitude in single-trial EEG signals locked to the motor
responses were analyzed without a classification between correct or erro-
neous responses and were related to their asynchrony value, repetition, the
information content of the note to produce and the visual representations
used during the learning.

A linear mixed-effect model was built to predict the mean activity of
each time window, with each response as a function of asynchrony, nor-
malized Information Content, repetitions, and visual representations as
main effects (all variables were standardized). The random structure con-
sisted of participant and visual representation group as random intercepts,
while rhythm, asynchrony, IC and repetitions were introduced as random
slopes.

Data availability
The data of this study are available on request.

Code availability

The code used for this study is available on request.

Received: 6 June 2025; Accepted: 11 August 2025;
Published online: 21 August 2025

References

1. Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P. & Pezzulo, G.
Active inference: a process theory. Neural Comput. 29, 1-49 (2017).

2. Koelsch, S., Vuust, P. & Friston, K. Predictive processes and the
peculiar case of music. Trends Cogn. Sci. 23, 63-77 (2019).

3. Vuust, P. & Witek, M. A. G. Rhythmic complexity and predictive
coding: a novel approach to modeling rhythm and meter perception in
music. Front. Psychol. 5, 1111 (2014).

4. Pearce, M. T. Statistical learning and probabilistic prediction in music
cognition: mechanisms of stylistic enculturation. Ann. N. Y. Acad. Sci.
1423, 378-395 (2018).

5. Proksch, S., Comstock, D. C., Médé, B., Pabst, A. &
Balasubramaniam, R. Motor and predictive processes in auditory beat
and rhythm perception. Front. Hum. Neurosci. 14, 578546 (2020).

6. Kung, S.-J., Chen, J. L., Zatorre, R. J. & Penhune, V. B. Interacting
cortical and basal ganglia networks underlying finding and tapping to
the musical beat. J. Cogn. Neurosci. 25, 401-420 (2013).

7. Chen, J. L., Penhune, V. B. & Zatorre, R. J. Listening to musical
rhythms recruits motor regions of the brain. Cereb. Cortex 18,
2844-2854 (2008).

8. Kasdan, A. V. et al. Identifying a brain network for musical rhythm: a
functional neuroimaging meta-analysis and systematic review.
Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2022.
104588 (2022).

9. Padrao, G., Penhune, V., de Diego-Balaguer, R., Marco-Pallares, J. &
Rodriguez-Fornells, A. ERP evidence of adaptive changes in error
processing and attentional control during rhythm synchronization
learning. Neuroimage 100, 460-470 (2014).

10. Chen, J.L.,Penhune, V. B. & Zatorre, R. J. Moving on time: brain network
for auditory-motor synchronization is modulated by rhythm complexity
and musical training. J. Cogn. Neurosci. 20, 226-239 (2008).

11. Teki, S., Grube, M., Kumar, S. & Griffiths, T. D. Distinct neural
substrates of duration-based and beat-based auditory timing. J.
Neurosci. 31, 3805-3812 (2011).

12. Fu, Z., Sajad, A., Errington, S. P., Schall, J. D. & Rutishauser, U.
Neurophysiological mechanisms of error monitoring in human and
non-human primates. Nat. Rev. Neurosci. 24, 153-172 (2023).

13. Vidal, F., Burle, B. & Hasbroucq, T. On the comparison between the
Nc/CRN and the Ne/ERN. Front. Hum. Neurosci. https://doi.org/10.
3389/fnhum.2021.788167 (2022).

14. Orr, J. M. & Carrasco, M. The role of the error positivity in the
conscious perception of errors. J. Neurosci. 31, 5891-5892 (2011).

15. Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E. & Donchin, E. A
neural system for error detection and compensation. Psychol. Sci. 4,
385-390 (1993).

16. DiGregorio, F., Maier, M. E. & Steinhauser, M. Errors can elicit an error
positivity in the absence of an error negativity: evidence for
independent systems of human error monitoring. Neuroimage 172,
427-436 (2018).

17. Steinhauser, M. & Yeung, N. Decision processes in human
performance monitoring. J. Neurosci. 30, 15643 (2010).

18. Ullsperger, M., Harsay, H. A., Wessel, J. R. & Ridderinkhof, K. R.
Conscious perception of errors and its relation to the anterior insula.
Brain Struct. Funct. 214, 629-643 (2010).

19. Peirce, J. W. Generating stimuli for neuroscience using PsychoPy.
Front. Neuroinform. 2, 10 (2009).

20. Peirce, J. W. PsychoPy—psychophysics software in Python. J.
Neurosci. Methods 162, 8-13 (2007).

21. Riemenschneider, A. 371 Harmonized Chorales and 69 Chorale
Melodlies with Figured Bass (G. Schirmer, 1941).

22. Bates, D., M&chler, M., Bolker, B. & Walker, S. Fitting linear mixed-
effects models using Ime4. J. Stat. Softw. 67, 1-48 (2015).

Acknowledgements

The present project has been funded by the European Regional
Development Fund (ERDF), the Spanish Ministry of Science and Innovation
to J.M.-P. (PID2021-126477NB-100), ICREA Academia program 2018 to
J.M.-P., Ministerio de Universidades de Esparato MDD (FPU18/05977) and
the Government of Catalonia (2021 SGR 00352).

npj Science of Learning| (2025)10:59


https://doi.org/10.1016/j.neubiorev.2022.104588
https://doi.org/10.1016/j.neubiorev.2022.104588
https://doi.org/10.1016/j.neubiorev.2022.104588
https://doi.org/10.3389/fnhum.2021.788167
https://doi.org/10.3389/fnhum.2021.788167
https://doi.org/10.3389/fnhum.2021.788167
www.nature.com/npjscilearn

https://doi.org/10.1038/s41539-025-00353-y

Article

Author contributions

M.D. contributed to the design, data collection and analysis, results
interpretation and writing the manuscript. J.M. contributed to the design,
results interpretations and writing of the manuscript. The final version of the
manuscript was approved by both authors.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41539-025-00353-y.

Correspondence and requests for materials should be addressed to
Marc Deosdad-Diez or Josep Marco-Pallarés.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material
is notincludedin the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

npj Science of Learning| (2025)10:59

10


https://doi.org/10.1038/s41539-025-00353-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjscilearn

	Note-by-note predictability modulates rhythm learning and its neural components
	Results
	Synchronization sequences behavioral results
	ERP results of synchronization sequences
	Behavioral results of reproduction sequences
	ERP results of reproduction sequences

	Discussion
	Methods
	Participants and experimental design
	Stimuli
	Behavioral analysis
	EEG analysis

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




