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Abstract:This study evaluates navigability in brain connectomes embedded in 2D hyperbolic
geometry using greedy routing—a decentralized navigation protocol. Applying this framework to
four empirical connectomes—spanning species, scales, and node types—we assess navigability via
success rate, topological stretch, and two geometrical stretch variants. We introduce a novel ge-
ometrical stretch definition based on accumulated hyperbolic distance along minimal-cost paths,
demonstrating improved consistency with topological stretch and potentially better reflection of the
underlying geometry. Our results confirm hyperbolic geometry’s effectiveness as a latent space for
efficient brain information transmission, providing further perspective on network science, complex
systems, and brain connectivity.
Keywords: brain connectomes, hyperbolic geometry, greedy routing, network science, complex
systems, navigability
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I. INTRODUCTION

The human brain is one of the most complex systems
in nature, and understanding how its structure gives
rise to cognition and behavior remains a fundamen-
tal challenge in science. From a network science per-
spective, the brain can be modeled as a connectome—a
graph where nodes represent brain regions (or neurons)
and edges represent structural connections, such as ax-
onal projections or white matter fiber tracts that phys-
ically link distinct areas of the nervous system [1]. Like
many other complex networks, brain networks exhibit
characteristic topological features that support efficient
communication, robustness, and functional specializa-
tion. These include regions that are more densely in-
terconnected internally than with the rest of the net-
work (modularity); a low average shortest-path length
between nodes, meaning that any two regions are sep-
arated by only a few steps (small-world property); a
highly uneven distribution of connections, where a few
regions act as hubs while most have few links (het-
erogeneous degree distribution); and a tendency for
connected nodes to share common neighbors, forming
tightly interconnected groups (high clustering). [2].

These same features are naturally captured by the
concept of network geometry, and in particular, a model
with hyperbolic geometry—a non-Euclidean geometry
in which distances encode both similarity and hierar-
chical relationships between nodes. In this model, the
probability of connection between brain regions depends
on distances in the underlying space [3]. Unlike Eu-
clidean space, where volume grows polynomially with
radius, hyperbolic space expands exponentially: in two
dimensions, the circumference and area of a disk grow
as ∼ er and ∼ e2r, respectively. This exponential ex-
pansion makes hyperbolic geometry especially suitable
for embedding hierarchical, tree-like structures such as
brain networks [4]. Connectomes, however, are not
purely trees—they also contain loops and long-range
projections that support global integration, resilience,

and feedback. Hyperbolic space accommodates both as-
pects: it preserves branching hierarchies while allowing
efficient shortcuts, making it a compact and biologically
plausible framework for modeling brain connectivity.

In the context of networks, and in particular of brain
networks, hyperbolic embeddings can be interpreted as
an effective geometry—an abstract latent space that
better captures the underlying principles of network
organization than anatomical (Euclidean) coordinates.
While the brain is physically embedded in Euclidean
space, such distances often fail to fully explain its ob-
served wiring patterns [5]. Hyperbolic geometry, by
contrast, reconciles local clustering with global effi-
ciency and thus provides a more faithful representation
of the brain’s structural and communication architec-
ture.

This study investigates the efficiency of decentralized
navigation in hyperbolic maps of structural brain net-
works using a greedy routing (GR) navigation proto-
col. While GR typically underperforms in Euclidean
space [5], previous work has shown that hyperbolic
embeddings enable near-optimal routing, revealing a
strong alignment between hyperbolic distance and brain
connectivity. In the context of network navigation, effi-
ciency is achieved when signals can reach their targets
by following paths that are both successful and close
in length to the shortest possible routes—minimizing
detours and communication costs.

Building on these insights, we implemented GR in
various empirical connectomes embedded in hyperbolic
space. In addition to standard metrics, such as success
rate and topological stretch, we propose a new formu-
lation of geometrical stretch that uses, as a reference,
the path with minimal cumulative hyperbolic distance
among all topological paths connecting a given node
pair. We compared this alternative with the standard
definition based on direct geodesic distance between
source and target. This comparison allows us to ex-
plore which formulation better captures the efficiency
of greedy routing and offers a more meaningful geomet-
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ric interpretation of communication in brain networks.

II. DATA AND METHODS

A. Connectome Datasets

This study analyzes a subset of the structural con-
nectome datasets used in Allard et al. [5], specifically
those corresponding to Mouse, Macaque, and Human
brains. These datasets represent anatomical connec-
tivity between brain regions or individual neurons and
were preprocessed in the original study to enable cross-
species and cross-scale comparisons.

Four connectomes were selected to capture variability
in species, scale, and network unit type:

• Human 2 (H2): Single-hemisphere cortical net-
work; 496 nodes (brain regions).

• Human 5 (H5): Full cortical network; 1024
nodes (both hemispheres).

• Macaque 1 (Ma1): Low-resolution inter-
regional network; 94 nodes.

• Mouse 2 (Mo2): High-resolution retinal net-
work; 916 nodes (individual neurons).

These datasets span macroscopic to microscopic
scales, enabling navigability analysis across levels of
biological organization. Comparing human and non-
human connectomes also aids in identifying generaliz-
able structural features.
The data were obtained from public repositories

such as https://openconnecto.me and https://
icon.colorado.edu, or directly from the original au-
thors [6–9]. Each dataset includes a binary connectivity
matrix and spatial coordinates in Euclidean space.
For consistency, all networks are treated as undi-

rected and unweighted, following previous work [5].
Further methodological details are available in the S1
Appendix of Allard et al. [5].

A. Hyperbolic Embeddings

To explore the latent geometry underlying brain con-
nectivity, each connectome was embedded into a two-
dimensional hyperbolic space using the S1/H2 model
framework [10]. In this model, each node is assigned
two coordinates: a radial coordinate, which reflects its
popularity or connectivity (linked to expected degree),
and an angular coordinate, which encodes similarity or
affinity to other nodes. These embeddings do not pre-
serve anatomical distances but instead aim to recover
an effective geometry, in which spatial proximity reflects
the likelihood of forming a connection.
The S1 and H2 models are formally isomorphic: they

define equivalent probabilistic models for network gen-
eration, differing only in the metric used to interpret
distances. In the S1 formulation, nodes are placed on a

circle and assigned a hidden degree parameter κi that
governs their connection probability. In the H2 model,
these hidden degrees are transformed into radial co-
ordinates ri, such that higher-degree nodes lie closer
to the origin in the hyperbolic plane. Angular coordi-
nates are preserved in both cases and measure similar-
ity. While the S1 model is often used for analytic deriva-
tions and inference due to its tractable connection prob-
ability structure, the H2 version is preferred for study-
ing navigation and geometry, as it allows meaningful
measurement of distances between nodes in hyperbolic
space [11].
The embedding is performed via maximum likelihood

estimation using the Metropolis–Hastings algorithm de-
scribed in Garćıa-Pérez et al. [12]. This method infers
the coordinates {ri}, {θi} that maximize the likelihood
that the observed network structure was generated by
the model. The connection probability between two
nodes i and j in the S1 model formulation is given by:

pij =
1

1 +
(

xij

Rµκiκj

)β
, (1)

where xij is the hyperbolic distance between nodes
i and j, R is the radius of the circle representing the
similarity space, κi and κj are their hidden degrees (or
expected degrees), and β controls the coupling between
network structure and the underlying geometry, that
is, clustering (triangles in the network structure) as a
manifestation of the triangle inequality in the underly-
ing space.
In the isomorphic H2 formulation, the hidden degree

κi is converted into a radial coordinate via ri = R −
2 ln

(
κi

κmin

)
. The connection probability then depends

solely on the hyperbolic distance between nodes and
takes the form:

pij =
1

1 + e
β
2 (xij−R)

. (2)

The projection into a 2D hyperbolic disk is not meant
to reflect physical space, but to reveal a latent geom-
etry that better aligns with the topological structure
of the brain. Hyperbolic embeddings have been shown
to reproduce key features of real-world networks, such
as heavy-tailed degree distributions, strong clustering,
modularity, hierarchical organization and also hidden
symmetries—properties that are also present in empir-
ical connectomes [4].
The resulting hyperbolic maps provide a compact

and information-rich geometric representation of net-
work structure. In the results section, we evaluate their
utility by testing how well they support efficient decen-
tralized communication through greedy routing.

B. Greedy Routing

To evaluate how well the hyperbolic embedding cap-
tures the structure of a connectome, we apply a decen-
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FIG. 1: Illustration of a successful greedy path (green) and
the topological shortest path (red) on a network embedded
in the 2D-plane.

tralized navigation strategy known as greedy routing
(GR). This method not only tests the geometric qual-
ity of the embedding but also serves as a model for ex-
ploring network communicability under local decision-
making constraints. In this process, a signal is sent from
a source node to a target node by successively selecting
the neighbor that lies closest to the target in hyper-
bolic space. The signal progresses step by step based
on local geometric decisions, relying only on the spatial
positions of neighboring nodes.
The routing attempt terminates when the target is

reached (success) or when no neighbor is closer to the
target than the current node, and the process enters into
an endless loop (failure).Figure 1 illustrates an example
of a successful greedy route between a source and a
target node and its corresponding shortest path.

Greedy routing serves as a functional probe of the
embedding. If most source–target pairs can be con-
nected through greedy paths that closely resemble the
shortest paths, it indicates that the spatial configura-
tion of node’s coordinates effectively encodes the net-
work’s connectivity. To quantify this, we compute three
main performance metrics:

• Success rate (S): the fraction of all node pairs
(i, j) for which greedy routing reaches the target:

S =
1

N(N − 1)

∑
i ̸=j

δij , (3)

where δij = 1 if the path from i to j is successful,
and δij = 0 otherwise.

• Topological stretch (σtopo
ij ): the ratio between

the number of hops in the greedy path and the
number of hops in the topological shortest path:

σtopo
ij =

LGR
ij

LSP
ij

, (4)

where LGR
ij is the number of links (hops) in the

greedy path, and LSP
ij is the same count but for

the topological shortest path.

• Geometrical stretch (σgeo
ij ): the ratio between

the total hyperbolic length of the greedy path and
that of a reference path:

σgeo
ij =

DGR
ij

Dref
ij

, (5)

where DGR
ij is the sum of geodesic (hyperbolic)

distances between consecutive nodes along the
greedy path, and Dref

ij is the total length of a ref-
erence path.

Note on the Definition of Geometrical Stretch

There are multiple ways to define the denominator
Dref

ij in geometrical stretch. Below, we describe the
three main variants considered:

(1) The version used in Allard et al. [5], where Dref
ij is

the total hyperbolic distance along the topological
shortest path between nodes i and j.

(2) The standard version often used in the literature,
in which Dref

ij is defined as the direct hyperbolic
distance between the source and target:

Dref
ij = dH(i, j). (6)

(3) A new variant proposed in this study, where Dref
ij

corresponds to the hyperbolic length of the path
with the least total geodesic distance among all
topological paths connecting i and j in the net-
work. This ”minimal-geodesic” stretch is compu-
tationally tractable and potentially offers a more
accurate estimate of geometrical efficiency.

Together, the success rate and the three stretch met-
rics offer complementary perspectives: the former mea-
sures whether greedy navigation is feasible, while the
latter reveals how direct the resulting routes are. These
metrics jointly assess how well the hyperbolic embed-
ding supports decentralized communication in brain
networks.

III. RESULTS AND DISCUSSION

This section presents the results of applying greedy
routing to the hyperbolically embedded brain connec-
tomes of four networks: Human2, Human5, Macaque1,
and Mouse2. We evaluated the navigability of each net-
work using three main metrics: success rate, topological
stretch, and two variants of geometrical stretch (see Sec-
tion II B). Among the latter, version (2) serves as the
standard reference in the literature, while version (3)
is the alternative proposed in this work. In addition to
these global metrics, we also compared the distributions
of path lengths obtained through greedy routing versus
shortest paths, both in terms of topological distance
(number of hops) and hyperbolic (geodesic) distance.
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A. Global Navigability Metrics

FIG. 2: Comparison of greedy routing performance across
the studied connectomes. (a) Success rates. (b) Topological
and geometrical stretch metrics (versions 2 and 3). Exact
numerical values are provided in Table 1.

Figure 2 and Table 1 summarize the global naviga-
tion metrics across the four connectomes. The success
rates (SR) are exceptionally high across all networks,
ranging from 0.92 in Human2 to perfect success (1.0)
in Human5. Macaque1 and Mouse2 also exhibit near-
optimal values (0.9895 and 0.9910, respectively). These
results indicate that almost all source–target pairs are
reachable via greedy routing based solely on hyperbolic
proximity, suggesting strong congruence between the
network topology and the inferred hyperbolic geometry.
The average topological stretch remains low in all cases
(1.07–1.28), showing that greedy paths closely follow
topological shortest paths. This confirms that the rout-
ing not only succeeds frequently, but also finds routes
that are nearly optimal in terms of hop count.

Regarding geometrical stretch, both the standard and
proposed definitions reveal important insights. Using
the standard version (2), the obteined values are slightly
higher—especially in Human2 (2.19)—suggesting some
deviation from the most direct metric path. However,
this reference path does not necessarily correspond to
any actual route allowed by the network topology, which
limits its interpretability in terms of real communica-
tion paths.

TABLE I: Metric values for the studied connectomes, with
associated errors calculated as σ√

n
, where n is the number

of successful paths used in the computation. Note that the
success rate (SR) is not accompanied by an error value, as
it is not a mean-based measure and was computed over all
possible source–target pairs in each network.

SR TS GS 2 GS 3

H2 0.92 1.2828± 0.0008 1.4759± 0.0016 2.1859± 0.0012

H5 1.00 1.2766± 0.0002 1.2267± 0.0003 1.4326± 0.0005

Ma1 0.99 1.0878± 0.0012 1.1015± 0.0023 1.1535± 0.0031

Mo2 0.99 1.0744± 0.0022 1.0998± 0.0011 1.3452± 0.0019

In contrast, the proposed minimal-geodesic ver-
sion (3), provides consistently lower stretch values
(1.10–1.47), with particularly close agreement across
Macaque1 and Mouse2. Notably, this version yields
geometrical stretch values that are much closer to the
corresponding topological stretch values compared to
version (2). This suggests that it better captures the
interplay between geometry and topology in the net-
work, and may offer a more realistic and interpretable
metric for assessing routing efficiency.

These global results are consistent with prior find-
ings [3, 5], reinforcing that hyperbolic geometry pro-
vides an effective latent space for efficient decentralized
communication in brain networks across scales, whether
the connectome represents brain regions or neurons.
This motivates a detailed comparison of greedy rout-
ing paths to shortest paths—particularly their length
distributions—to quantify how well hyperbolic embed-
dings optimize information flow.

B. Path Length Distributions

FIG. 3: Path length distributions for greedy navigation
(blue) versus shortest paths (red) across four connectomes.
Histograms compare: (a) Hyperbolic length of greedy paths,
(c) Hyperbolic length of shortest paths, (b) Topological
length (hops) of greedy paths, (d) Topological length of
shortest paths. All panels aggregate all source–target pairs
across connectomes.
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To further examine how closely greedy paths ap-
proximate shortest paths, we analyzed the distribution
of path lengths across all source–target pairs, aggre-
gated over the four connectomes. Figure 3 presents his-
tograms comparing greedy routing and shortest paths,
both in terms of topological distance (number of hops)
and hyperbolic (geodesic) distance. In both representa-
tions, the distributions of greedy path lengths closely re-
semble those of the corresponding shortest paths. This
similarity suggests that the hyperbolic embeddings pre-
serve not only global navigability but also the local
structure of optimal routing paths.

Greedy path distributions, however, consistently ex-
hibit slightly heavier tails, particularly in the number
of hops. This behavior is expected, as greedy routing
relies solely on local information and may occasionally
lead to suboptimal detours. Nevertheless, the devia-
tions remain small, indicating that greedy routing is re-
markably effective at identifying low-cost paths despite
its decentralized nature. This reinforces the conclusion
that hyperbolic space effectively captures both the hi-
erarchical and geometric organization of brain connec-
tivity.

IV. CONCLUSIONS

This study demonstrates that hyperbolic embeddings
provide an effective and biologically plausible frame-
work for modeling communication in structural brain
networks. By evaluating greedy routing across a diverse
set of connectomes—including different species (mouse,
macaque, human), spatial scales, and node types (brain
regions vs. individual neurons)—we show that decen-
tralized navigation is consistently successful and effi-
cient. The high success rates and low stretch values ob-

served across all cases indicate that hyperbolic geome-
try captures core structural principles of brain organiza-
tion in a way that generalizes beyond specific datasets.

A central contribution of this work is the introduc-
tion and evaluation of a new definition of geometrical
stretch, which uses the path with minimal cumulative
hyperbolic distance as a reference. This variant yields
lower and more stable stretch values than the standard
definition and shows a closer alignment with topological
stretch, suggesting a better agreement between network
topology and spatial embedding. Its robustness across
networks and its improved interpretability position it as
a promising metric for future studies.

Further investigation is needed to fully assess the po-
tential of this new stretch formulation. A more detailed
analysis of its mathematical properties, biological plau-
sibility, and relation to topological and geometric fea-
tures of the connectome could provide valuable insights
into how brains optimize communication under struc-
tural constraints.

Overall, our findings reinforce the idea that the
brain’s architecture is well-suited for efficient local navi-
gation, and that hyperbolic embeddings offer a compact
and powerful way to reveal the latent geometric orga-
nization underlying structural connectivity.
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and M. Boguñá, “Hyperbolic geometry of complex net-
works,” Physical Review E, vol. 82, no. 3, p. 036106,
2010.
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Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
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Resum:Aquest estudi avalua la navegabilitat en connectomes cerebrals incrustats en geometria
hiperbòlica 2D mitjançant el greedy routing, un protocol de navegació descentralitzat. Aplicant
aquest marc a quatre connectomes emṕırics —que abasten espècies, escales i tipus de nodes—,
mesurem la navegabilitat mitjançant la taxa d’èxit, l’stretch topològic i dues variants de l’stretch
geomètric. Introdüım una nova definició d’stretch geomètric basada en la distància hiperbòlica
acumulada al llarg de camins de cost mı́nim, que mostra una millor consistència amb l’stretch
topològic i reflecteix potencialment millor la geometria subjacent. Els nostres resultats confirmen
l’eficàcia de la geometria hiperbòlica com a espai latent per a un transport de la informació eficient,
aportant noves perspectives a la ciència de xarxes, els sistemes complexos i la connectivitat cerebral.
Paraules clau: connectomes cerebrals, geometria hiperbòlica, greedy routing, ciència de xarxes,
sistemes complexos, navegabilitat
ODSs: 4.4: Habilitats per a l’ocupació, 3.4: Salut i benestar, 9.5: Recerca i capacitats tecnològiques
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2. Fam zero 11. Ciutats i comunitats sostenibles
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4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre
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El contingut d’aquest Treball de Fi de Grau, realitzat en el marc del grau de F́ısica, es relaciona principalment amb
l’ODS 4, i en particular amb la fita 4.4, ja que contribueix a l’educació cient́ıfica i tecnològica a nivell universitari.
També es vincula amb l’ODS 3, fita 3.4, atès que el coneixement fonamental sobre la connectivitat cerebral pot
contribuir, a llarg termini, a millorar la comprensió, la prevenció i el tractament de trastorns neurològics. A més, el
treball promou la recerca en ciència bàsica i el desenvolupament de models innovadors dins del camp dels sistemes
complexos, en ĺınia amb l’ODS 9, fita 9.5, que fomenta la investigació cient́ıfica i la millora de la capacitat
tecnològica.
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