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Abstract: Random matrix theory provides a powerful framework for understanding universal
features of complex systems, especially in the large-size limit. In this work, we study the spectral
density of Wishart-Laguerre random matrices using the Edwards-Jones formula. We reinterpret the
averaged quantity in the Edwards-Jones formula as the partition function of a disordered system and
apply tools from statistical physics. Our results illustrate how techniques from statistical physics of
disordered systems naturally extend to random matrix theory, offering physical insight and analytical
methods for exploring spectral properties in complex systems.
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I. INTRODUCTION

A random matrix is a matrix whose elements are ran-
dom variables sampled from a given probability distri-
bution. The interest in random matrices within physics
began in the 1950s with the work of E.Wigner regarding
the high energy spectrum of heavy nuclei [1].

Wigner’s idea was to model the Hamiltonian of the
nuclei as a random matrix, given the impossibility of
an exact treatment for the system of nucleons due to
the complexity of the interactions between them. This
idea proved to be successful in describing certain univer-
sal properties of the heavy nuclei spectrum, such as the
level repulsion or the global distribution of levels for large
enough nuclei.

This approach later extended to a wide range of phys-
ical disciplines [2]. This broader perspective revealed
that many problems in physics can be reformulated as
questions about the spectral properties of random ma-
trices – particularly in the limit where the matrix size
becomes large, in which analytic results and universal
features often become accessible. In this framework, the
key physical quantities of interest are directly related to
the distribution of eigenvalues of suitably defined random
matrices.

The study of disordered systems offers a great deal
of examples where this interplay between randomness
and physical observables becomes central, as the disor-
der can effectively be modeled by randomness in the sys-
tem’s Hamiltonian. A notable example within this field
is the random-energy model, introduced by B.Derrida as
a simple case of solvable disordered system, which can be
solved using the replica method [3].

In this work, we explore such connections by apply-
ing the Edwards-Jones formula to compute the spec-
tral density of a Wishart matrix, both in the annealed
and quenched regimes. The quenched calculation is per-
formed using the replica method, illustrating how tech-
niques from disordered physics systems naturally extend
to the realm of random matrix theory.

II. GENERAL CONSIDERATIONS

A. The Edwards-Jones formula

The spectral density, ρ(x), of a random matrix H ∈
RN×N , is the probability density function for a single

eigenvalue of H, namely ρ(x) = ⟨
∑N

i=1 δ(x − xi)⟩/N ,
where xi are the N eigenvalues of H. The Edwards-
Jones formula [4] allows to obtain this spectral density
for a real symmetric random matrix H, knowing only the
joint probability distribution function of the N(N −1)/2
independent elements of the upper triangle of the matrix,
ρ[H] ≡ ρ(Hij , i ≤ j). The Edwards-Jones formula reads:

ρ(x) =
−2

πN
lim

ϵ→0+
ℑ ∂

∂x

〈
logZ(x)

〉
, (1)

where:

Z(x) =

∫
RN

dy exp

[
− i

2
yT [xϵIN −H]y

]
; xϵ

.
= x− iϵ.

(2)
In Eqs. (1) and (2), ⟨(·)⟩ denotes the expectation with

respect to ρ[H], ℑ denotes the imaginary part of a com-
plex number and IN denotes the N -dimensional identity
matrix. A major difficulty when computing the spectral
density with Eq. (1) is computing the integral of logZ(x),
in which Z(x) is itself another integral, as shown by
Eq. (2). This can make calculations rather difficult, even
in the N → ∞ limit, where some simplifications take
place and analytic results become available.

B. Statistical physics of disordered systems

In statistical physics, a disordered system is one where
certain parameters of the Hamiltonian, such as couplings
or fields, are quenched random variables, i.e. they do
not equilibrate. A central object of interest is the par-
tition function, which depends on the realization of the
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disorder:

ZD =

∫
dy exp

(
− βHD (y)

)
,

whereHD(y) is the Hamiltonian of the system for a given
realization of the disorder D, and y are the dynamical
variables. The disorder variables D are considered fixed
in the timescale of the thermal fluctuation of the dynam-
ical variables y. The quenched free energy of the system
is then obtained as the expectation of logZD over the
disorder D, Fquenched = − 1

β ⟨logZD⟩.
In the annealed approximation, the disorder variables

D are considered to fluctuate thermally on the same
timescale as the dynamical variables y, so the disorder
can be considered in the Hamiltonian on the same level
as the dynamical variables. The free energy is then ob-
tained as Fann = − 1

β log⟨ZD⟩.
Computing the quenched free energy directly is diffi-

cult due to the logarithm inside the average. A powerful
trick from statistical mechanics of disordered systems is
the replica method, based on the identity:

⟨logZD⟩ = lim
n→0

1

n
log⟨Zn

D⟩. (3)

This allows to treat the problem by computing integer
powers of the partition function, analytically continuing
the result to n → 0. The resulting system of n coupled
replicas allows us to reduce the problem of averaging the
logarithm to averaging an exponential, at the cost of in-
troducing interactions between replicas.

In the analysis of this interactions, an important as-
sumption is that of replica symmetry (RS): that all repli-
cas behave identically and are statistically equivalent.
However, in many physically relevant cases – such as
in spin glasses like the Sherrington-Kirkpatrick model –
this symmetry breaks down, leading to replica symmetry
breaking (RSB) [5].

A simple illustrative model is the random-energy
model, in which one can compute explicitly both the an-
nealed and quenched free energy, and observe a phase
transition associated with RSB in the low-temperature
regime [6].

C. Quenched disorder and the replica trick

In the context of the Edwards-Jones formula, we can
interpret Z(x) as a (complex) partition function for a fic-
titious system with dynamical variables y and quenched
disorder in H. Then, the average in Eq. (1) corresponds
to a quenched average of the free energy.

One possible simplification is to treat the disorder as
annealed, leading to:

⟨logZ(x)⟩ ≈ log⟨Z(x)⟩.

This is not exact in general, but turns out to give cor-
rect results in some ensembles, like the Gaussian Orthog-
onal Ensemble (GOE), as can be seen in [4].

The more rigorous approach is to apply the replica
method as introduced above. This strategy has been suc-
cessfully used in random matrix theory to compute spec-
tral densities and has strong parallels with disordered
spin systems.

D. The Wishart-Laguerre ensemble

We now apply these ideas to the Wishart ensemble,
defined as the ensemble of matrices of the form W =
HHT , with H ∈ RN×M ; M ≥ N . The elements of H
are independent identically distributed random Gaussian
variables, with ⟨Hij⟩ = 0 and Var(Hij) = 1. We express

this as Hij
i.i.d.∼ N (0, 1).

Wishart matrices appear naturally in various areas of
physics, such as in quantum information theory [7]. The
spectral properties of these matrices are well studied, and
their eigenvalue density is known to converge (in the large
N limit) to the Marčenko-Pastur distribution. This re-
sult can be derived using the Stieltjes transform or the
resolvent method, as in [4].

To compute the spectral density of W using the
Edwards-Jones formula, we need the joint probability
density function, or jpdf, of the independent matrix ele-
ments Wij for i ≤ j, which is given by [4]:

ρ[W ] =

∫ ∏
i,j

dHij ρH [H]δ(W −HHT ),

where ρH(H) is the jpdf of the matrix elements of H
stated above. Therefore given an arbitrary function of
W , F (W ), such as the partition function in Eq. (2), we
have:∫ ∏

i≤j

dWijρ[W ]F (W ) =

∫ ∏
i,j

dHijρH [H]F (HHT ).

(4)

III. SPECTRAL DENSITY OF WL MATRICES

A. Annealed calculation

We proceed now to compute the spectral density for
the Wishart-Laguerre ensemble in the limit N,M → ∞,
keeping c = N/M fixed (c ≤ 1), for the annealed approx-
imation. The annealed partition function is:

⟨Z(x)⟩ =
∫
RN

dy exp

(
−ixϵ

2
yTy

)〈
exp

(
i

2
yTWy

)〉
W

.

(5)

Using Eq. (4), we can compute the last factor in Eq. (5)
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as:〈
exp

(
i

2
yTWy

)〉
W

=

〈
exp

(
i

2
yTHHTy

)〉
H

=

=

〈
exp

 i

2

M∑
i=1

(
N∑
j=1

Hjiyj

)2
〉

H

=

=

〈
exp

(
i

2

M∑
i=1

A2
i

)〉
H

,

where we have defined the M -dimensional Gaussian ran-
dom vector A as: Ai =

∑N
j=1 Hjiyj ,∀i = 1, ...,M . Since

each component is a linear combination of different and
independent Gaussian random variables with distribu-
tion N (0, 1), every Ai itself is a Gaussian random vari-
able, with ⟨Ai⟩ = 0 and Var(Ai) = ∥y∥2. This means

that Ai
i.i.d.∼ N (0, ∥y∥2), therefore:〈

exp

(
i

2
yTWy

)〉
W

=

M∏
i=1

〈
exp

(
i

2
A2

i

)〉
=

=

〈
exp

(
i

2
A2

1

)〉M

=
(
1− i∥y∥2

)−M/2
, (6)

were in the last equality we have used the know result for
the characteristic function for the square of a Gaussian
variable. Inserting the result in Eq. (6) into the equation
for ⟨Z(x)⟩ in Eq. (5) we get:

⟨Z(x)⟩ =
∫
RN

dy exp

(
−ixϵ

2
∥y∥2

)(
1− i∥y∥2

)−M/2
.

(7)
We can convert the last factor in Eq. (7) into an ex-

ponential using the following identity derived from the
Gamma function definition:(

1− i∥y∥2
)−M/2 ∝

∫ ∞

0

u
M
2 −1e−u(1−i∥y∥2)du . (8)

Inserting Eq. (8) into Eq. (7) we get, after some ma-
nipulation, the following expression:

⟨Z(x)⟩ ∝
∫ ∞

0

u
N
2c−1e−u

[
i
(xϵ

2
− u
)]−N/2

du =

=

∫ ∞

0

eNS[u;x]du , (9)

where we identified the effective action, S[u;x], as:

NS[u;x] =
(
N

2
− 1

)
ln(u)− u− N

2
log
[
i
(xϵ

2
− u
)]

.

We can apply the Laplace approximation to the last
integral in Eq. (9), which consists in approximating the
integral by the leading term, which is the one that max-
imizes S. Since we are considering the limit N → ∞,
the Laplace approximation yields the exact result. After

some manipulation, we get the following expression for
Eq. (1):

ρ(x) =
−2

π
lim

ϵ→0+
ℑ ∂

∂x
S[u∗;x] =

=
−2

π
lim

ϵ→0+
ℑ
[
−1

4

(
1

xϵ/2− u∗

)]
, (10)

where u∗ is the value which makes the action S maxi-
mum. Solving 0 = ∂uS, neglecting terms of order lower
than O(N), we get u∗ = −x+iϵ

2(1−c) . Inserting this value into

Eq. (10) we obtain:

ρ(x) ∝ 1

π
lim

ϵ→0+
ℑ
(

x+ iϵ

x2 + ϵ2

)
=

1

π
lim

ϵ→0+

ϵ

x2 + ϵ2
.

Finally, imposing the normalization condition for ρ(x),
since it is a probability density function, and considering
that limϵ→0+

ϵ
x2+ϵ2 = πδ(x), we obtain the desired spec-

tral density for the annealed approximation:

ρ(x) = δ(x), (11)

which is not the correct asymptotic spectral density for
the WL ensemble, i.e. the Marčenko-Pastur density.
Therefore, the annealed approximation does not yield the
correct result for the Wishart-Laguerre ensemble, and a
more rigorous approach is needed.

B. Replica-symmetric quenched calculation

Using the replica method described in Eq. (3), we com-
pute the spectral density in a more rigorous approach.
The replicated partition function Zn(x) corresponds to
the partition function for a system of n identical inde-
pendent copies, i.e. replicas, of our original system, and
it is given by:

⟨Zn(x)⟩ =
∫ n∏

a=1

dya exp

(
− ixϵ

2

n∑
a=1

∥ya∥2
)

×

〈
exp

(
i

2

n∑
a=1

yaT

Wya

)〉
W

, (12)

where a = 1, ..., n is the so-called replica index. Using
Eq. (4), and denoting the trace of a matrix as Tr, we can
express the last factor in Eq. (12) as:〈

exp

(
i

2

n∑
a=1

yaT

Wya

)〉
W

=

=

〈
exp

[
i

2
Tr

(
HT

(
n∑

a=1

yayaT

)
H

)]〉
H

=

=

〈
exp

(
i

2
Tr
(
HTY Y TH

))〉
H

. (13)

In Eq. (13) we have defined the matrix of replica vec-
tors Y = (y1, ...,yn) ∈ RN×n. Since each of the M
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columns of H is a Gaussian random vector, Hµ
i.i.d∼

N (0, IN ), we can use the following identity:〈
exp

(
i

2
Tr
(
HTY Y TH

))〉
H

=
[
Det

(
IN − iY Y T

)]−M/2
.

Then, Eq. (12) reads:

⟨Zn(x)⟩ =
∫ n∏

a=1

dya exp

(
− ixϵ

2

n∑
a=1

∥ya∥2
)

×
[
Det

(
IN − iY Y T

)]−M/2
. (14)

Proceeding as in [6], we introduce the replica overlap
matrix, Q ∈ Rn×n, as:

Qab
.
=

1

N

(
Y TY

)
ab

=
1

N
yaT

yb . (15)

We treat this variables as the new independent integra-
tion variables, and we enforce the definition in Eq. (15)
with the use of the following Dirac delta functional rep-
resentation for the identity:

I =
∫

dQdQ̂ exp

 iN
2
Tr(QQ̂)− i

2

n∑
a,b=1

Q̂aby
aT

yb

 ,

(16)

where Q̂ ∈ Rn×n is the conjugate variable of Q. Af-
ter some manipulation, inserting Eq. (16) into Eq. (14)
yields:

⟨Zn(x)⟩ =
∫

dQdQ̂ exp
{
−NS[Q, Q̂;x]

}
, (17)

where we identified the effective action, S, as:

S
[
Q, Q̂;x

]
=

−i

2
Tr(QQ̂) +

M

2N
logDet(In − iNQ)+

+
1

2
logDet(xϵIn + Q̂) .

(18)

We can compute the integral in Eq. (17) in the N → ∞
limit with the Laplace approximation. In principle, we
should find the extremum of S with respect to all possi-
ble matrices Q and Q̂. Therefore, in order to continue,
it is necessary to make an assumption about the behav-
ior of these matrices. We assume the so-called replica
symmetric ansatz:

Qab = q δab Q̂ab = q̂ δab .

With this assumption, the action in Eq. (18) becomes
simply S[q, q̂;x] = ns[q, q̂;x], with s being:

s[q, q̂;x] =
−i

2
qq̂+

1

2c
log(1− iNq)+

1

2
log(xϵ+ q̂) . (19)

The expectation value for the replicated partition
function is, performing the Laplace approximation in
Eq. (17):

⟨Zn(x)⟩ = exp [−Nns(q∗, q̂∗;x)] , (20)

where q∗ and q̂∗ are the values that maximize the func-
tion s given in Eq. (19). Applying the replica identity in
Eq. (3) to the expression for ⟨Zn(x)⟩ given by Eq. (20),
we get:

⟨logZ(x)⟩ = lim
n→0

1

n
log ⟨Zn(x)⟩ = −Ns(q∗, q̂∗;x) ,

and inserting this into Eq. (1) reads:

ρ(x) =
2

π
lim

ϵ→0+
ℑ ∂s(q∗, q̂∗;x)

∂x
=

2

π
lim

ϵ→0+
ℑ
(

1

2(xϵ + q̂∗)

)
.

(21)
Solving the system of equations ∂qs = ∂q̂s = 0, drop-

ping the superscript ∗ from now on, we get:

q̂ =
−N

c(1− iNq)
q =

−i

xϵ + q̂
. (22)

Examining the expression for q in Eq. (22) and the
expression inside ℑ in Eq. (21), we can write the spectral
density as:

ρ(x) =
2

π
lim

ϵ→0+
ℑ
(
iq(x)

2

)
=

1

π
lim

ϵ→0+
ℜ q(x) , (23)

where ℜ denotes the real part of a complex number.
The real part of q(x) can be computed solving for q in
Eq. (22). After some algebraic manipulations,ℜ q(x) can
be expressed as:

ℜ q(x) =
−1

2Nc(x2 + ϵ2)
[ϵN(1− c)± (xd+ ϵp)] , (24)

where d and p are expressions derived during the alge-
braic manipulation. We only give the expression for d in
the ϵ → 0+ limit, since it is the only one we will need:

d =

√
|a0| − a0

2
, with

a0 = c2(x− γ+)(x− γ−); γ± = N(1± c−1/2)2 .
(25)

Inserting Eq. (24) into Eq. (23), taking the limit ϵ →
0+, and considering the expression for d in Eq. (25), we
obtain the following expression for the spectral density:

ρ(x) =
1

2πNx

√
(γ+ − x)(x− γ−) ; γ± = N(1±c−1/2)2 ,

which, after reescaling the eigenvalues as x = Ny, yields
the Marčenko-Pastur density:

ρ(y) =
1

2πy

√
(ζ+ − y)(y − ζ−) ; ζ± =

(
1± c−1/2

)2
(26)

IV. NUMERICAL VERIFICATION

The annealed and quenched spectral densities differ
markedly. While the annealed approximation in Eq. (12)
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yields a Dirac delta, the quenched result in Eq. (26)
correctly reproduces the Marčenko–Pastur distribution,
which describes the asymptotic eigenvalue density of
Wishart matrices.

The failure of the annealed approximation stems from
persistent fluctuations in the partition function Z(x)
from Eq. (2), even asN → ∞. As a result, ⟨logZ(x)⟩ and
log⟨Z(x)⟩ diverge significantly, consistent with Jensen’s
inequality. For GOE matrices, such fluctuations vanish
in the large N limit, causing both expressions to coincide
asymptotically and making the annealed approximation
accurate.

The correct asymptotic spectral density for the WL
ensemble can also be derived using methods from the
physics of disordered systems beyond the replica trick,
such as the cavity method, which is illustrated in [6].
Finally, we confirm this behavior numerically by di-

agonalizing large Wishart matrices and comparing the
empirical spectral density with theoretical predictions.
All linear algebra computations were performed using
NumPy’s linalg module, which provides a high-level in-
terface to LAPACK routines in Python.

Figure 1 shows the results for N = 150 and two
values of c, illustrating excellent agreement with the
Marčenko–Pastur law. Figures 2 and 3 highlight con-
vergence near the spectral edges as N increases.

0 2 4 6 8 10 12 14

0.0

0.1

0.2

0.3

0.4
Mar enko Pastur
c = 1/2
c = 1/8

FIG. 1: Empirical spectral density for N = 150 and c = 1/2,
1/8, vs. Marčenko-Pastur law.

0 2 4 6

10 5

10 4

10 3

10 2

10 1

Mar enko Pastur
N = 30
N = 90
N = 150

FIG. 2: Convergence to the theoretical curve for c = 1/2.
Lin-log scale highlights convergence near spectral edges for
increasing N .

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

10 5

10 4

10 3

10 2

10 1

Mar enko Pastur
N = 30
N = 90
N = 150

FIG. 3: Convergence to the theoretical curve for c = 1/8.
Lin-log scale highlights convergence near spectral edges for
increasing N .
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Resum: La teoria de matrius aleatòries proporciona un marc potent per comprendre les carac-
teŕıstiques dels sistemes complexos, especialment en el ĺımit de grans dimensions. En aquest treball,
estudiem la densitat espectral de les matrius aleatòries de Wishart-Laguerre mitjançant la fórmula
d’Edwards-Jones. Reinterpretem la quantitat mitjanada a la fórmula d’Edwards-Jones com la funció
de partició d’un sistema desordenat, i apliquem tècniques de la f́ısica estad́ıstica. El resultat il·lustra
com les eines de la f́ısica estad́ıstica de sistemes desordenats s’apliquen de forma natural a la teoria
de matrius aleatòries, oferint una comprensió f́ısica i mètodes anaĺıtics per estudiar les propietats
espectrals en sistemes complexos.
Paraules clau: Sistemes desordenats, autovalors, funcions de partició
ODSs: ODS 4 - Eduació de qualitat, ODS 9 - Indústria, innovació i infraestructures

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures X
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