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Abstract: A hybrid model combining a Vision Transformers encoder with convolutional layers
is proposed for breast cancer dosimetry. Its predictions were compared with a baseline U-Net
trained under the same conditions. The results suggest improved performance in OAR metrics,
while maintaining acceptable accuracy in PTV dose prediction. However, no statistically significant
differences were found, so further research is still needed to explore the full potential of Transformers
in radiotherapy.
Keywords: Ionizing Radiation, Linear Accelerator, Vision Transformers, Convolutional Neural
Networks, Self-Attention Mechanism
SDGs: This study is related to the sustainable-development goals (ODS) 3, 4 and 9 (see page 6)

I. INTRODUCTION

Breast cancer accounts for 28.9% of all cancers in
women and remains the leading cause of cancer-related
death among women in Spain, according to the Spanish
Society of Medical Oncology (SEOM) [1]. Beyond its
clinical and economic burden on the healthcare system,
breast cancer also has a significant social impact,
affecting the quality of life of patients and their families.

Once cancer is detected, patients enter a clinical
workflow that may involve various treatments, including
chemotherapy, surgery, and radiotherapy, with the
overall goal of ensuring a good quality of life after
therapy. Specifically, in radiotherapy, the aim is to
eradicate cancerous cells while minimizing the dose de-
livered to surrounding healthy tissues, thereby reducing
radiation-induced complications and toxic effects.

The two main techniques used for breast cancer
treatment planning are Three-Dimensional Conformal
Radiation Therapy (3D-CRT) and Intensity-Modulated
Radiation Therapy (IMRT). For both, treatment plan-
ning is a time-consuming and manual process that
depends heavily on the expertise of clinical users,
including radiation oncologists, radiation therapists,
and medical physicists. This subjectivity can lead to
considerable variability in the resulting plans, potentially
compromising the overall quality and consistency of
the treatment. In this context, artificial intelligence
(AI) has enabled significant progress in automating and
accelerating the planning process by learning from large
datasets and providing fast, uniform, and high-quality
dose predictions [2].

Nowadays, the convolutional neural network (CNN)
U-Net architecture has been widely used in medical
applications, particularly in image segmentation and
dose distribution prediction [3]. Its structure, which
reduces and then restores the image size while keeping

connections between layers, enables the preservation
of local spatial features. However, this design limits
the ability to capture global relationships within the
image. On the other hand, the Transformer architecture,
known for its self-attention mechanism, allows the model
to learn both long-range and global dependencies [4].
These capabilities can be especially useful for dose
prediction tasks, where non-local correlations exist be-
tween different regions of the body due to the sequential
nature of computed tomography (CT) image slices [5].
Recently, Transformers have been adapted for image
analysis through Vision Transformers (ViTs), which
process images by dividing them into non-overlapping
patches and adding positional encodings to retain spatial
information [6, 7].

Although the ViT architecture was originally intro-
duced in 2020, its application in radiotherapy is still
emerging [8]. Recent studies have explored its use in
predicting toxicity outcomes, early treatment response,
and tumor segmentation in medical imaging. Despite
these advances, many areas in radiotherapy remain
unexplored with ViTs, partly due to the large dataset
requirements and the high computational cost in order
to provide an efficient training. To enable broader
adoption of this architecture in radiotherapy, more
research is essential, along with its integration into
well-established neural network designs supported by
the scientific community. Hybrid models can combine
the strengths of both architectures and help unlock the
full potential of ViTs in clinical applications.

In this study, a hybrid model based on ViTs and CNNs
is proposed for dose prediction in breast cancer radio-
therapy. To evaluate its performance, the results will be
compared against a baseline U-Net model trained under
the same conditions. Therefore, the main objective is
to evaluate whether Transformer-based architectures can
provide results that are clinically comparable or superior
to those obtained with conventional models like U-Net.
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II. METHODS

A. Radiation

A fundamental aspect of radiotherapy is achieving
an accurate dose distribution that eradicates malignant
cells while minimizing treatment-related side effects.

The chosen treatment modality in this study is Ex-
ternal Beam Radiotherapy (EBRT) with 6 MV photon
beams (X-ray). They have been selected due to their fa-
vorable balance between penetration depth and dose dis-
tribution. This makes them suitable for treating breast
cancer, where both superficial and moderately deep ma-
lignant cell regions must be effectively irradiated.

These high-energy photons are generated by a linear
accelerator (Clinac 2100), which accelerates electrons to
relativistic speeds and directs them onto a tungsten tar-
get, a material with a high atomic number. Upon impact,
the sudden deceleration of the electrons produces X-ray
photons through the Bremsstrahlung process, which are
not monoenergetic.

The selected energy level of the X-rays is widely
adopted in clinical practice because it remains below
the threshold for significant photoneutron production,
which typically occurs at energies of 10 MV or higher.
As a result, the risk of neutron-induced secondary
effects is minimized. Neutron contamination arises
from photonuclear reactions, specifically through the
absorption of high-energy photons by atomic nuclei.
Therefore, patient safety is enhanced by avoiding these
interactions.

Consistent with what has been stated, a hypofraction-
ated schedule has been adopted, delivering a total dose
of 40.05 Gy in 15 fractions of 2.6 Gy each, as commonly
used in breast cancer radiotherapy.

B. Neural Network

The main objective of this work is to construct a dose
prediction model based on a Transformer architecture.
Vision Transformers have been introduced as an alter-
native to traditional convolutional neural networks for
image analysis tasks. ViTs take as input a sequence of
image patches along with positional encoding, allowing
all patches to be analyzed simultaneously. This enables
the model to establish relationships between patches
regardless of their spatial distance, in contrast to CNNs,
which rely on local operations to extract spatial features.

The model was trained and evaluated using the high-
level Keras API embedded in TensorFlow. The dataset
includes 200 breast cancer patients, each with a planning
computed tomography (CT) volume of 128 × 128 pix-
els and 2 channels, Planning Target Volume (PTV) and

Organs at Risk (OARs). Training used the ADAM opti-
mizer with an initial learning rate of 0.001 and random
parameter initialization, running for 150 epochs. The loss
function used was the Mean Squared Error (MSE), com-
puted as the average of the squared differences between
predicted and reference dose values at each voxel.

1. Model Architecture

1.1. Patch embedding block: The input CT image is di-
vided into non-overlapping patches of 8× 8 pixels. After
being flattened, each patch becomes a 128-dimensional
vector (8 × 8 × 2 = 128). Taking into account the size
of the input image, this results in a total of 256 patches
per image ((128/8)2 = 256) , forming a sequence of 256
vectors that are linearly projected into a 64-dimensional
embedding space. Positional encodings are added to
each patch to indicate its original location within the
image, allowing the model to retain spatial informa-
tion before the sequence is processed by the ViT encoder.

1.2. ViT encoder: After the patch embedding, the
sequence is passed through 8 ViT encoder layers. Each
layer consists of a Multi-Head Self-Attention (MHSA)
module with 4 attention heads, and a Multi-Layer Per-
ceptron (MLP) module composed of two hidden layers
(2048 and 1024 units), each containing a Dense layer
with GELU activation. In addition, Layer Normalization
(LN) and residual connections were added before and
after each module.

1.3. Convolutional-based decoder: The output sequence
of the encoder is reshaped into a 2D representation of
shape 16 × 16 × 64. This representation is then passed
through a convolutional decoder composed of three trans-
posed convolutional layers with stride 2 and ReLU acti-
vation, which progressively upsample the spatial dimen-
sions to 32 × 32, then 64 × 64, and finally 128 × 128. A
final convolutional layer with linear activation outputs
the predicted dose distribution as a single-channel im-
age of shape 128× 128× 1, matching the original image
resolution.

2. Model Evaluation

To evaluate the performance of the model, the results
were compared with those obtained from a baseline
model provided by the Hospital de Sant Pau. This
model is based on a U-Net architecture, and its training
setup was carried out under the same conditions as
the one developed in this study, employing the ADAM
optimizer with the same learning rate and loss function.
The architectural diagrams can be found in Appendix.

The predicted dose distributions maps were compared
against the reference dose distributions for both models.
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Dice Similarity Coefficients (DSCs), which measure the
overlap between predicted and clinical isodose regions,
were computed to assess the spatial concordance. Ad-
ditionally, Dose-Volume Histograms (DVHs), graphical
representations that show the proportion of a volume re-
ceiving at least a given dose, were generated to evalu-
ate dose conformity within the PTV and OARs. For the
comparison of dose values, the following metric was used:

MClinical −MPredicted

MPrescription
× 100 (%)

A total of 10 patients from the test set, previously
treated in the hospital, were selected to evaluate both
models. These patients were not included in the train-
ing or validation sets, ensuring that the models had no
prior exposure to them. This separation is crucial to ob-
jectively evaluate the generalization performance of the
models. It is important to emphasize that the main ob-
jective is to quantify each model’s deviation from the
clinical reference. To assess whether the prediction errors
differ significantly, the Wilcoxon signed-rank test was ap-
plied. A statistically significant result indicates that one
of the models consistently provides more accurate predic-
tions. Since multiple comparisons were performed (one
per metric), the Bonferroni correction was applied to con-
trol the risk of false positives.

III. RESULTS

Table I presents the differences between the predicted
and clinical dose values for the PTV and OARs, includ-
ing standard deviations. For the OARs, the hybrid ViT
& Conv model shows a consistently lower discrepancy
across all evaluated metrics compared to the U-Net,
especially for the lung V20Gy, where the difference is
reduced by approximately 3%. On the other hand, no
improvement is observed for the PTV, the U-Net yields
a slightly better result than the hybrid model. Among
all evaluated metrics, no difference was found to be
statistically significant.

TABLE I: Average differences in PTV and OARs for
some metrics between the clinical and predicted plans,

including the standard deviation, for each model.

Differences (%)

ROI Metric ViT & Conv U-Net

Breast PTV D95% 3.22± 0.03 1.44± 0.03

Dmean 1.43± 0.01 0.68± 0.01

Heart V25Gy 2.13± 0.19 2.50± 0.20

Dmean 0.62± 0.06 1.62± 0.06

Ipsi Lung V20Gy 10.90± 0.19 14.05± 0.20

Dmean 2.35± 0.04 2.43± 0.04

The DSC values across isodose volumes between
clinical and predicted dose distributions are shown in
Figure 1 for both models. As observed, values above 0.80
are achieved across most of the studied dose range, with
particularly high agreement in the intermediate dose
regions, which are of greatest clinical significance. A
sharp decline in DSC is observed beyond approximately
95% of the prescribed dose. However, this drop is not
relevant to the study as the clinical criteria ensure
that 95% of the volume must be covered by at least
95% of the dose. Beyond this threshold, the dose
distribution becomes much more variable, and no strict
correspondence with the clinical plan is expected. When
comparing both models, the U-Net exhibits a slight peak
in the high-dose region, whereas the hybrid model shows
a smoother overall profile and reduced discrepancies in
the low-dose range.

Another comparison between the clinical and predicted
metrics is shown in a box plot, Figure 2. Regarding
the PTV, both models yield predictions very close to
0%, with a slight tendency toward underestimation. In
contrast, when analyzing the OARs, differences become
more pronounced; the U-Net model exhibits greater
overall variability, with the highest dispersion observed
in the ipsilateral lung V20 metric. By contrast, the
hybrid model demonstrates more consistent performance
across most structures, although a few outliers are
present, most notably in the heart.

Figure 3 presents clinical and predicted DVHs for a
selected patient from the dataset. Overall, the predicted
curves closely match the clinical references across all re-
gions of interest. The hybrid model displays more sim-
ilarities in both OARs, while the U-Net shows slightly
better agreement with the clinical PTV curve. The cor-
responding dose distributions are shown in Figure 4. Vi-
sually, the predicted dose maps from both models are
consistent with the clinical distribution. OAR masks are
also included to illustrate the radiation distribution they
receive, complementing the information provided by the
DVHs.

IV. DISCUSSION

The ViT & Conv model demonstrate promising
performance in predicting dose distributions. As shown
in Table I and Figure 1, the hybrid model achieves lower
relative errors in most metrics, particularly those related
to OARs, while exhibiting slightly reduced conformity
in the PTV. Nevertheless, since the errors remain below
5% for both D95% and Dmean, these deviations are
considered acceptable in terms of prediction accuracy.
The DVH curves and dose maps further confirm the
consistency.

In this regard, the proposed model achieves results
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(a) ViT & Convolutionals (b) U-Net

FIG. 1: Analysis of DSC comparing isodose volumes between clinical and predicted dose distributions, including one
standard deviation error.

FIG. 2: Box plot showing the difference between predicted and clinical dosimetric metrics. Clinical indicators
include PTV (D95, D105, Dmean), heart (Dmean, V25), and ipsilateral lung (Dmean, V20). The boxes indicate

median and interquartile range (IQR). Whispers extend to 1.5 times the IQR and outliers are represented as points.

comparable to the widely used U-Net architecture. Al-
though some metrics appear to improve with the hybrid
model, the differences are not statistically significant,
and therefore it cannot be conclusively stated that one
model outperforms the other. Since transformer-based
models are more computationally expensive to train, a
training with a larger dataset could potentially enhance
the results obtained.

One limitation worth noting is that the evaluation
was restricted to a single baseline model. Future work
should investigate more complex ViT variants, increase
the size of the training dataset, and assess the effects of
hyperparameter tuning to further optimize performance.

From a clinical perspective, the proposed model could
be used as a starting point for automatic dose map gener-
ation, reducing the time required from dosimetrists dur-

ing the planning process. This would allow professionals
to focus on making small adjustments to the plan rather
than designing it from scratch. This strategy could help
increase the number of patients treated, while still ensur-
ing high treatment quality.

V. CONCLUSIONS

In conclusion, this study proposed a hybrid model com-
bining a ViT encoder with convolutional layers as a de-
coder for dose prediction tasks in breast cancer radio-
therapy. By comparing the model with well-established
U-Net, the effectiveness of this new architecture has been
demonstrated, achieving comparable performance in dose
prediction. Nevertheless, the full potential of Transform-
ers in medical physics remains underexplored due to the
limited amount of available data. Further research could
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(a) ViT & Convolutionals (b) U-Net

FIG. 3: Comparison of the clinical (solid lines) and dose predicted (dash lines) DVH curves for a selected patient.

(a) ViT & Convolutionals (b) Clinical (c) U-Net

FIG. 4: Comparison of the clinical and predicted dose maps for a selected patient.

result in substantial improvements in both prediction ac-
curacy and the reduction of clinical worktime associated
with treatment planning.
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Resum: Es proposa un model h́ıbrid que combina un codificador Vision Transformer amb capes
convolucionals per a la dosimetria en el càncer de mama. Les prediccions obtingudes s’han com-
parat amb les d’un model de referència U-Net entrenat en les mateixes condicions. Els resultats
suggereixen una millora en les mètriques dels OAR, mantenint alhora una conformitat acceptable en
la predicció de la dosi al PTV. Tanmateix, no s’han observat diferències estad́ısticament significa-
tives, aix́ı doncs, calen més investigacions per explorar tot el potencial dels Transformers en l’àmbit
de la radioteràpia.
Paraules clau: Radiació ionitzant, Accelerador Lineal, Vision Transformers, Reds Neuronals
Convolucionals, Mecanisme d’atenció-pròpia
ODSs: Aquest TFG està relacionat amb els Objectius de Desenvolupament Sostenible (ODGs) 3,
4 i 9

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de les desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar X 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures X

El contingut d’aquest TFG, part d’un grau universitari de F́ısica, es relaciona amb l’ODS 3, i en particular amb
la fita 3.d, que parla de reforçar la capacitat dels päısos en matèria d’alerta primerenca, reducció de riscos i gestió
dels riscos per a la salut nacional i mundial, ja que contribueix a un tractament més eficaç del càncer de mama, que
afecta gairebé un 30% de les dones espanyoles. També es pot relacionar amb l’ODS 4 i la seva fita 4.4, orientada a
augmentar les competències tècniques i professionals entre els joves, ja que es promou una investigació en el sector
del Machine Learning i la Intel·ligència Artificial dins d’un ambient universitari. Finalment, cal mencionar l’ODS 9
i la fita 9.5, basada en l’augment de la despesa en investigació i desenvolupament dels sectors públic i privat, perquè
es suggereix l’estudi de models h́ıbrids d’intel·ligència artificial per a la radioteràpia en tot tipus d’hospitals.
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Appendix A: Models Architectures

(a) ViT &
Convolutionals
Architecture

(b) U-Net Architecture, Ronneberger O et L. U-Net:
Convolutional Networks for Biomedical Image Segmentation

(May 2015)

FIG. 5: Diagram illustrating the architectures used for dose map prediction. (a) A hybrid model combining Vision
Transformers and Convolutional layers. (b) A conventional U-Net architecture as described in Ronneberger et al.,

2015.
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