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Abstract: This project studies the collective dynamics of a neural network constructed from
experimental connectivity data of the mouse brain. The Izhikevich model has been used to simulate
the dynamics of neurons under different noise and excitatory strength conditions. The analysis has
focused on how these parameters affect the global synchronization of the network, as well as on the
comparison of three structural configurations: the original one, one with randomly redistributed
connections, and another one with an eliminated module of the original network. From the activity
data, functional matrices have been generated, and measures such as mean degree, global efficiency,
and degree of modularity have been calculated. The results show how the structural properties
influence the functional organization of the network and its synchronization capacity.
Keywords: Computational neuroscience, complex systems, Izhikevich model.
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I. INTRODUCTION

The brain is a complex network of synaptically con-
nected neurons. Its cognitive functions depend not only
on how individual neurons act but also on how they
connect and interact with each other. Understanding
how structure conditions or even determines functional
dynamics is one of the main challenges of contempo-
rary neuroscience [1]. Far from being uniform, the brain
anatomy is characterized by a modular organization. A
module refers to a neuronal cluster with high internal
connectivity, which remains functionally interconnected
with other modules. This structure allows the modules
to process information in a specialized way but at the
same time provides exchange of information via synchro-
nization [2].

The advancement of techniques such as functional
magnetic resonance imaging, tractography for diffusion
imaging, and, at the microscopic level, fluorescent cell
morphology reconstruction techniques enables the map-
ping of synaptic connections in the brain with high reso-
lution. Specifically, recent work by Quian et al. (2024) [3]
has made it possible to reconstruct the connectivity be-
tween individual neurons in the brain of a mouse, iden-
tifying potential connections through the spatial coin-
cidence between axonal buttons and dendrites within a
volume discretized into cubes with sides measuring 30
micrometers. These experimental data constitute an ex-
ceptional basis for computational modeling of the brain
at the cellular level [3].

This project aims to study the dynamics of a real neu-
ral network obtained from the brain of a mouse. It sim-
ulates how the dynamics change under different network
conditions. Each node does not represent an individual
neuron but rather an aggregate unit. Both the connectiv-
ity between nodes and their spatial position are derived
from experimental data [3]. The Izhikevich model is used

for the dynamics, allowing the dynamic behavior to be
simulated by treating each node as a neuron. Instead of
explicitly modeling the connections and internal dynam-
ics of each node, the set of neurons is considered to act
as a single effective unit. The Izhikevich model achieves
high biological fidelity with a simple structure that allows
for high computational efficiency [4].

Overall, this approach integrates structure and dynam-
ics to explore how the brain, even in simplified models,
organizes its collective activity based on its synaptic ar-
chitecture [1].

II. METHODS

A. Experimental data

For our specific data, high-resolution fluorescence mi-
croscopy was used to detect axonal boutons —synaptic
points— to enable morphological reconstruction of 1,891
voxels at the scale of the entire mouse brain [3].

Briefly, brain volume is discretized into 30 × 30 × 30
µm3 cubes (voxels). A synaptic connection between vox-
els is established if the axonal boutons of the presynaptic
voxel and the dendrites of the postsynaptic one coincide
in the same cube. The synaptic weight between each
pair of voxels is calculated as a product of the number of
boutons of one voxel by the fraction of dendrites of the
other within the cube, added over all the cubes of the
brain [3]. These connections are presented as a list of pre-
and post-synaptic pairs along with the associated connec-
tion strength and another list with the three-dimensional
position of each voxel and the cerebral region to which
they belong. The data used here was provided by Dr.
Linus Manubes-Gil, researcher at Southeast University,
Jiangsu, China.
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FIG. 1: (a) 3D visualization of voxels color-coded according to their brain region. Only the 10% strongest structural connections
are shown to improve readability. Four views rotated on the XY plane are presented. (b) Weighted connectivity matrix (after
logarithmic transformation and normalization) ordered by communities. The colors indicate the relative intensity of each
connection. (c) Binary connectivity matrix, also sorted by communities. Each black dot indicates a structural connection.

B. Structural matrix

From the experimental data, a three-dimensional visu-
alization is made to identify the spatial structure of the
network and to observe the arrangement of the voxels
according to their region of origin (Fig.1a).

In relation to the network structure, the binary and
weighted connectivity matrices, AB and AW , respec-
tively, are constructed. AB simply accounts for the net-
work core structure, i.e., who connects with who, whereas
AW incorporates the strength of the coupling. Each el-
ement AW

ij of the weighted connectivity matrix contains
the synaptic weight value between the presynaptic voxel
i and the postsynaptic voxel j. As the synaptic weights
cover several orders of magnitude, a logarithmic trans-
formation is applied to all nonzero values of the matrix,
AW

ij . For that, all logarithms are scaled so that data is
normalized between 0 and 1. Thus, the final weight, ŵij ,
is obtained as:

ŵij =
log(wij)−min(log(AW ))

max(log(AW ))−min(log(AW ))
,

where wij is the original weight between voxels and
max(log(AW )) and min(log(AW )) are the maximum and
minimum of all logarithms of the nonzero weights. Re-
sults are illustrated in Fig. 1b. The binary matrix AB

is also calculated (Fig. 1c), where AB
ij = 1 indicates the

existence of a synaptic connection from voxel i to voxel
j, and AB

ij = 0 otherwise.

Once the binary connectivity matrix is created, the
analysis focuses on identifying the modular organization
of the network. The aim is to detect structural mod-
ules, i.e., subnetworks in the structural network with a
high density of internal connections and fewer connec-
tions with other communities. To implement Louvain’s
algorithm for modularity detection, a symmetric matrix
is needed, so the AB matrix is symmetrized as:

AB
sym =

1

2
(AB +ABT

),

with AB
sym the symmetric matrix and ABT

the transpose.

Applying the function community louvain to AB
sym gives

the value of the modularity Q, explained below, and a
vector with the module assigned to each voxel. The par-
tition obtained is used to reorder the arrays so that the
voxels are grouped by modules (Fig. 1b and Fig. 2c). This
reordering facilitates the visualization of their modular
structure and allows for a clearer comparison with the
functional behaviour, described later, in which neuronal
dynamics is run on the structural adjacency matrix.

C. Simulation of neural dynamics and
synchronization

The Izhikevich model, a formulation based on differen-
tial equations that produce the electrical activity charac-
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teristic of cortical neurons, is used to model the dynam-
ics of the network, enabling simulation of the dynamic
behavior. For simplicity, each node of the structural net-
work is treated as an ‘effective neuron’ that follows the
Izhikevich description. A better approach would ‘neural
mass models’, a mesoscopic approach for average activ-
ity in neuronal circuits, but their implementation is dif-
ficult. Thus, rather than explicitly modeling the connec-
tions and internal dynamics of each voxel, the ensemble
of neurons within the voxel is considered to act as one
effective ‘Izhikevich’ [4, 5].

The model is expressed by two equations that describe
the membrane potential v, Eq. (1), and a recovery vari-
able u, Eq. (2):

dv

dt
= 0, 04v2 + 5v + 140− u+ I + η, (1)

du

dt
= a(bv − u), (2)

where I represents the external input current and η a
noise term that drives spontaneous activity. When v ex-
ceeds a threshold, a restart rule is activated that simu-
lates a spike, i.e., a neuronal firing [4]:

if v ≥ 30mV, then

{
v ← c,

u← u+ d.

The parameters (a, b, c, d) are predetermined constants
that control the behavior of the system.

To build the network, 80% of voxels are defined as
excitatory and 20% as inhibitory, according to real ob-
servations [1]. The main topological core, given by the
experimental binary matrix AB , is multiplied by a weight
matrix W , generated with positive or negative values de-
pending on the type of emitting voxel (excitatory or in-
hibitory). The final network is obtained as S = AB ◦W .
We note that W provides a simple way to add input
strengths in a uniform manner across the network, which
helps understanding the results. We could have used
S = AW directly, but then it would have been very diffi-
cult to know whether network behavior was associated to
the main neuronal topological wiring (just AB) or their
weights with a large dispersion of values, even with log-
arithmic scale.

From the S matrix, the dynamics of the network is
simulated for 1000 ms, applying to each voxel the sum
of synaptic inputs of the active presynaptic voxels, to-
gether with the Gaussian noise component η that drives
spontaneous activity.

To study the effect of excitatory strength and noise,
200 values of each parameter are explored, resulting
in 40,000 combinations. In each simulation, the con-
cept of global synchronization is considered, defined as
the percentage of voxels that fire within a 20 ms win-
dow. The maximum value of this series is recorded in a
200 × 200 synchronization matrix, represented as a col-
ormap (Fig. 2a). In addition, two variants of the original

FIG. 2: Global network synchronisation. (a) Colormap
of the maximum synchronization as a function of noise and
excitatory strength for the original network. The red crosses
are the points used to provide examples of network collec-
tive activity for the different excitation strengths in Fig. 3a.
The black crosses are the points used to study the effect of
synaptic structure on synchronization. (b) Colormap for the
network with randomly redistributed connections. (c) Col-
ormap obtained after eliminating a structural community.

connectivity matrix are generated: a randomized version,
redistributing all existing connections uniformly among
voxels, and another eliminating the connections of the
voxels of the first detected structural module. For each
variant, the global synchronization analysis is repeated,
generating two additional 200 × 200 color maps that re-
flect the changes in activity under the same 40,000 com-
binations of excitatory strength and noise.

D. Functional connectivity matrix

The simulated dynamics can be quantified through
functional connectivity that reflects similar coactivation
patterns between voxels. From the firing times, a binary
activity matrix is generated where each voxel occupies
a row and each column corresponds to a time instant.
Then, the similarity between temporal patterns is calcu-
lated by applying Pearson’s correlation coefficient to all
pairs of voxels. This correlation measures the degree to
which two activation series vary together, taking values
between 0 and 1: values close to 1 indicate very simi-
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FIG. 3: Network dynamics for three excitatory
strength values. (a) Raster plots showing the firing pat-
terns for exc = 10, 15, and 30, with constant noise. As well as
the time evolution of the synchronization for the three con-
ditions above. (b) Binary functional matrices for the same
conditions with outlined structural communities.

lar activations, while values close to 0 imply independent
activity [6].

The correlation matrix is binarized by highlighting
only the most relevant connections by taking the abso-
lute value of the coefficients and selecting the top 5%,
setting them as ‘1’ and the rest as ‘0’. This procedure is
repeated for three different scenarios (original structural
network, random rewiring, and elimination of a module)
and for three values of excitatory strength with constant
noise. The order of the voxels is preserved according to
the structural modules to facilitate their comparison.

E. Functional topological measures

From the binary functional matrices, different network
indicators have been calculated to characterize its func-
tional organization and to analyze how it changes under
different structural conditions. The three global mea-
sures considered are:

• Mean degree: indicates the average number of func-
tional connections that each voxel has. It is a basic
measure of the functional density of the network.

• Global efficiency (GE): quantifies how efficiently
information can be transmitted between voxels.
Networks with high global efficiency can propagate
signals quickly between distant regions.

• Modularity (Q): measures the extent to which the
functional network can be divided into well-defined
communities, i.e., groups of voxels with high inter-
nal coactivity and low coactivity with other groups.
It is used as an indicator of the presence of func-
tional modular organization.

FIG. 4: Dynamics for three different networks with
constant parameters. (a) Raster plots of the activity and
evolution of synchrony over time for the original network, ran-
domized and with one community deleted. (b) Corresponding
functional matrices, with outlined functional communities of
the original network.

These three measures have been calculated for the six
simulation conditions mentioned above. This allows a
comparison of how functional behavior varies with dy-
namics.

III. RESULTS

A. Activation regimes as a function of noise and
excitatory strength

The global synchronization plot for the structural bi-
nary matrix (Fig. 2a) shows that the maximum synchro-
nization occurs when the noise and excitatory strength
are maximum (top-right corner). However, in this
regime, the high noise may fully saturate activity. In ad-
dition, an intermediate region is observed where synchro-
nization, although not maximal, is more varied (green
band), as the noise facilitates synchronization without
saturating the system. This reflects the fact that noise
only acts as a promoter within a specific range. Indeed,
too little noise does not reach the threshold necessary to
trigger synchronization (blue region).

Exc. Mean degree Efficiency GE Modularity Q

10 85,881 0,454 0,238

15 87,113 0,465 0,253

30 87,111 0,126 0,409

TABLE I: Functional topological measurements for the orig-
inal network. Comparison of the mean degree, global effi-
ciency, and modularity for three values of excitatory strength
and with a constant noise value set to η = 4.

To analyze in more detail how the dynamics of the
network vary according to the excitatory strength, three
representative configurations have been selected, marked
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with red crosses in Fig. 2a (Exc = 10, 15, and 30; constant
noise η = 4). The corresponding raster plots (Fig. 3a)
show that at Exc = 10 the neural activity is very low
and dispersed. At Exc = 15, groups of synchronously fir-
ing voxels appear, probably corresponding to structural
modules, but without the whole network being coordi-
nated. At Exc = 30, practically all voxels participate
in collective episodes, and the synchrony peaks (Fig. 3a)
are more marked and frequent, indicating a much more
global and synchronized activity.

This pattern is also reflected in the functional matri-
ces (Fig. 3b). At Exc = 10, no clear structure can be
distinguished. At Exc = 15, some functional commu-
nities emerge and that even match structural organiza-
tion, especially the first module and others, that are more
diffuse. At Exc = 30, the functional communities are
much more defined and segmented, and not all of them
coincide with the structural modules. Topological mea-
sures (Table I) corroborate that: with increasing excita-
tory strength, functional Q increases progressively, while
overall efficiency GE decreases, suggesting that activity is
fragmented into strongly synchronized but less connected
internal modules.

B. Effect of synaptic structure on synchronization

To evaluate how synaptic structure determines collec-
tive dynamics, we compared the original network with
two variants: one with randomly redistributed connec-
tions (randomized network) and another where all con-
nections of a community (voxels 1 to 238) have been re-
moved. The results show that the random network

Network Mean degree Efficiency Modularity

Original 86,814 0,176 0,410

Random 89,003 0,502 0,148

Module deleted 86,420 0,131 0,150

TABLE II: Functional topological measurements for three
networks. Comparison of the mean degree, global efficiency,
and modularity for the original network, the randomized net-
work, and the network with a deleted module.

(Fig. 2b) has a higher global synchronization than the
original one, especially at high excitation levels. How-
ever, this synchronization occurs without a defined struc-

ture, as indicated by the functional modularity (Table II),
which drops to Q = 0.148. In contrast, the overall effi-
ciency increases (GE = 0.502), and the mean degree is
also slightly higher. This pattern reflects an increase in
the overall spread of activity, but with less functional
segregation.
The elimination of a structural community (Fig. 2c and

Table 2) causes a generalized decrease in synchronization,
with particular impact on the intermediate values where
the original network showed maxima. Even though they
have a similar mean degree as the original network, global
efficiency and modularity are lower. This shows the func-
tional importance of certain structural groups within the
network.

IV. CONCLUSIONS

This project has allowed us to analyze how the struc-
tural connectivity of a neural network affects its func-
tional behavior, based on experimental data from the
mouse brain. Simulations with the Izhikevich model have
shown a dependence between excitatory strength, noise,
and the ability of the system to synchronize. In partic-
ular, it has been observed that there are certain regions
of the parameter space where collective synchronization
is maximal.
A comparison between different synaptic structures

shows that reorganizing connections and removing a com-
munity affects global functional properties, like modular-
ity and global efficiency. This study emphasizes the im-
portance of integrating structure and dynamics to better
understand how neural activity is coordinated in complex
networks.
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Resum: Aquest projecte estudia la dinàmica global d’una xarxa neuronal obtinguda a partir
de dades experimentals del cervell d’un ratoĺı. L’activitat neuronal se simula mitjançant el model
Izhikevich. S’avalua quin impacte té sobre la sincronització global diferents condicions de força
excitadora i soroll. L’estudi compara tres configuracions estructurals de la xarxa: l’original, una
versió amb connexions aleatòries i una altra amb un mòdul eliminat. A partir de l’activitat neuronal
resultant, es generen matrius de connectivitat funcional. Es caracteritza cada xarxa i combinació de
força i soroll a partir de mesures com el grau mitjà, l’eficiència global i la modularitat. Comparant
les mesures topològiques i les gràfiques veiem com canvis estructurals en la xarxa tenen efecte en la
dinàmica i la connectivitat funcional de la xarxa.
Paraules clau: Neurociència computacional, sistemes complexos, model d’Izhikevich.
ODSs: 3,4,9 i 17.

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar X 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius X

9. Indústria, innovació, infraestructures X

El contingut d’aquest TFG, part d’un grau universitari de F́ısica, es relaciona amb l’ODS 3, meta 3.2, donat que
reforça la capacitat cient́ıfica per a la comprensió del funcionament del cervell. També està vinculat amb l’ODS 4, amb
la fita 4.4, ja que contribueix a l’educació a nivell universitari. Respecte a l’ODS 9,recolza la meta 9.5 en promoure
la investigació cient́ıfica i el desenvolupament tecnològic en el camp de la neurociència computacional. Finalment,
contribueix a l’ODS 17, meta 17.6, en basar-se en la col·laboració internacional i l’ús compartit de dades experimentals
entre institucions.
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