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Abstract: The precise determination of nuclear masses is essential for understanding atomic
nuclei and for applications in astrophysics and nuclear energy. Traditional models like the liquid
drop model, with a root mean squared error of σ = 3.94 MeV, fail to meet the accuracy of 100 keV
required for nuclear astrophysics research. This work introduces a novel approach by implementing
a convolutional neural network (CNN) and leveraging the spatial structure of the nuclide chart.
Two models, I3 and I4, are trained and tested on the AME2016 database, achieving values of
σ = 0.67 MeV and σ = 0.49 MeV, respectively. Extrapolating to the new nuclei of the AME2020
database, they hold values of σ = 0.64 MeV and σ = 0.57 MeV, demonstrating strong generalization
capabilities and proving that CNNs constitute a powerful tool for accurate nuclear mass predictions.
Keywords: Nuclear masses, liquid drop model, convolutional neural networks, atomic nuclei.
SDGs: This work is aligned with the UN Sustainable Development Goals 7, 9 and 4.

I. INTRODUCTION

The accurate determination of nuclear masses is of the
utmost importance, as it is a fundamental property that
characterizes atomic nuclei. This has many implications
in fields such as astrophysics and nuclear energy, enabling
a deeper understanding of astrophysical processes and a
more efficient energy production. One noticeable exam-
ple is the study of the rapid neutron-capture process (r-
process), which demands an accuracy of 100 keV [1] in or-
der to precisely explain the origin of many elements in the
universe. Another relevant research field is the synthesis
of superheavy nuclei [2], where the nuclear masses are
used to calculate the reaction Q-values, the neutron sep-
aration energies and the α-decay energies. Consequently,
errors in nuclear masses propagate into these quantities,
leading to high uncertainties. Hence, it is essential to de-
velop models that can achieve more accurate predictions.

In order to address this challenge, several theoretical
models have been proposed. One prominent example
is the liquid drop model (LDM) [3], treating the nu-
cleus of an atom as an incompressible nuclear fluid of
constant nuclear density. A more sophisticated model
based on the previous one is the finite-range droplet
model (FRDM) [4], integrating nuclear shell effects, pair-
ing energies and deformations into the LDM. Notwith-
standing, these two models are outperformed by the
Weizsäcker–Skyrme 4 model (WS4) [5], which stands out
for being one of the most accurate theoretical approaches
to date. The latter includes a correction for surface dif-
fuseness, a relevant property near the drip lines that de-
scribes how the edges of nuclei spread out.

On the experimental side, the Atomic Mass Evalua-
tion (AME) is a comprehensive database that compiles
the latest experimental masses of the isotopes known
at the moment. It also incorporates theoretical adjust-
ments when the experimental data is limited by preci-
sion or when it is not experimentally accessible. The
database includes the information of the proton numbers

(Z), the neutron numbers (N) and the nuclear binding
energies (B).
Recently, Machine Learning (ML) has emerged as a

practical tool for learning complex patterns in data and
making predictions based on what has been learnt. In
this context, different models have proven to reproduce
the behaviour of the experimental nuclear masses com-
puted from the AME database. For instance, techniques
such as support vector regression (SVR) and Gaussian
process regression (GPR) [6] use a physics-based feature
space and achieve results that are comparable to tradi-
tional models. Moreover, recent research in probabilistic
mixture density networks (MDN) [7] has proven to reach
precise results as well.
Nevertheless, despite advancements in both theoretical

approaches and ML methods, there still remains the need
to develop an ultimate framework capable of accurately
predicting nuclear masses and reaching an accuracy of
100 keV required for r-process research. In view of this,
the aim of the project is to build a model that accurately
predicts nuclear masses by implementing a convolutional
neural network (CNN) [8], an architecture that is able to
take advantage of the spatial structure in which nuclear
masses are arranged on the nuclide chart. This project
has been inspired by the work of Ref. [9].

II. NUCLEAR MASS

The atomic mass is defined as the total mass of an
atom, including the mass of the protons, neutrons, elec-
trons, and the contribution from the nuclear binding en-
ergy. The latter refers to the amount of energy required
to divide the nucleus into its individual nucleons. Using
natural units (c = 1), the atomic mass is given by

MA(Z, N) = ZM(1H) +NMn −B, (1)

where M(1H) = 938.78 MeV stands for the hydrogen
atomic mass andMn = 939.57 MeV for the neutron mass.
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TABLE I. σ values for the theoretical and ML models.

Model LDM FRDM WS4 SVR GPR MDN

σ (MeV) 3.94 0.77 0.47 0.39 0.26 0.58

Their precise values can be found in Ref. [10].
The nuclear mass, MN , is defined as the mass of a

nucleus, computed by subtracting the contribution of the
electrons to the atomic mass. This means that both their
mass and their electron binding energy must be taken
into account:

MN (Z, N) = MA(Z, N)− [Zme −Be(Z)] , (2)

where me = 0.5110 MeV is the mass of an electron and
Be(Z) is the electron binding energy. Be(Z) is estimated
by the formula of Lunney, Pearson and Thibault [11],
expressed in eV as

Be(Z) = 14.4381Z2.39 + 1.55468 · 10−6 Z5.35. (3)

To characterize the precision of a model at predicting
nuclear masses, here we employ the root mean squared
error, σ. This metric evaluates the difference between the
experimental nuclear masses, M exp

N , and the predicted

ones, Mpred
N . It can be calculated as

σ =

√√√√ 1

K

K∑
i=1

(∆)
2
, (4)

where K is the number of nuclei that are being sampled
and ∆ is defined as

∆ = M exp
N −Mpred

N . (5)

The σ values for the models mentioned in Section I are
given in Table I in order of appearance.

III. LIQUID DROP MODEL

As mentioned in Section I, one of the most commonly
used nuclear models is the LDM. For this reason, it serves
as a reference to compare with the results obtained in
the present work. The model is formalized through the
Bethe–Weizsäcker semi-empirical mass formula (SEMF):

B(A,Z) = aV A− aSA
2/3 − aC

Z2

A1/3

− aA
(A− 2Z)2

A
− aP

A1/2
δ, (6)

where A = Z + N denotes the mass number, δ is the
pairing term,

δ =
(−1)N + (−1)Z

2
, (7)
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FIG. 1. Scatter plot of ∆ (5) between the AME2016 database
and the LDM.

and the coefficients ai can be fitted by using different
techniques. For example, the authors of Ref. [12] fit-
ted them to the AME2016 database [10] using the least
squares method. In Fig. 1 we show the corresponding nu-
clide chart, where the x-axis represents the neutron num-
ber and the y-axis represents the proton number. Spe-
cific neutron and proton numbers are highlighted with
grey lines along both axes. They represent the magic
numbers [13], specific numbers of nucleons that result in
more stable nuclei due to the completion of nuclear shells.
A colour bar is used to depict the differences ∆ (5) be-
tween the experimental values and those predicted by
the LDM, ranging from -14 to 14 MeV. Blue indicates
an overestimation of MN while red represents an un-
derestimation. Additionally, each point of the nuclide
chart corresponds to a nucleus of the AME2016. Ideally,
the LDM would perform perfectly, and the colours would
tend to be white, indicating no difference between the ex-
perimental masses and the predicted ones. However, as
shown in the chart, the LDM does not properly model
all the experimental data. For instance, it overestimates
the nuclear masses around the magic numbers and un-
derestimates them in the regions of light and superheavy
nuclei, i.e. the prominent areas in red.

IV. CONVOLUTIONAL NEURAL NETWORKS

CNNs are a type of neural networks capable of eval-
uating structured data placed in matrices, like images
or grids. They take advantage of spatial arrangements
and focus on learning local patterns within the neigh-
bourhood of each element. Networks of this type run by
following a two-dimensional convolutional operation, in-
volving the sliding of a small matrix, called kernel, across
the grid. The kernel contains the weights, which are the
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trainable parameters responsible for capturing local fea-
tures. After the kernel has slid over the entire grid, a
feature map is produced, highlighting the most relevant
features. This mathematical operation is expressed as

F (u, v) =

3∑
i=1

3∑
j=1

k(i, j) · f(u− i, v − j), (8)

where F (u, v) is the value of the element at coordinates
(u, v) of the output feature map, k(i, j) is the kernel at
position (i, j) and f(u − i, v − j) refers to the element
of the input matrix at position (u− i, v − j). The sums∑3

i=1 and
∑3

j=1 are taken over the dimensions of the
kernel, which, in the present work, is a 3× 3 matrix. In
addition, CNNs also use biases, scalar numbers added
after the convolutional operations. They provide more
flexibility into the network, as they help the model to
adapt better to the patterns of the grid.

In this project, two convolutional layers are used. After
performing the convolutions, the outputs undergo an ac-
tivation function called rectified linear unit (ReLu). This
function transforms all the negative values to zero, while
the positive values remain intact. By doing so, we intro-
duce non-linearity to the model, enabling it to capture
more complex relationships within the grid. Finally, a
fully connected layer combines the spatial features that
have been extracted by the two convolutional layers and
makes a prediction of the nuclear mass for a particular
nucleus.

V. MODELS CONSTRUCTION

In the present work, we select the nuclei with Z ≥ 8
and N ≥ 8 from AME2016 [10] and AME2020 [14], in-
cluding 3336 and 3456 nuclei, respectively.

Two models, named I3 and I4, are constructed from
scratch using PyTorch, following the methodology ex-
plained in Section IV. The code details can be found in
Ref. [15]. For I3, the input for each nucleus is a 3× 5× 5
tensor, meaning that three matrices (or channels) of 5×5
elements are stacked, similar to how an RGB image is
built. The three channels correspond to Z, N and MN .
Both Z and N are retrieved from AME2016, while MN

is computed from B, also retrieved from AME2016, us-
ing Eqs. (1) and (2). The tensor is centred on the target
nucleus that is trying to be predicted and the values sur-
rounding it correspond to its neighbours in the nuclide
chart. If one of them is missing in the database, the
mean value of MN from the available neighbours is com-
puted. Even though this method might use hypothetical
mass values assigned to nuclei that do not exist in the
dataset, by doing so we preserve the spatial structure of
the input tensor and allow the CNN to correctly operate.
Additionally, the centre of the grid, corresponding to the
target nucleus, is set to zero to prevent the model from
being biased by the real value.
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FIG. 2. Graphical representation of the construction of the
I4 model. Each stacked matrix contains the Z, N , MN and δ
value of the corresponding element, respectively.

In the case of I4, the model is similar to I3, except
that it includes a fourth channel, resulting in a 4× 5× 5
input tensor. The additional channel represents the nu-
clear paring effect, δ (7), indicating that pairs of nucle-
ons tend to be more stable when they are coupled rather
than when they are alone. This incorporation enhances
the model’s input information, enabling the construction
of a more complex architecture. In Fig. 2 we depict a
graphical representation of how the I4 model is built to
predict the nuclear mass of the element 40Ca, the target
nucleus that is placed in the centre.
Once the 5× 5 neighbourhoods are constructed for ev-

ery nucleus within AME2016, the data is split into train-
ing and testing subsets, with 70% used for the training
phase and 30% for the testing phase, while making sure
that the points are uniformly distributed across the nu-
clide chart. During training, both the weights and the
biases are adjusted to minimize σ of the training sub-
set. Afterward, the model’s performance is evaluated by
calculating σ for the testing subset (unseen nuclei during
training) to assess its generalization capabilities. The en-
tire process is repeated several times, with each iteration
being called an epoch. The training process uses back-
propagation, an algorithm that computes the gradient of
σ with respect to each weight and bias. The gradients
indicate how much each parameter needs to be adjusted
to minimize σ. For this optimization, we employ the
Adamax algorithm [16]. Furthermore, both models are
trained with early stopping, meaning that after a prede-
fined number of epochs, in which the testing σ does not
improve, the training process is stopped. This technique
prevents overfitting, i.e. the models fit the training data
so close that fail to generalize to unseen data. As a result,
the models are trained for approximately 200000 epochs.

VI. RESULTS

The values of σ for both the training and testing sub-
sets are presented in Table II. As shown, the results are
slightly superior in I4 than in I3, due to the introduc-
tion of the pairing effect. In fact, the I4 model showcases
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TABLE II. Results of σ obtained for I3 and I4.

Model I3 I4

Phase Training Testing Training Testing

σ (MeV) 0.36 0.67 0.31 0.49

an improvement of approximately 14% in training and
27% in testing compared to I3. This indicates that the
I4 model performs better overall, especially in terms of
generalization capabilities. Furthermore, the testing σ
values obtained are significantly lower than the σ of the
LDM, indicating an estimated improvement of 83% for
I3 and 88% for I4. When compared to the other models
mentioned in Table I, the I4 approach outperforms the
traditional FRDM and the ML-based MDN by 36% and
16%, respectively. Nevertheless, its global performance
is not as strong as the theoretical WS4 model or the ML
methods GPR and SVR.

In Fig. 3, we depict the ∆ values for both training and
testing subsets across the entire nuclide chart to illustrate
the local differences. Note that the layout is the same as
in Fig. 1, except that the colour bar in the current figure
ranges from -3 to 3 MeV, compared to -14 to 14 MeV
in the LDM figure. Actually, the change in the colour
bar range directly comes from the improvement of nu-
clear mass predictions. Besides, the predominant colour
in both sub-figures is white, meaning that the predicted
values are close to the experimental ones. However, the
I3 model outputs slightly overestimated masses around
the magic numbers, an issue that is partially resolved
with the addition of the pairing term in I4. For instance,
the isotopic chain with Z = 50 has a σ = 0.64 MeV for I3
and a σ = 0.42 MeV for I4, indicating an improvement of
34% in this specific chain. Additionally, the I4 sub-figure
has a more prominent white tone than the I3, reflecting
the superior performance of the former over the latter.

So far, both models have been trained and evaluated
on AME2016. Thus, in what follows, we asses their per-
formance on the 120 newly included nuclei in AME2020
to determine their extrapolation competences. The com-
puted outcomes show that I3 achieves a σ = 0.64 MeV,
while I4 outputs σ = 0.57 MeV, both results being com-
parable to the ones obtained from the AME2016 testing
subsets.

To better illustrate their behaviour in the AME2016
and AME2020 regions, the masses along the isotopic
chain of the superheavy element Meitnerium (Mt) are
presented in Fig. 4. As shown, both I3 and I4 perform
accurately in the two regions, achieving σ = 0.20 MeV
and σ = 0.31 MeV over the entire chain, respectively. In
this case, I3 demonstrates a better performance than I4.
In comparison, the LDM and WS4 models yield signifi-
cantly higher values of σ = 9.26 MeV and σ = 1.40 MeV,
respectively. These outcomes highlight the strength of
the CNN-based models, as they not only surpass tradi-
tional models in this particular case but also succeed in
maintaining a minimal difference between the experimen-
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FIG. 3. Scatter plots of ∆ (5) between the AME2016 database
and I3 (upper) and I4 (lower), including both training and
testing subsets.

tal values and the predicted ones along the chain, even
in the extrapolation region. Notably, while the errors of
the LDM and WS4 models systematically increase with
the neutron number, both I3 and I4 constantly keep the
differences ∆ close to zero, emphasizing their robustness
and reliability for nuclear mass predictions. Hence, this
consistency ensures that future predictions for newly dis-
covered nuclei can be computed with high precision using
the CNN architectures.

VII. CONCLUSIONS

In this work, we have demonstrated the successful
implementation of CNNs to precisely predict nuclear
masses. Our models, I3 and I4, outperform traditional
approaches like the LDM by approximately 83% and
88%, respectively. This major improvement emphasizes
the ability of CNNs to capture complex patterns within
nuclear data that traditional models struggle to identify.
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FIG. 4. Isotopic chain of the element Mt (Z = 109) and its
corresponding values of ∆ (5) using different models, each one
represented by a different symbol. The filled points depict
the AME2016 region, while the empty points indicate the
AME2020 extrapolation region.

On the other hand, the I4 model has achieved a 27%
of improvement in the σ testing subset with respect to
the I3 model. The enhancement is attributed to the in-
troduction of the nuclear pairing effect. Furthermore,
the I4 model surpasses the traditional FRDM and the
ML-based MDN by 36% and 16%, respectively.

These results highlight the effectiveness of the CNN
models, as they are situated in a competitive spot among
other approaches. Moreover, they exhibit strong gener-
alization abilities, maintaining high precisions even when
extrapolated to newly discovered nuclei in the AME2020
database. This underscores the potential of CNNs as a

promising avenue to substantially enhance the precision
of nuclear mass predictions.
To conclude, even though the accuracy of 100 keV re-

quired for r-process research has not yet been achieved,
this work represents a major step forward and establishes
the foundations for future developments. As demon-
strated, the inclusion of more physical information into
the model’s input leads to more accurate predictions.
Thus, further research should focus on building on this
concept. For instance, one promising step could be the
creation of a 5× 5× 5 tensor as the input for each target
nucleus, with the additional layer containing the WS4
theoretical masses. This strategy would allow the CNN-
based architecture to benefit from both the local proper-
ties of the nuclide chart and the most accurate theoretical
predictions to date, ultimately enhancing the precision of
nuclear masses.
Finally, the CNN approach demonstrated in this work

could also be applied to predict other nuclear observables,
such as charge radii or proton and neutron shell gaps,
leveraging the spatial structure of the nuclide chart. This
could deepen our understanding of nuclear structure and
extend predictions to unexplored regions of the chart.
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[4] P. Möller, W. Myers, W. Swiatecki, et al., Nuclear mass
formula with a finite-range droplet model and a folded-
Yukawa single-particle potential, At. Data Nucl. Data
Tables 39, 225–233 (1988).

[5] N. Wang, M. Liu, X. Wu, et al., Surface diffuseness
correction in global mass formula, Phys. Lett. B. 734,
215–219 (2014).
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Resum: La precisió en la determinació de les masses nuclears és essencial per a comprendre els
nuclis atòmics i per aplicacions com l’astrof́ısica i l’energia nuclear. Els models tradicionals com
el de gota ĺıquida, en el qual l’arrel de l’error quadràtic mitjà és de σ = 3.94 MeV, no arriben
a la precisió de 100 keV que es necessita en el camp de recerca de l’astrof́ısica nuclear. Aquest
treball introdueix un nou plantejament implementant una xarxa neuronal convolucional (CNN) i
aprofitant l’estructura espacial de la taula de núclids. S’entrenen i s’avaluen dos models, anomenats
I3 i I4, sobre la base de dades de AME2016, aconseguint valors de σ = 0.67 MeV i σ = 0.49 MeV,
respectivament. Extrapolant als nous nuclis inclosos en la base de dades de AME2020, aquests
models assoleixen valors de σ = 0.64 MeV i σ = 0.57 MeV, demostrant que les CNN constitueixen
una eina eficaç per a la predicció de masses nuclears.
Paraules clau: Masses nuclears, model de gota ĺıquida, xarxes neuronals convolucionals, nuclis
atòmics.
ODSs: Aquest treball s’alinea amb els ODSs de l’ONU 7, 9 i 4.

OBJECTIUS DE DESENVOLUPAMENT SOSTENIBLE (ODSS O SDGS)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible X 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures X

El contingut d’aquest TFG es relaciona amb l’ODS 7 (energia neta i sostenible) i en particular amb la fita 7.3, ja
que pot contribuir a una millora de l’eficiència energètica, concretament en el sector nuclear. També es pot vincular
amb l’ODS 9 (indústria, innovació, infraestructures), fita 9.5, per la seva contribució a la millora de la capacitat
tecnològica en el camp de la f́ısica nuclear. Finalment, es pot associar amb l’ODS 4 (educació de qualitat), fita 4.4,
ja que ajuda a millorar les competències i habilitats de les persones joves i adultes en àrees tecnològiques avançades,
facilitant l’accés a l’ocupació, el treball digne i l’emprenedoria.
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