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Abstract: Solving the dynamics of many-body systems is one of the most challenging problems
in modern science. For this application, classical computational techniques face significant limita-
tions, mainly the need to handle large Hilbert spaces. Quantum computation, particularly through
hybrid quantum and classical algorithms, has started gaining popularity, offering a promising new
approach. This work characterizes the Adaptive Derivative-Assembled Pseudo-Trotter ansatz Vari-
ational Quantum Eigensolver (ADAPT-VQE) algorithm by simulating 6Be, 12C and 14N nuclei via
the shell model on an ideal quantum computer. It focuses on the ADAPT-VQE’s response to the
inherent statistical noise that results from the finite number of measurements (“shots”) performed.
In particular, the study quantifies the energy convergence with measurement shots, while demon-
strating how statistical noise impacts variational parameter optimization. The results show that this
impact leads to a final energy error that scales with Nshots following a power law distinct from the
standard statistical limit and particular for each nucleus. Furthermore, the mean energy converges
towards the ideal value as the optimizer performs more effectively as Nshots increases.
Keywords: Quantum computing, nuclear shell model, VQE
SDGs: Quality education, Affordable and clean energy and Industry, innovation, infrastructure

I. INTRODUCTION

Understanding the collective behaviour of many inter-
acting particles is a fundamental goal of modern science,
with profound implications from nuclear physics to quan-
tum chemistry [1]. The main difficulty in many-body
physics is correctly describing the complex interactions
between particles, a challenge that is due to the exponen-
tial growth of the Hilbert space with the number of parti-
cles. As the system size increases, the number of possible
quantum many-body states becomes so large that classi-
cal computers struggle to handle them efficiently [1, 2].

To overcome this challenge, quantum computation has
started gaining popularity. It offers the potential to
solve problems that classical computation cannot han-
dle due to the possibility of simulating quantum states
exploiting the basic properties of quantum mechanics,
such as state superposition [1]. However, in the current
Noisy Intermediate-Scale Quantum (NISQ) era, quantum
computers are noisy and, to address this limitation, hy-
brid quantum-classical algorithms have been developed
[3, 4]. These methods combine classical optimization
techniques with quantum state superposition and mea-
surement, which enables an efficient way to exploit the
quantum resources available nowadays.

In this work, we apply a hybrid algorithm, the Adap-
tive Derivative-Assembled Pseudo-Trotter ansatz Varia-
tional Quantum Eigensolver (ADAPT-VQE) [4] to find
the ground state of 6Be, 12C and 14N nuclei. To do this
task, I compute the ground state of these nuclei using the
nuclear shell model in a simulation of a perfect quantum
computer [5]. The aim of this work is the quantification
of the unavoidable measurement error in ADAPT charac-
teristic from quantum measurements. It also studies the
interaction between this stochastic error with the classi-
cal optimization.
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II. NUCLEAR SHELL MODEL

The nuclear shell model describes nuclear structure by
organizing nucleons into quantized energy shells. This
model explains the empirical observation of magic num-
bers. These are the numbers of nucleons of particularly
bound, stable nuclei. These magic numbers correspond
to the complete filling of shells, which are separated by
large energy gaps. According to the model, these filled
shells form an inert inner core. Therefore, the study of
nuclear structure focuses on the outermost shell (valence
shell), which contains the active nucleons [2, 6].

With that in mind, we can create a single-particle basis
within the valence shell. This space includes all orbitals
the nucleons can occupy according to the Pauli exclusion
principle [7]. This space is different for protons and neu-
trons, as the third component of the isospin is different
for them. Each possible orbital is defined by particular
quantum numbers: n, lj and m. Coupling the nucleon’s
spin (s = 1/2) with its orbital angular momentum (l)
generates the total angular momentum (j). In Fig. 1, we
see the representation of the valence space in the p shell,
which means l = 1 in spectroscopic notation. At the
bottom, “m” refers to the third component of the total
angular momentum of each single-particle state. Each
j subshell has 2j + 1 degenerate states. In total, the p
shell in the valence space offers 6 possible single-particle
orbitals for each type of nucleon.

FIG. 1. Representation of the single-particle states in the p-
shell valence space, labelled by nlj and m (see the text for
definitions) as well as their association with qubits (labelled
above each level) under the Jordan-Wigner mapping (Eq. 5).
Figure adapted from [5], under the CC BY 4.0 licence.
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Using this single-particle basis, we can write the Hamil-
tonian of the nuclear system in a second quantization
workframe,

Ĥeff =
∑
α

ϵαâ
†
αâα +

1

4

∑
αβγδ

ναβγδâ
†
αâ

†
β âδâγ , (1)

where ϵα is the single-particle energy of the α state;
ναβγδ = ναβγδ − ναβδγ are the antisimetrized two-body
interaction coefficients; and â†α and âα are the creation
and annihilation fermionic operators of state α [5]. For
the p shell, we use the Cohen-Kurath interaction [8],
which provides the single-particle energies and two-body
matrix elements in units of MeV and accurately describes
the nuclear structure of the ground states of these nuclei.

Solving the many-body problem demands finding the
ground state of the system. While this is feasible with
classical computers for p-shell nuclei, as the valence
space grows, the number of different many-body basis
states grows exponentially [2]. To address this challenge,
ADAPT-VQE appears to be an interesting method with
potential to be applicable to heavy nuclei [5]. As a pre-
liminary step in this endeavour, in this work we analyse
the performance of ADAPT in light nuclei.

III. ADAPT-VQE FOUNDATIONS

The ADAPT-VQE [4] was born to exploit NISQ de-
vices capabilities. ADAPT-VQE uses quantum and clas-
sical computation resources. The method constructs the
ground state ansatz by iteratively increasing its complex-
ity from an initial reference state. This is achieved by se-
quentially applying unitary transformations, where each
new operator and its corresponding variational parame-
ter are selected according to the variational principle to
ensure the minimization of the system’s energy [4]:

|Ψ⟩ =
N∏

k=1

eiθkÂk |ref⟩ , (2)

where |Ψ⟩ is the ansatz, θk are the different variational

parameters, Âk are the operators, N is the number of
ADAPT layers and |ref⟩ is the reference state, which
we take as a many-body Slater determinant, built from
the single-particle basis in Fig. 1. It is important that
these operators conserve all the symmetries of the sys-
tem, mainly the third component of the total angular
momentum and isospin of the nucleus, as the Hamilto-
nian is invariant to rotation [8]. The operators need to
be antihermitian, so that the imaginary exponentials in
Eq. 2 are unitary. With that in mind, we can define
an “operator pool” with all the operators that fulfil this
condition with the form of antihermitian two-particle-
two-hole excitations,

T̂ rs
pq = â†pâ

†
qârâs − â†râ

†
sâpâq. (3)

The key point of the method is the selection of the Ak

operators. Every time we add a new layer, we compute
the energy gradient at θk = 0 for every operator in the

pool, and we select the one with the largest absolute value
gradient. We compute the energy gradient,

∂E

∂θk

∣∣∣∣
θk=0

= i⟨Ψk−1|
[
Ĥeff , T̂

rs
pq

]
|Ψk−1⟩, (4)

where |Ψk−1⟩ is the ansatz of the wave function after
applying the k − 1 operators. Then we optimize the pa-
rameters to minimize the energy. This optimization is
done in a classical computer.
In consideration of that, we can explain the iterative

execution flux:

1. Initialize ADAPT with a reference state (|ref⟩) or
with the state resulting from step 3.

2. Compute the energy gradient for all the operators
in the operator pool (Eq. 4) and select the opera-
tor with the largest absolute value gradient. If the
maximum gradient is lower than a previously set
threshold, the energy has converged, so stop the
algorithm.

3. Apply the unitary parametrized gate of the opera-
tor and classically optimize all the parameters clas-
sically. If it has reached a maximum amount of
layers, stop the algorithm.

IV. ADAPT-VQE EXECUTION

Once we understand how ADAPT works, we need to
resolve the following: the representation of the wave func-
tion on a quantum computer, the application of unitary
operators, and the measurement of the nucleus’s energy.
The wave function of the system is represented by iden-
tifying the single-particle states in the valence shell with
qubits. The occupation of a particular orbital translates
to the state of the different qubits as |0⟩ ≡ no occupa-
tion, |1⟩ ≡ occupation. Using the notation of the orbitals
used in Fig. 1 we need a quantum computer with as many
qubits as orbitals in the valence shell. We need 6 qubits
for p-shell simulations considering only one type of nu-
cleon in the valence shell and 12 qubits if we consider
neutrons and protons, regardless of the number of nucle-
ons in the shell.
To apply the different operators to the reference state,

we need to transform the operators to unitary quantum
gates that we can use in our quantum circuit. This pro-
cess starts by applying the Jordan-Wigner mapping [9]

over the different Âk. This transformation changes the
creation and annihilation operators into a set of Pauli
operators (X̂, Ŷ and Ẑ) applied over different qubits,

â±i =

(
i−1∏
p=0

Ẑp

)
1

2

(
X̂i ± iŶi

){+ for âi
− for â†i

. (5)

By doing this transformation, we obtain the different T rs
pq

as a sum of sets of Pauli strings, which I obtain using
the python library “OpenFermion” [10]. All these Pauli

strings commute with each other for all T̂ rs
pq type of op-

erators [4], so we can represent eiθT̂
rs
pq from Eq. 2 as the

multiplication of individual imaginary Pauli-string expo-
nentials.
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FIG. 2. Left: circuit representation of the imaginary exponential of the Pauli string X̂0Ẑ1Ẑ2X̂3Ŷ4X̂5. This is one piece of the

full unitary gate eiθT̂
45
03 . Centre: the unitary gate M01. Right: the unitary gate M2345.

A. Ansatz quantum circuit and energy
measurement

To obtain the quantum circuit to simulate the ansatz
approximation of the ground state, we need to start
by representing the reference state and then apply the
unitary imaginary Pauli exponentials. To represent the
reference state, we apply Pauli X̂ gates to the qubits
that have an occupied orbital in our reference state
(X̂|0⟩ = |1⟩). For example, if we want to represent a
state with one nucleon in the orbitals 1 and 2 (see Fig. 1)
we need to apply:

|ref⟩ = X̂1X̂2|0⟩⊗ Nqbits . (6)

Next, we apply the unitary transformations. We use
the Jordan-Wigner transformation (Eq. 5) to express the
fermionic operators as a set of imaginary Pauli exponen-
tials. Now that we have the operators in this form, we
can use the Staircase Protocol [11] to decompose each
Pauli string exponential into a sequence of fundamental
quantum gates. These gates include the CNOT (CXij),
which inverts the target qubit (i) if the control qubit (j)
is in the |1⟩ state; the Hadamard (H) gate, which creates
superpositions; the Rotation about the X-axis (RX(θ));
and the Rotation about the Z-axis (RZ(θ)) [12].
The Staircase Protocol proceeds by applying a H or

RX(π/2) gate to qubits with a X̂ or Ŷ in the Pauli string
exponential. This is followed by a CNOT gate “staircase”
formation, a RZ(θ) rotation on the last qubit, then the
symmetrical inverse CNOTs structure and finally, H or

R†
X(π/2) gates on the same initial qubits [11]. The left

part of Fig. 2 offers a visual representation.
After we have created the ansatz circuit, we need to

perform the energy measurements. To do so, we can de-
fine the one- and two-body components of the Hamilto-
nian (without their respective amplitudes ϵα and ναβγδ).
As the Hamiltonian is Hermitian, we use its symmetries
to define the observables [5]:

hα = ⟨Ψ|â†αâα|Ψ⟩, (7)

hαβαβ = ⟨Ψ|â†αâ
†
β âαâβ |Ψ⟩, (8)

hαβαγ = ⟨Ψ|â†αâ
†
β âαâγ + â†αâ

†
γ âαâβ |Ψ⟩, (9)

hαβγδ = ⟨Ψ|â†αâ
†
β âγ âδ + â†γ â

†
δâαâβ |Ψ⟩. (10)

Using this notation, the energy of the system can be cal-
culated as:

E =

Nqbits−1∑
α=0

ϵα hα +
∑
α<β

ναβαβ hαβαβ

+
∑

α<β<γ

ναβαγ hαβαγ +
∑

α<β, γ<δ
(α,β)<(γ,δ)

ναβγδ hαβγδ. (11)

The first two energy contributions are defined by the
probability of single-orbital occupation (Eq. 7) and the
negative of the joint probability for two-orbital occupa-
tion (Eq. 8). In our wave function analogy, it means the
probability of qubit α or qubits αβ of being in the |1⟩
state simultaneously,

hα = p
(α)
1 , hαβαβ = −p

(αβ)
11 . (12)

These measurements are diagonal in the computational
basis. This property allows their direct and simultaneous
measurement from a single set of repeated executions of
the ansatz state preparation circuit, without requiring
any additional gates. Performing the measurement of the
other terms (Eqs. 9 and 10) is more complicated, as they
are not diagonal observables of the single-particle basis.
To diagonalize the observables, we add a diagonalization
appendix to the quantum circuit. These diagonalization
appendices are the unitary gates Mαβ and Mαβγδ.

Mαβ ≡ CXβαHβCXβα, (13)

Mαβγδ ≡ CXαβCXγαCXδγHδCXδγCXγαCXαβ . (14)

The middle and right parts of Fig. 2 offer a visual rep-
resentation of this diagonalizing gates. After adding this
diagonalization part, we can measure the non-diagonal
expected values as:

hαβαγ =

2num. Z∑
n=0

(−1)n
[
p
(Z,αβγ)
bin(n),110 − p

(Z,αβγ)
bin(n),101

]
, (15)

hαβγδ =

2num. Z∑
n=0

(−1)n
[
p
(Z,αβγδ)
bin(n),1100 − p

(Z,αβγδ)
bin(n),0011

]
, (16)

where Z are all the qubits affected by the Ẑ operators
in Eq. 5, num. Z is the number of Z-affected qubits and
bin(n) is the binary string of length num. Z associated
to the index n of the summation [5].
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FIG. 3. Top panels: standard deviations of the parameters of the ADAPT ansatz from Eq. 2 as a function of the number
of shots (Nshots). Bottom panels: energy of the ground state measured with fixed ideal parameters (green) and with a full
ADAPT run (red) with their standard deviations error bars as a function of Nshots. The results correspond to calculations for
14N (left panels), 6Be (middle panels) and 12C (right panels) nuclei.

Since the observable associated to hαβαγ commutes
with similar observables with same β and γ indexes but
different α, we can measure several of these contributions
at the same time with the same circuit. This reduces by
a large factor the number of necessary circuits to perform
an energy measurement [5].

B. Error estimation and classical optimization

To measure, we make a series of observations (also
called shots) of the final state and, with the result of each
shot, we calculate the different probabilities in Eqs. 12, 15
and 16, so they are not infinitely precise measurements.
This is an unavoidable error of the measurement process.
As it is a probabilistic noise, it decreases proportional
to the inverse of the square root of the number of shots,
Nshots [5].

It is also worth discussing what type of classical opti-
mization technique we should use to optimize the θk pa-
rameters. Although gradient based optimization meth-
ods are faster, they are not noise resistant [13]. For this
reason, I have used the “COBYLA” optimizer from the
SciPy python library [14].

V. RESULTS

I have studied how Nshots affects the accuracy of the
energy measurements and the minimization. To perform
the simulation of each quantum circuit, I have used the
“Qibo” python framework [15]. I simulated a perfect
quantum computer, which means I have not implemented
any noisy channel, so the errors that appear are pure
stochastic errors characteristic from statistical measure-
ments. The different simulations have been done for the
6Be, 12C and 14N nuclei. We need 13 circuits to do an en-
ergy measurement of 6Be and 114 for 12C and 14N. These
3 nuclei have been selected because they are representa-
tive cases where a low relative energy error is achieved
using one (14N), two (6Be), and three (12C) ADAPT-
VQE layers.

For each nucleus, I have run 200 ADAPT simulations

for each Nshots to study how the values of the variational
parameters and energy measurements vary from simula-
tion to simulation. Fig. 3 presents the main results. The
left panels show the simulation of 14N with one ADAPT
layer, the middle part, the simulation of 6Be with two
ADAPT layers and the right panels show the simulation
of 12C with three ADAPT layers. The top panels indi-
cate the standard deviation of the different parameters
as a function of the numbers of shots. The bottom panels
show the energy measured by two different methods: in
red, the mean energy measured for a full ADAPT simula-
tion with its standard deviation error bar and, in green,
the measured energy with fixed ideal parameters with its
standard deviation error bar.
The lower panels in Fig. 3 highlight that the measured

energy error with fixed parameters decreases with the
number of shots, while the mean value is constant. The
mean value agrees with the expected value for the mea-
sured energy with infinite precision. In accordance with
the variational principle, this energy value is an upper
bound to the ground state energy. Achieving greater pre-
cision for the ground state requires adding more ADAPT
layers. On the other hand, the error decrease is propor-
tional to 1/

√
Nshots for the three nuclei, consistent with

the central limit theorem for statistical measurements.
However, when we implement a full ADAPT run, the

trend is different. The error in this case is caused by
two factors. The first one is the previously introduced
statistical error. The other source of error is the noise
in the optimization of the parameters. The interaction
between the energy-measurement noise and classical op-
timization is hard to characterize. For these reasons,
the energy error obtained with the full ADAPT run is
larger than the one with fixed parameters, but it de-
creases faster with Nshots, following a power-law rela-
tionship that is determined by a log-log fit to the results.
The error dependence for 14N, 6Be and 12C is propor-
tional to (Nshots)

−0.53, (Nshots)
−0.60 and (Nshots)

−0.51,
respectively.
Furthermore, the convergence behaviour in the
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FIG. 4. Energy dependence of one parameter, with the other
parameters fixed around the energy minimum. Left panel:
result for 6Be. Right panel: result for 12C.

ADAPT-VQE energy is caused by the noise of the pa-
rameter optimization process. With noisy energy mea-
surements, the optimization algorithm may prematurely
stop, leading to suboptimal parameter values and, con-
sequently, a higher mean measured energy. As Nshots

increases, the noise in the parameters is reduced, allow-
ing for a more accurate optimization, which translates
into a mean energy closer to the ideal minimum.

Finally, the top panels of Fig. 3 show notable differ-
ences in parameter standard deviations. For the 6Be nu-
cleus, σ(θ2) is significantly larger than σ(θ1), contrasting
with the 12C results, where all three parameter devia-
tions are similar. This discrepancy in parameter uncer-
tainty is directly related to the curvature of the energy
function around the minimum. A shallower curvature
indicates that a wider range of parameter values corre-
spond to a similar energy. Consequently, the statistical
noise in the energy measurements can easily mislead the
optimizer, leading to a greater uncertainty in the final pa-
rameter value. Conversely, a sharp curvature provides a
well-defined minimum that is more robust against noise.
As illustrated in Fig. 4, the energy dependence on each
parameter around the minimum is different for the two
parameters of 6Be, whereas for the three parameters of
12C, this dependency is very similar across them.

VI. CONCLUSIONS

In this work, I have successfully implemented the
ADAPT-VQE (code available at my GitHub repository
[16]) method to find the ground state of 6Be, 12C and

14N nuclei within the nuclear shell model. The focus of
this study is the investigation of statistical noise, inher-
ent in quantum measurements, by varying the number
of measurements (Nshots) one can perform in a quantum
computer in order to obtain the energy of the ground
state.
The results demonstrate that while the statistical er-

ror decreases as (Nshots)
−0.5 for a single energy measure-

ment, the statistical error of a full ADAPT simulation
exhibits a more complex behaviour due to the interac-
tion with the classical optimization process, resulting
in a higher overall error that decreases with a distinct
power dependence compared to the ideal statistical scal-
ing. This power varies from nucleus to nucleus, in par-
ticular (Nshots)

−0.53 for 14N, (Nshots)
−0.60 for 6Be, and

(Nshots)
−0.51 for 12C. Furthermore, the mean energy ob-

tained from full ADAPT simulations converges towards
the ideal minimum as Nshots increases. This indicates
that the optimizer performs better with less noisy energy
measurements.

Given that all the energy measurements have been per-
formed over a simulation of a perfect quantum computer,
the logical next step is executing ADAPT-VQE on actual
quantum hardware. A systematic approach would start
by performing energy measurements with fixed parame-
ters to assess the direct impact of hardware noise on the
experimental outcome. Afterwards, one should progres-
sively incorporate ADAPT layers to study the interac-
tion between the classical optimizer and the accumulat-
ing hardware noise, which naturally increases with the
number of quantum gates. This would allow characteriz-
ing noise effects beyond those investigated in this work.
These insights are valuable for guiding future efforts to
implement variational quantum algorithms on real quan-
tum hardware.
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Simulació de nuclis atòmics lleugers en un ordinador quàntic
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Resum: Resoldre la dinàmica de sistemes de molts cossos és un dels desafiaments més importants
de la ciència moderna. Per aquesta aplicació, les tècniques de computació clàssica enfronten limita-
cions significatives, principalment la necessitat de gestionar grans espais de Hilbert. La computació
quàntica, particularment a través d’algorismes h́ıbrids quàntics i clàssics, ha començat a guan-
yar popularitat, oferint un enfocament nou i prometedor. Aquest treball caracteritza l’algorisme
ADAPT-VQE (“Adaptive Derivative-Assembled Pseudo-Trotter ansatz Variational Quantum Eigen-
solver”) mitjançant la simulació dels nuclis de 6Be, 12C i 14N a través del model de capes en un
ordinador quàntic ideal. Estudia espećıficament la resposta de l’ADAPT-VQE al soroll estad́ıstic
inherent que resulta del fet de fer un nombre finit de mesures (“shots”). En particular, l’estudi
quantifica la convergència de l’error de mesura de l’energia amb el nombre de mesures, i demostra
com el soroll estad́ıstic afecta l’optimització dels paràmetres variacionals. Els resultats mostren que
aquest impacte produeix un error final d’energia que escala amb Nshots segons una llei de potències
diferent del ĺımit estad́ıstic estàndard i particular per a cada nucli. Paral·lelament, l’energia mitjana
s’apropa al valor clàssicament calculat a mesura que el rendiment de l’optimitzador millora amb
més nombre mesures.
Paraules clau: Computació quàntica, model de capes, VQE
ODSs: Educació de qualitat, Energia neta i sostenible i Industria, inovació, infraestructures

OBJECTIUS DE DESENVOLUPAMENT SOSTENIBLE (ODSS O SDGS)

TABLE I. Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible X 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures X

El contingut d’aquest TFG s’associa amb l’ODS 4 (Educació de Qualitat), ja que fomenta el desenvolupament
de competències tècniques avançades i promou la ciència oberta. Es relaciona també amb l’ODS 7 (Energia Neta
i Sostenible), donat que els avenços en la simulació de nuclis atòmics poden contribuir a llarg termini a la millora
de l’eficiència i la seguretat de l’energia nuclear. Addicionalment, es vincula amb l’ODS 9 (Indústria, Innovació i
Infraestructures) per la seva contribució a la millora de la capacitat tecnològica i cient́ıfica en el camp de la computació
quàntica.
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