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Abstract 

Objectives

Antimicrobial-resistant bacteria are a major global health threat. Mobile genetic ele-

ments (MGEs) have been crucial for spreading resistance to new bacterial species, 

including human pathogens. Understanding how MGEs promote resistance could be 

essential for prevention. Here we present an investigation of MGEs and their association 

with resistance genes in pathogenic bacteria collected from 59 diagnostic units during 

2020, representing a snapshot of clinical infections from 35 counties worldwide.

Methods

We analysed 3,095 whole-genome sequenced clinical bacterial isolates from over 100 

species to study the relationship between resistance genes and MGEs. The mobiliome of 

Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Klebsiella pneumo-

niae were further examined for geographic differences, as these species were prevalent 

in all countries. Genes potentially mobilized by MGEs were identified by finding DNA seg-

ments containing MGEs and ARGs preserved in multiple species. Network analysis was 

used to investigate potential MGE interactions, host range, and transmission pathways.

Results

The prevalence and diversity of MGEs and resistance genes varied among species, 

with E. coli and S. aureus carrying more diverse elements. MGE composition differed 

between bacterial lineages, indicating strong vertical inheritance. 102 MGEs associated 

with resistance were found in multiple species, and four of these elements seemed to 

be highly transmissible as they were found in different phyla. We identified 21 genomic 

and reproduction in any medium, provided the 
original author and source are credited.

Data availability statement: All sequenced 
genomes are available from the European 
Nucleotide Archive database (https://www.ebi.
ac.uk/ena/browser/view/ERP141886).

Funding: This work was supported by the Novo 
Nordisk Foundation (Grant: NNF16OC0021856: 
Global Surveillance of Antimicrobial 
Resistance) and the European Union’s Horizon 
2020 research and innovation program (Grant: 
874735). The funders had no role in study 
design, data collection and analysis, decision to 
publish, or preparation of the manuscript.

Competing interests: The authors have 
declared that no competing interests exist.

mailto:markjo@food.dtu.dk
https://www.ebi.ac.uk/ena/browser/view/ERP141886
https://www.ebi.ac.uk/ena/browser/view/ERP141886


PLOS One | https://doi.org/10.1371/journal.pone.0330304  August 18, 2025 3 / 20

regions containing resistance genes potentially mobilized by MGEs, highlighting their importance in transmitting genes to 

clinically significant bacteria.

Conclusion

Resistance genes are spread through various MGEs, including plasmids and transposons. Our findings suggest that multiple 

factors influence MGE prevalence and their transposability, thereby shaping the MGE population and transmission pathways. 

Some MGEs have a wider host range, which could make them more important for mobilizing genes. We also identified 103 

resistance genes potentially mobilised by MGEs, which could increase their transmissibility to unrelated bacteria.

Introduction

The emergence of antimicrobial-resistant bacteria (AMR) is recognised as a significant threat to global public health [1,2] 
and estimates suggest that 1.3 million deaths annually can be attributed to AMR [3].

Several bacteria, such as the ESKAPE [4] group pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsi-
ella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp) and Escherichia coli have 
been increasingly involved in resistant infections [5]. These bacteria can be difficult to treat since they frequently carry 
antimicrobial resistance genes (ARG), often acquired via horizontal gene transfer and mediated by various mobile genetic 
elements (MGE) [6–9].

MGEs are discrete regions of DNA that can promote their transposition or the transposition of other elements between 
DNA molecules. They are classified based on their properties and genetic layout into types [6]. Inter-cellular transposing 
MGEs such as plasmids, integrative and conjugative elements (ICE), and integrative and mobilisable elements (IME) can 
either conjugate or be mobilised by the conjugation of other elements [7–9]. They often carry other ARGs or intra-cellular 
transposing MGEs. Unlike plasmids, ICEs and IMEs are primarily integrated into the host chromosome [10]. MGEs inte-
grated into a host’s DNA are referred to as integrated MGEs (iMGEs).

Insertion sequences (IS) are among the smallest types of intra-cellular transposing iMGEs, often consisting of a trans-
posase bounded by inverted repeats (IRs) [11,12]. They are typically unable to carry accessory genes but can facilitate 
gene mobility by forming composite transposons (comTn) structures [13, 14]. Unit transposons (Tn) are a diverse type of 
iMGEs whose members are frequently associated with ARGs. Several members carry integrons [15,16], a type of iMGE 
that can rapidly exchange their carried accessory genes [17]. Extensive literature describes the different types of MGEs 
[6,9] and their association with AMR in various species [18–20].

The interplay of different MGEs forms a complex transposition network that has been essential for recruiting ARGs  
[7, 21] and spreading them to infectious bacteria [22,23]. MGEs are also thought to help retain resistance genes in envi-
ronments with low levels of antimicrobials [24].

Here, we present an investigation of resistance determinants and their association with MGE from 59 diagnostic units 
worldwide. Samples were collected in 2020 from patients with symptoms of disease caused by a pathogen, and thus, 
whole genome sequencing was used for diagnostic analysis. These samples provide a valuable insight into the associa-
tion between ARGs and MGEs as they represent an unbiased snapshot of clinically relevant bacteria isolated in 2020. The 
data encompasses a diverse set of bacterial species, lineages, and tissue types and should therefore better approximate 
the diversity of resistance determinants and mobilome.

Methods

Dataset selection

Clinical pathogens were collected as part of the Two Weeks in the World (TWIW) research project by participating diag-
nostic units during 2020 and sent to the Group for Genomic Epidemiology, Technical University of Denmark (DTU), for 
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whole genome sequencing. Protocols for DNA sampling are available at the TWIW website (https://twiw.genomicepide-
miology.org/about), and the sequences are available at ENA (see S1 Appendix for sample information and accession 
numbers). The TWIW dataset comprises 3,095 sequenced isolates, representing 115 species from 35 countries [25].

We primarily investigated E. coli, K. pneumoniae, E. faecium, and S. aureus isolates as they were the most prevalent 
Gram- and Gram+ species in this dataset with a good geographic representation. The sequences were processed,  
quality-controlled, and de-novo assembled using the method outlined in the supplementary methods section. A total 
of 1,191 samples (553 E. coli, 227 K. pneumoniae, 77 E. faecium, 334 S. aureus), representing 35 countries from six 
WHO-defined regions [23] and is now referred to as the “primary” dataset.

The remaining sequences from less frequent species were used to verify putative transposable elements and to inves-
tigate the phylogenetic confinement of iMGEs. These sequences were processed using the previously described method, 
creating a “secondary dataset” consisting of 1,559 samples from 101 species.

Read processing, genome assembly, and QC filtering

Only isolates sequenced using the Illumina NextSeq 500 platform were included to mitigate bias introduced by differences 
in sequencing chemistry.

Reads were trimmed using bbduk2 (part of BBmap version 36.49) (score cutoff 20 and removing reads shorter than 
50 bp), and adapter sequences were removed by matching using an internal adapter database [26]. Read quality was 
assessed with FastQC [27] (version 0.11.5) before and after read processing. The processed reads were de-novo assem-
bled with Spades [28] version 3.11.0 using error correction, coverage cutoff = 2, and k-mer sizes 21, 33, 55, 77, 99, and 
127. Assembly quality metrics were calculated with Quast [29] version 4.5. If the isolate had been sequenced multiple 
times (47 isolates), the sequencing run with the highest-quality bases was selected.

Kmerfinder [30] and ribosomal Multi Locus Sequence Typing (rMLST) were used to verify project participants’ species 
annotations and identify contaminated samples. Isolates in which the predicted species differed from the annotation were 
excluded, as they could have been mixed up.

Kmerfinder and rMLST were run using the default thresholds using the processed reads as input. A species was said 
to be verified if Kmerfinder and rMLST predictions were in concordance, and the main species prediction exceeded 80% 
rMLST support and 40% Kmerfinder coverage. Isolates predicted to contain multiple species (Kmerfinder coverage > 1% 
or rMLST support > 1%) were excluded since they could be contaminated.

Isolates with an unexpectedly large assembly size were removed, as it could indicate that they contained multiple 
strains, i.e., if the assembly size was larger than 99.7% (3 std) of the reference genomes for that species in NCBI RefSeq. 
Genome sizes of non-atypical genomes with the completeness of “chromosome” or “complete assembly” were used (data 
accessed 2023-03-17).

The assembly completeness was estimated from the proportion of non-identified loci in the core genome Multi Locus 
Sequence Typing (cgMLST) profiles. chewBBACA [31] version 3.0.0 with the relevant schemas from cgmlst.org [32–34] 
was used for typing. Isolates with < 95% of the core genome were excluded.

A maximum of 15 isolates per species and city was included to reduce the overrepresentation of some locations. The 
final dataset consisted of 1,191 isolates from 35 countries covering seven geographical world regions.

Controlling for high relatedness in the dataset

To evaluate the diversity of the dataset and ensure it reflects the strains typically encountered in healthcare settins, we 
employed a combination of cgMLST and Multi Locus Sequence Typing (MLST) typing. The within-species diversity was 
estimated using both the cgMLST and MLST profiles. Overrepresented lineages were identified from the MLST sequence 
types (ST) using the mlst [35,36] tool version 2.23.0. Isolates were clustered based on their cgMLST profile with scipy [23] 
version 1.10.1 using Jaccard distance and visualised using the toolkit for Python.

https://twiw.genomicepidemiology.org/about
https://twiw.genomicepidemiology.org/about
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Each species was represented by isolates from several MLST sequence types (E. coli 94, K. pneumoniae 95, E. faeca-
lis 31, and S. aureus 56), of which approximately 44%−76% were considered rare as they were found in less than 5% of 
all isolates (S1 Fig). The high average pairwise cgMLST allele difference for all species also suggested that the dataset is 
highly diverse.

In-silico prediction of AMRs and iMGEs

ARGs were predicted with Resfinder (tool version 4.3.1, ResfinderDb version 2.1.0, disinfinderDb version 2.0.0) with 
default settings, using the assembled contigs as input [37]. An updated version of MobileElementFinder [38] (version 
1.1.2) was used to predict miniature inverted-repeats transposable elements (MITEs), IS, Tn, ICE, IME, and  
cis-mobilizable elements (CIMEs). This new version adds 1,686 IS and 70 Tn to its database.

Identification of plasmid-borne iMGEs and ARGs

Contigs were classified as being of either plasmid or chromosomal origin using the consensus prediction of PlasClass [39] 
version 0.1.1 (threshold 0.5) and Platon [40] version 1.6 (executed in accuracy mode with either the Enterococcus, Staph-
ylococcus, or Bacteria database).

A two-way ANOVA (statsmodels python package) was used to evaluate differences in the amount of plasmid DNA 
between the species. The normality of residuals and heterogeneity of variance were ensured.

Data visualisation

Unless otherwise stated, all visualisations were created using a combination of Matplotlib [41] version 3.7.1 and Seaborn 
[42] version 0.12.2 for Python 3.11. Geographical maps were created using GeoPandas version 0.13.0 using shapefiles 
from Natural Earth.

Investigation of the iMGE population, geography, and lineage

Isolates were clustered using scipy [23] on the iMGE profile (Jaccard distance and average linkage) to investigate differ-
ences between geographical regions and lineages.

Identification of iMGEs associated with ARGs and putative mobilised complexes

iMGEs have the potential to mobilize nearby genes by forming comTns. Potentially mobilized ARGs were identified in the 
assembled 1,191 primary samples by locating iMGEs within 10 kb of an ARG, which corresponds with the largest compTn in 
the MGEdb database. Combinations of iMGE and ARG were kept if the distance between the elements and the intermediary 
sequence was preserved in multiple samples. The sequence similarity was calculated using Sourmash [43] version 4.8.2.

Finding the same preserved combination of iMGE and ARG, or putative translocatable unit (pTU), in multiple spe-
cies could indicate mobilization. The presence of the pTUs on other species was investigated by searching for similar 
sequences in the secondary dataset using blastn [44] version 2.14.0. The pTU was queried against a custom database of 
the assembled genomes, and hits with greater than 95% query coverage and greater than 90% sequence identity were 
considered matches.

Investigation of the iMGE host range

The presence of iMGEs in bacterial species was used to estimate host range and possible transposition pathways. iMGEs 
were said to be confined to a taxonomic level if they were only found in bacteria of the same taxa. Hypothetical transpo-
sition pathways were modelled as a bi-directional multi-graph where species constituted nodes and iMGEs edges using 
NetworkX [45] version 3.1. Communities of densely connected bacterial species were identified using the Louvain method 
[46] of community detection.
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Results

Here, we present an analysis of mobilised ARGs in 1,191 clinical isolates (primary dataset) from the four common patho-
gens E. coli (553), K. pneumoniae (227), E. faecalis (77), and S. aureus (334), representing a snapshot of the global 
diversity of resistance determinants (S1 Appendix).

The data is a subset of a larger dataset containing 3,095 clinical isolates, including 115 species worldwide [47] as seen 
in S2 Fig. All isolates are available on ENA (accession number: ERP141886).

Species-specific differences in the ARG profile

A total of 7,159 ARGs were identified in the primary dataset. Among the four pathogens, Gram- bacteria exhibited greater 
ARG diversity, with K. pneumoniae carrying the most diverse set of resistance genes (S3b Fig). Beta-lactam resistance 
genes were highly prevalent in K. pneumoniae (99.6% of all isolates), followed by S. aureus (79.3%) and E. coli (58.6%). 
In contrast, no beta-lactam resistance genes were in any of the E. faecalis isolates, and in S. aureus, it was primarily 
mediated by blaZ and mecA.

The distribution of beta-lactamase genes varied geographically, particularly in E. coli and K. pneumoniae. In E. coli, 
bla

TEM
 genes were widespread across all continents, whereas bla

SHV
 was more prevalent in central Europe. The bla

CTX-M
 

and bla
OXA

 gene families were more prevalent in southern Europe, Turkey, and Africa (Fig 1).
Geographic differences were also evident in the distribution of gene variants. For instance, bla

CTX-M-15
 and bla

CTX-M-27
 were 

found on almost every continent, whereas bla
CTX-M-1

 was only found in Europe, and bla
CTX-M-24

 was only identified in isolates 
from Oceania (S1 Table). The bla

CMY
 genes were only found in isolates from Asian and African countries, with Asian isolates 

exhibiting higher gene diversity than those observed in Africa. In contrast, African isolates only carried bla
CMY-2

.
In K. pneumoniae, beta-lactam resistance was primarily mediated by bla

SHV
, bla

TEM
, and bla

CTX
 genes. Notably, isolates 

from South America frequently harboured primarily bla
KPC

 and bla
NDM

 genes (Fig 2 and S2 Table), highlighting regional 
differences in resistance mechanisms.

Approximately 75% of the E. faecalis isolates were predicted to carry tetracycline resistance genes (mediated by tet(M) 
and tet(L)), while about 44.1% of the isolates carried aminoglycoside resistance genes. Macrolide (~35.1%), glycopep-
tides (~2.6%), and amphenicol (~1.2%) resistance genes were only present in a small number of isolates (S4 Fig). The 
intrinsic Lsa family of efflux pumps [48] was found in all isolates.

ARGs varied between the different species, just like with iMGEs. For example, bla
TEM-1B

 and dfrA17 were more prevalent 
in E. coli, while fosA, OqxA, and OqxB were more common in K. pneumoniae. There were only minor differences in the 
ARG profile between MLST ST. E. faecalis was the exception where st480 harboured macrolide resistance gene dfrG and 
lincosamide resistance gene lnu(B) compared to st6 and st774, which tended to carry the aminoglycoside resistance gene 
ant(6)-Ia, as can be seen in S5 Fig. Only minor differences in ARG prevalence between continents, as seen in S6 Fig.

Identification of transferable ARGs

The contigs were classified as being of either plasmid or chromosomal origin based on the consensus prediction of 
PlasClass and Platon. S. aureus had significantly lower estimated plasmid content than the other species (P-value 2.36 
× 10−129; statistics in S3 Table), averaging 15.9 Kbp plasmid DNA per genome (~0.6% of the assembled DNA). E. coli, K. 
pneumoniae, and E. faecalis had comparable plasmid content relative to the total assembled DNA (~2.3%, ~ 3.8%, and 
~2.7%), S7 Fig.

ARGs mobilised by plasmids were identified as they could spread to other bacteria. The number of mobilised ARGs 
varied between the species, with plasmid-borne ARGs being more common in Gram- bacteria than in Gram+ ones (Fig 3). 
Most ARGs in E. faecalis were located on the chromosome, except for Amphenicol and Glycopeptide resistance genes. 
S. aureus carried most Lincosamide, Streptogramin b, and tetracycline resistance genes on plasmids (S8 Fig). The 
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Gram- species carried most ARGs on plasmids regardless of AMR class (Fig 3) except for the bla
SHV

 family of beta- 
lactamases in K. pneumoniae that were primarily located on chromosomal contigs (S2 Appendix).

ARGs mobilised by iMGEs were also identified as they could facilitate the spread of resistance. Of the 7,159 predicted 
ARGs, 327 were carried by iMGEs of different types. S. aureus and E. coli had the highest abundance of iMGEs mobilised 
ARGs (Fig 4).

Fig 1.  Geographic distribution of beta-lactamase gene families in E. coli. Countries with resistance are coloured in blue. The pie chart shows the 
composition of gene families per country. Map was created using shapefiles from Natural Earth.

https://doi.org/10.1371/journal.pone.0330304.g001

https://doi.org/10.1371/journal.pone.0330304.g001
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Beta-lactamases were commonly associated with iMGEs in all species except E. faecalis. In S. aureus blaZ was mainly 
carried by the Tn552 unit-transposon, but in six cases it was found interspersed between copies of the IS ISSep1 or 
ISSau6. These MGEs could potentially form a comTn.

Various bla
TEM

 beta-lactamases were carried by Tn2 and Tn801 unit-transposons in E. coli and K. pneumoniae. Other 
beta-lactamase genes, such as bla

KPC-2
, bla

CTX-M-15
, and bla

SHV-1,
 were instead located between copies of ISEc9, ISEc26, 

and ISKpn31 that potentially could transpose the genes by forming a comTn. Despite E. faecalis harbouring a larger diver-
sity and higher relative abundance of iMGEs (Fig 4) than the other species, only three iMGE were identified to mobilise 
ARGs. These ARGs and iMGEs were: erm(B) carried by Tn917, lnu(G) carried by Tn6260, and the Aminoglycoside resis-
tance gene aac(6’)-aph(2’‘) harboured by an IS256-based comTn.

Fig 2.  Geographic distribution of beta-lactamase gene families in K. pneumonia. Countries with resistance are coloured in blue. The pie chart 
shows the composition of gene families per country. Map was created using shapefiles from Natural Earth.

https://doi.org/10.1371/journal.pone.0330304.g002

https://doi.org/10.1371/journal.pone.0330304.g002
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iMGEs associated ARGs indicate cross-species transposition

We found evidence of 21 MGEs and ARGs being transposed as a unit because they were repeatedly found at the same 
distance in multiple species in either the primary or secondary dataset. Eight of these pTUs were found on both plasmid 
and chromosomal contigs in two of the species, suggesting intra-cellular mobility. The secondary dataset was searched to 
confirm whether the pTUs were present in additional species beyond the four species in the primary dataset. Most pTUs 
were found in additional genera, further supporting the hypothesis that they have been transposed as a conserved unit. 
For example, ISEc9-bla

CTX-M-15
 was found in multiple genera, including Enterobacter, Escherichia, Klebsiella, and Serratia 

(Fig 5). This indicates the ability of MGEs to transmit genes between bacteria of clinical importance.

Species-specific differences in the MGE population

A total of 19,752 iMGEs were identified in all four species. Gram- bacteria, E. coli and K. pneumoniae, were found to 
harbour a larger abundance and diversity of known iMGEs (Fig 1 and S3 Fig) compared to the Gram+ S. aureus and E. 
faecalis. IS was the most common type of iMGEs in all species, but the proportion of plasmid-borne elements was higher 
in Gram- bacteria (Fig 6). MITEs and IME types of iMGEs were only found in E. coli and K. pneumoniae.

Fig 3.  Number of ARGs per species and their predicted location.

https://doi.org/10.1371/journal.pone.0330304.g003

https://doi.org/10.1371/journal.pone.0330304.g003
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There was a systematic difference in the iMGEs population where most elements were only found in the same species, 
as can be seen in S9 Fig. For example, insertion sequences ISEc1, IS3, and IS609 were exclusively found in E. coli, while 
ISKpn38, ISKox1, and ISEc15 were only predicted in K. pneumoniae (S3 Appendix). Similarly, ISAu6 and ISSep3 and the 
transposon Tn554 were only found in S. aureus, while the insertion sequences ISLmo19, IS1062, and Tn6260 were only 
identified in E. faecalis (S3 Appendix).

iMGE profile corresponds with lineage

Isolates of the same ST tended to carry similar iMGEs. The relationship between iMGE profile and lineage was most pro-
nounced in E. coli, where several STs (st3, st4, and st53) corresponded with isolated iMGE clusters. The relationship was 
also strong for S. aureus, K. pneumoniae, and E. faecalis. The clusters are presented in S10-S14 Figs.

Some lineages tended to share similar iMGE profiles. For instance, st506 and st43 in E. coli, st258 and st11 in K. 
pneumoniae, and st5 and st45 in S. aureus are samples with similar iMGE profiles. Some STs (st1 in E. coli and st11 in K. 
pneumoniae) consisted of multiple iMGE clusters, indicating possible strain-specific differences.

Fig 4.  Number of ARGs mobilized by iMGEs per species. Hatched bars denote that the ARG is located on a plasmid.

https://doi.org/10.1371/journal.pone.0330304.g004

https://doi.org/10.1371/journal.pone.0330304.g004
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iMGEs shared by multiple species

A total of 102 iMGEs were found in multiple species, with four being common between S. aureus and E. faecalis and 98 
by E. coli and K. pneumoniae. Of the four iMGEs shared by Gram+ species were two IS (IS256 and ISLmo19), one Tn 
(Tn5405), and one ICE (Tn6009), S14 Fig. IS was also the most frequent iMGE type found in E. coli and K. pneumoniae 
(84 elements), followed by Tns (6 elements). The Tns includes known ARG-carrying elements from the Tn2 (Tn2, Tn1000, 
Tn4656) and Tn3 (Tn5403) families. Only two ICEs (ICEKpnHS11286 and ICEEcoED1a) were identified in both species.

Differences in iMGE host ranges

The expanded isolate collection was analysed to investigate species-specific iMGE differences further. Most iMGEs were 
only found in related taxa, with ~39.2% of the iMGEs found in isolates of the same species, ~ 21.3% within the same 
genera, and ~19.9% within the same family (Fig 7). Interestingly, ~ 8.5% of the iMGEs were found in species of the same 
taxonomic class, and four iMGEs in multiple phyla. These included three IS (IS6100, ISSen9, and ISEfa8) and one Tn 
(Tn6082). The confinement of all iMGEs is presented in S4 Appendix.

The relationship between iMGEs and taxonomy was explored by creating a network that linked species together based 
on shared iMGEs. The network showed that related species were closely grouped in the graph as seen in S15 Fig. Four 
communities of densely connected species were identified with the Louvain method (Fig 8). These communities consisted 
of taxonomic families of the same class and Gram-staining group. For example, communities 1 and 2 consisted primarily 
of Gammaproteobacteria; community 1 contained Gram- and community 2 Gram+ families. However, Listeriaceae and 

Fig 5.  Heatmap describing the number of putative translocatable (pTU) units identified in all isolates. Rows are the pTUs; columns show the 
genera of the additional ~2000 isolates. The top bar display species stratified into Gram+ (white) and Gram- (black).

https://doi.org/10.1371/journal.pone.0330304.g005

https://doi.org/10.1371/journal.pone.0330304.g005
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Corynebacteriaceae were exceptions because they shared iMGEs with species of opposite gram-staining (ISLmo18 by 
Listeriaceae and IS6100, Tn6082 by Corynebacteriaceae).

Discussion

The increasing prevalence of AMR poses a significant threat to global public health by contributing to increased mortality 
rates and the cost of healthcare [1,2]. MGEs play a critical role in the acquisition and dissemination of resistance genes, 
thereby facilitating the global spread of AMRs[6].

Here we present a comprehensive analysis of the global resistome and mobilome of four clinically significant pathogens 
using routine diagnostic samples collected without selection bias. This data offers an unbiased snapshot of infections 
occurring worldwide during 2020 [47].

Our findings revealed systematic differences in the abundance and diversity of ARGs among the four pathogens. The 
prevalence of certain beta-lactamase gene families and individual gene variants varied geographically, with some globally 
widespread while others were more prevalent in certain regions. Our findings are consistent with previous reports that 
the prevalence of extended-spectrum beta-lactamases (ESBL) in clinical isolates varies between different parts of the 
world [49]. We found the ESBL genes, such as bla

OXA
 and bla

CTX-M
 were more prevalent in isolates from Africa and Asia. 

This includes important ESBL genes such as bla
CTX-M-15

 and bla
OXA-1

, consistent with reports of high prevalence of ESBL 
in developing South Asian countries [50]. Conversely, bla

SHV-106
 harboured by K. pneumoniae, once thought to be geo-

graphically constrained to Portugal [51], was detected across multiple continents. Our findings are supported by reports of 
bla

SHV-
106 in Italy [52], Romania [53], and China [54], which underscores the ongoing dissemination of ESBL genes and 

emphasizes the need for global AMR surveillance efforts.

Fig 6.  The relative number of predicted iMGEs per type, genome location, and species. The number of predicted iMGE is normalized to the 
number of species isolates. The bar colours show the number of MGEs predicted to be plasmid or chromosome borne. Plasmid annotation is based on 
annotations from plasmid prediction software.

https://doi.org/10.1371/journal.pone.0330304.g006

https://doi.org/10.1371/journal.pone.0330304.g006
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Fig 7.  Phylogenetic confinement of iMGEs.

https://doi.org/10.1371/journal.pone.0330304.g007

Fig 8.  Bacterial families constituting the three communities detected in the iMGE graph using the Louvain community detection method. 
Communities are clusters within the graph of species densely connected by iMGEs. The bars depict the number of species coloured by their taxonomic 
family. Hatched bars indicate Gram- species.

https://doi.org/10.1371/journal.pone.0330304.g008

https://doi.org/10.1371/journal.pone.0330304.g007
https://doi.org/10.1371/journal.pone.0330304.g008
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We investigated the mechanisms of ARG mobility and found several genes were mobilised by plasmids and iMGEs. 
The number of mobilised ARGs varied depending on the bacterial species, with E. faecalis having the fewest. Perhaps 
having intrinsic resistance to common antibiotics [48,55] has resulted in E. faecalis being less dependent on MGEs than 
species with less intrinsic resistance, such as E. coli and S. aureus.

We also found evidence of 21 ARGs potentially mobilised by nearby iMGEs, with eight of these units located on chro-
mosomal and plasmid contigs across multiple species, indicating intracellular transposition events. Many pTUs contained 
iMGEs previously linked to ARG mobilisation. For example, IS6100 has been shown to mobilize resistance genes or pro-
mote genome rearrangements in Sphingomonas [56], Salmonella [57] and Citrobacter freundii [58]. Similarly, ISEc9 was 
frequently associated with bla

TEM-1B
 and bla

CTX-M-15
 in pTUs found in Escherichia, Klebsiella, and Enterobacter, consistent 

with previous reports linking ISEc9 to members of the bla
CTX-M

 family [59–61]
.
 Notably, ISEc9 has been shown to facilitate 

the transformation of large DNA fragments with resistance genes between clinically relevant bacteria [62] indicating a 
potential to facilitate horizontal gene transfer independently of conjugating elements.

We also examined the broader distribution of iMGEs across species. E. coli exhibited the highest diversity of both 
iMGEs and ARGs, possibly reflecting its large accessory genome [63]. Smaller iMGEs like MITEs and IS elements were 
more abundant than larger transposons and conjugative elements (ICE, IME), a pattern consistent with our previous 
investigation of zoonotic Salmonella enterica [38]. Interestingly, we observed no apparent geographic influence on MGE 
diversity [38], contrasting with our findings from analysing the mobilome of sewage [64].

Instead, we found that taxonomically related species tended to share similar iMGEs profiles, suggesting the distribution 
to be influenced by bacterial lineage and host phylogeny. This lineage-specific pattern, consistent with a previous study of 
zoonotic Salmonella enterica [38], indicates strong vertical inheritance. However, the detection of certain iMGEs across 
multiple phyla, including both Gram- and Gram+ species, indicates that some elements have a broad host range. These 
findings align with our previous studies on ARG dissimilation pathways [64–66] and suggest that such iMGEs may be 
particularly important in spreading resistance genes across taxonomic boundaries. Incorporating surveillance of highly 
transmissible MGEs into existing antimicrobial resistance frameworks may improve early detection of ARGs with high risk 
of being transmitted and could guide prevention strategies.

To investigate potential transmission pathways, we applied Louvain’s community detection algorithm to model species 
connectivity based on shared iMGEs. This analysis revealed four clusters, primarily composed of bacteria of the same tax-
onomic class, and to a lesser extent, of the same gram-staining group. These clusters suggest gene transfer may be more 
likely within phylogenetically related species. While Louvain’s method has proven effective in analysing biological data [67] 
further research is needed to determine whether such interconnections correspond with increased risk of ARG transmission.

The study was limited by our data collection and sequencing methodology. The dataset was collected in 2020 
during the COVID-19 pandemic, which may have influenced the diversity and prevalence of circulating patho-
gens. Although the samples represented 35 countries across multiple continents, broader geographic coverage or 
extending the sampling period would likely provide a more comprehensive representation of the global bacterial 
diversity.

Technical limitations also affected our ability to characterise the MGEs fully. The use of short-read sequencing limited 
our ability to resolve large and complex MGEs, such as ICEs and IMEs, likely leading to their underrepresentation. To 
mitigate classification bias, we used the two complementary plasmid prediction tools, PlasClass and Platon, which rely on 
different methodologies [39,40]. Their consensus prediction aligned well with known genomic context, for example, chro-
mosomally encoded ARGs such as mecA in S. aureus [68] and Lsa efflux pumps in E. faecalis [48] were found on chro-
mosomal contigs. Likewise, frequently mobilized ARG families like bla

CTX-M
, bla

TEM
, and bla

OXA
 [69–71] were predominantly 

located on plasmids. In addition, we expanded the MobileElementFinder database with 1,686 IS and 70 Tns to improve 
iMGE prediction sensitivity. Despite these limitations, the study provides valuable insight into the global resistome and 
mobilome of clinically relevant bacteria.
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Conclusion

MGEs can spread ARGs through multiple mechanisms, from direct carriage on plasmids to being integrated within a 
pTU. Our findings suggest that the transmissibility of iMGEs in pathogenic bacteria is primarily influenced by the bacterial 
lineage and host phylogeny. However, we identified 45 iMGEs present in species across multiple taxonomic classes, and 
four across multiple phyla, indicating that some elements may have a broad host range and a greater potential to dis-
seminate ARGs across diverse bacterial populations. Additionally, we identified 21 genomic regions containing resistance 
genes potentially mobilised by MGEs, highlighting their role in gene transfer.

Mapping such mobilizable regions can help identify ARGs that could be transmitted. A deeper understanding of MGE 
transmissibility could enhance risk assessment and possibly inform future surveillance strategies. Future studies should 
aim to include a broader diversity of species to represent the clinical pathogens and the bacterial background better. 
Leveraging publicly available genomes and incorporating long-read sequencing are essential for resolving large and 
complex MGEs (e.g. plasmids, IMEs, and ICEs) and advancing our understanding of how these elements interact and 
evolve.
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