UNIVERSITAT DE BARCELONA

FUNDAMENTAL PRINCIPLES OF DATA SCIENCE MASTER’S
THESIS

Classification of Honeypot Data Using the
MITRE Framework

Author: Supervisor:
Hug Camps i Regas Dr. Eloi Puertas i Prats

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamental Principles of Data Science

in the

Facultat de Matematiques i Informatica

June 30, 2025

http://www.ub.edu
http://www.johnsmith.com
http://www.jamessmith.com
http://mat.ub.edu

UNIVERSITAT DE BARCELONA

Abstract

Facultat de Matematiques i Informatica
MSc

Classification of Honeypot Data Using the MITRE Framework
by Hug Camps i Regas

Proactive cybersecurity measures are essential for effective risk mitigation in increas-
ingly complex and evolving digital environments. Achieving this requires not only
the collection of relevant data but also its accurate interpretation and the devel-
opment of specialized analytical frameworks. This project focuses on addressing
the challenge of interpreting cyber threat data by classifying honeypot data, pro-
vided by the Global Cyber Alliance (GCA), according to the MITRE ATT&CK Ma-
trix—a widely recognized framework for understanding adversarial behavior. In
an era dominated by large language models (LLMs), we investigate an alternative
approach based on smaller, specialized models. Specifically, we design a custom ar-
chitecture of lightweight models and train them for the task, evaluating their perfor-
mance across various configurations. Our findings demonstrate that these models
can, in certain scenarios, outperform larger LLMs in both accuracy and efficiency,
offering a more sustainable and cost-effective solution for targeted cybersecurity ap-
plications.

HTTP://WWW.UB.EDU
http://mat.ub.edu

This thesis used ChatGPT to improve language clarity and style of author’s preliminary
drafts. All data analysis, interpretation, and arqumentation were conducted by the author.

iii

Acknowledgements

I would like to express my gratitude to my thesis tutor, Eloi, whose guidance and
support were especially valuable when things became challenging.

I want to thank to the Agéncia de Ciberseguretat de Catalunya for giving me the
opportunity to step into the world of cybersecurity. In particular, I am grateful to
Ana and Santi for their trust.

Finally, I want to thank my flatmates for the support given even in the most
stressful moments.

Contents

Abstract

Acknowledgements

1

6

Introduction
1.1 Objectives e

Preliminaries
2.1 MITRE ATT&CK Framework
2.2 Understanding the Command Line

Data
3.1 Collection of the Data: Honeypots and Honeyfarms
32 Firstsight. L

Methodology

41 FirstTask o
411 Fine-Tuning

42 SecondTask
421 OpenAlModel
422 Pretrained Model Specialized in MITRE Tactics Mapping
423 Similarity-Based Classification with Contrastive Fine-Tuning

Evaluation

5.1 Firsttask e
5.1.1 EvaluationMetrics e
512 Results e

52 Second Task
5.2.1 EvaluationMetrics
522 Results e

Conclusions and future work

A Source Code

Bibliography

11
12
13
14
14
15
15

18
18
18
20
26
26
27

28

30

31

Chapter 1

Introduction

Cybersecurity continues to be a critical domain of concern as the complexity and
scale of digital infrastructures increase globally. With the growing interconnectivity
of systems and the proliferation of internet-facing services, the number of potential
attack vectors has expanded significantly. In response, organizations and govern-
ments have intensified their focus on proactive cyber defense mechanisms, particu-
larly those aimed at early detection and rapid mitigation of threats.

In response to this threats in the cybersecurity landscape, the Global Cyber-
security Alliance (GCA)—a non-profit organization dedicated to enhancing online
safety—has developed the Automated IoT Defence Ecosystem (AIDE) project. Rec-
ognizing the limitations of reactive security measures and the growing need for
proactive threat intelligence sharing, AIDE aims to establish an automated platform
for the collection, analysis, and dissemination of actionable data on attacks target-
ingcomputers. This innovative approach seeks to foster a more resilient and secure
ecosystem through collaborative threat intelligence and the potential for automated
defense responses.

This project, carried out at the Agéncia de Ciberseguretat de Catalunya (ACC),
is developed within the AIDE framework. Almost all data utilized originates from
GCA'’s collection efforts, and our focus lies in analyzing and leveraging this data
to develop practical tools that support the day-to-day mitigation work performed
by ACC. This is especially valuable given that ACC is a public agency, meaning im-
provements here can have a direct impact on other critical sectors, such as healthcare
and education, which are frequent targets of cyberattacks.

Building upon those findings, the current iteration of the project narrows its fo-
cus to the detailed analysis of command-line activity observed in honeypot envi-
ronments. This shift is driven by the recognition that command sequences executed
by adversaries often reveal valuable information about their tactics, techniques, and
procedures (TTPs). By accurately classifying such commands, defenders can en-
hance both their preventive and responsive capabilities.

This thesis presents the design and implementation of a system aimed at classi-
fying command-line activity within the framework of MITRE ATT&CK—a widely
adopted taxonomy of adversarial behaviors. The work emphasizes not only the tech-
nical challenges of classification but also the practical aspects of building a scalable
and cost-effective solution. In particular, the project explores the limitations of large
language models (LLMs) in this context and motivates the development of a special-
ized classification pipeline tailored to the task.

The next section outlines the specific objectives of the project, which align with
the strategic goals of the ACC and serve as the foundation for the work presented in
the remainder of this thesis.

Chapter 1. Introduction 3

1.1 Obijectives

In last year’s edition of the AIDE project, the ACC presented a paper based on data
collected from honeypots (Rodriguez et al., 2024). That work provided a detailed
analysis of the data, focusing on characteristics such as the geographical origin of
attacks and the types of passwords used by adversaries. It then applied machine
learning techniques to perform clustering, followed by a time-series analysis of the
attack patterns.

Building upon that foundation, this year’s project continues in the direction of
analyzing and classifying command-line activity, with a specific focus on supporting
attack mitigation. To this end, the current project has two main objectives:

* To conduct an extensive analysis of honeypot command data, with a particular
focus on mapping it to MITRE ATT&CK tactics.

¢ To develop an interactive interface—such as a chatbot—that, when given a list
of commands representing a potential attack, can provide insightful classifica-
tion and analysis.

These two objectives are designed to enhance two core functions of the ACC:
¢ Action and Prevention
¢ Incident Response

To achieve both objectives, we need to develop a model capable of classifying
individual commands within the MITRE ATT&CK framework, and this will be the
part described in this Final Master’s Thesis. Our initial idea was to leverage an
OpenAl model (e.g., GPT-40, OpenAl, 2024), but early tests revealed suboptimal
performance. Similar results were observed with other large language models.

Our hypothesis is that the poor performance stems from several key limitations:

* These models are primarily optimized for natural language generation tasks.
While they have demonstrated improving capabilities in understanding code,
they still struggle with accurately interpreting command-line syntax and se-
mantics.

* The classification challenge itself is highly complex: the MITRE ATT&CK frame-
work defines over 14 distinct tactics. This creates an inherently imbalanced
classification problem, as it is difficult to provide equal training data for each
class. As a result, the models tend to produce biased predictions.

Another significant limitation of using commercial APIs like OpenAl is cost.
Since the final goal of the project is to classify potentially millions of commands
for in-depth prevention analysis, relying on a paid API becomes economically un-
sustainable.

Given these constraints, we decided not to focus on improving the performance
of existing large language models using techniques such as in-context learning or
chain-of-thought prompting. Instead, we opted to develop our own tailored model.
By designing a custom pipeline suited to our specific dataset and classification needs,
we aim to build a more reliable and cost-efficient solution.

At the end of the project, we plan to compare the performance of our custom
model against commercial LLMs to validate our hypothesis and assess whether the
specialized model offers a tangible improvement in both accuracy and practicality.

https://ciberseguretat.gencat.cat/ca/agencia/que-fem/proteccio-i-prevencio/
https://ciberseguretat.gencat.cat/ca/agencia/que-fem/resposta-incidents/

Chapter 2

Preliminaries

2.1 MITRE ATT&CK Framework

As previously mentioned, cybersecurity is becoming increasingly complex and deeply
embedded in our daily lives. Addressing this challenge requires not only data to
identify patterns but also new methods and structured frameworks to interpret them.
The MITRE ATT&CK Framework, developed by the non-profit MITRE, fulfills this
need. It is a knowledge base of adversarial tactics and techniques, grounded in real-
world observations. ATT&CK emphasizes how adversaries interact with systems
during an attack, covering various stages of the adversary lifecycle and the plat-
forms they target.

For this project, we specifically utilize the MITRE ATT&CK Matrix—a structured
representation of known adversarial behavior in enterprise IT environments. This
matrix is a core component of the broader ATT&CK Framework and focuses on the
tactics and techniques used by threat actors to infiltrate and operate within systems
such as Windows, Linux, macOS, and cloud platforms (e.g., AWS, Azure, Google
Cloud).

Software Execution x

selection controls layer controls technique controls
8.2 = x B tHAF[|i€ e I
- B . Privilege . Credential . Lateral
Initial Access Per Defense Evasion Access v
9 i 10 i 18 i 12 37 14 i 25 9 17
Replication Native API BITS Jobs Process Obfuscated Files or Credentials Replication Screen Capture
Through Injection g ..\ Information (g/c) from Password Through
Removable Windows Hijack Execution Stores 5, Removable Data from Local
Media Management Flow ;101 Access Token Deobfuscate/Decode File and Directory Media System
Instrumentation Manipulation . i Files or Information Network Discovery
Drive-by Traffic Sniffing Lateral Tool Audio Capture
Compromise Command and Signaling Exploitation for Modify Registry Process Discovery Transfer
Scripting : Privilege 08 Credential Archive
valid Interpreter ¢, Valid Escalation Process Injection (g1, n Dumping ge, [System Network Exploftation of ~ Collected
Accounts 4 Accounts Contiguration Remote Data (g/q)
Expleitation for Hijack Execution M Rootkit Brute Discovery Services
Exploit Publie- Client Execution Account Flow 710y Force 5/, Clipboard Data
Facing Manipulation ;) Indicator Removal on System Owner/User Taint Shared
Application Shared Modules valid Host 5.q) Steal Web Discovery Content Video Capture
Browser Accounts , Session Cookie
External Remote Scheduled Extensions Access Token Query Registry Remote Automated
Services Task/Job 135 Boot or Logon Manipulation 5 o, Two-Factor Services 55, [Collection
Boot or Logon Autostart Authentication System Network
Hardware Software Autostart Execution o, i i i Software Data from
Additions Deployment Tools ~ Execution g 15 Evasion (/o) Discovery Deployment Removable
Group Policy Unsecured Tools Media
Phishing ;/5, Inter-P c if BITS Jobs Credentials ;) [l System Time
Communication ., i Client Software Discovery Internal Man in the
Supply Chain Binary Scheduled Hijack Execution Exploitation for Spearphishing Browser
Compromise ;.. il System Task/Job 15 o) Flow ;) Credential System Service
Services , ., External Remote Access Discovery Remote Data from
Trusted Services Abuse Elevation [Masquerading ;o) Service Network Shared
Relationship User Exscution ., Control Forced Peripheral Device Session Drive
Scheduled Mechanism ., , W Traffic Signaling ., [Authentication Discovery Hijacking .,
Task/Job) ! Data from Cloud
Boot or Logon Valid Accounts ;) Input Remote System Use Alternate [l Storage Object
Boot or Logon Initialization Capture 5y, Discovery Authentication
Initialization Scripts iy, Indirect Command Material ,,,, @ Data from
Scripts g/q) Execution Man-in-the- Application Window Configuration
Create or Modify Middle (, Discovery Repository |, .,
Create System Group Policy
Account ;. PIOCESS (40, Modification Modify Network Service Data from
Authentication [I] Scanning Information
Create or Modify [l Event Triggered | Rogue Domain Pracess ;) Repositories ;.
System Execution ;.. [l Controller Network Share
POGCESS (4, Steal Discovery Data Staged 5,
XSL Script Processing Application
Event Triggered Access Token Software Email
Execution ;0.6 Abuse Elevation Discovery ; Callection ;)
Control Steal or Forge
Implant Mechanism Kerberos Network Sniffing Input
Container Image Tickets 5/, Capture 5 ;)

FIGURE 2.1: MITRE Matrix representation, where every column is a
tactic with all its techniques below.

To understand better this system we have to think of it not as a matrix with

Chapter 2. Preliminaries 5

rows and columns representing features but as a dictionary of dictionaries (visual-
ization in Figure 2.1). It is organized around 14 high-level tactics: Reconnaissance,
Resource Development, Initial Access, Execution, Persistence, Privilege Escalation,
Defense Evasion, Credential Access, Discovery, Lateral Movement, Collection, Com-
mand and Control, Exfiltration, and Impact. These tactics represent the adversary’s
objectives. For example, the tactic Initial Access is described as follows:

Initial Access

The adversary is trying to get into your network.

Initial Access consists of techniques that use various entry vectors to gain
a foothold within a network. Techniques include spearfishing and ex-
ploiting vulnerabilities on public-facing web servers. Gained access may
be used for continued infiltration through valid credentials or external
remote services, or may be short-lived due to changing access controls.

Within each tactic are specific techniques. For Initial Access, there are 11 tech-
niques, including: Content Injection, Drive-by Compromise, Exploit Public-Facing
Application, External Remote Services, Hardware Additions, Phishing, Replication
Through Removable Media, Supply Chain Compromise, Trusted Relationship, Valid
Accounts, and Wi-Fi Compromise.

Here is an example of one of these techniques:

Content Injection

Adversaries may gain access and maintain communication with victims
by injecting malicious content into systems via online network traffic.
Instead of tricking users into visiting malicious sites, adversaries may
exploit compromised communication channels to manipulate or inject
content directly.

Methods of content injection include:

¢ From the middle: where the adversary intercepts and alters legiti-
mate client-server communications (distinct from Adversary-in-the-
Middle techniques focused on enterprise environments).

* From the side: where malicious content races the legitimate server’s
response to reach the client first.

Such attacks often exploit upstream infrastructure, such as an Internet
Service Provider (ISP), as seen in lawful interception scenarios.

This example illustrates how techniques describe the means used to achieve each
tactic’s objective. Because techniques delve into the actual methodologies employed
by adversaries, they could form the foundation of our classification system for at-
tacks, or even sub-techniques, which offer even more granular detail. However, we
will omit them at this stage to avoid unnecessary complexity, and will focus in the
14 tactics.

The MITRE documentation primarily provides natural language descriptions
and examples of tools or methods used for each technique. One of the project’s key
design challenges is the absence of lower-level indicators (such as specific command-
line inputs), which complicates direct mapping from data to techniques.

Chapter 2. Preliminaries 6

Nonetheless, MITRE ATT&CK is an internationally recognized, data-driven frame-
work that greatly facilitates the task of attack analysis and mitigation. This makes it
a valuable resource for the broader cybersecurity community, particularly for those
working with honeypot data as in the AIDE project. It also enables us to deliver
more impactful tools for public institutions like the ACC.

2.2 Understanding the Command Line

The command line interface (CLI) is a text-based interface used to interact with
operating systems and software by typing commands. CLIs require users to input
specific instructions using a keyboard. This form of interaction offers a high degree
of control and flexibility, particularly valued by system administrators, developers,
and attackers alike.

A typical command-line input consists of:

* A command: the main action to be performed (e.g., 1s, cd, curl).

¢ One or more options/flags: parameters that modify the behavior of the com-
mand (e.g., -1, -verbose).

¢ Arguments: additional information or targets for the command (e.g., file paths,
URLs).

For example, the command:
/bin/busybox wget http://malicious.example.com/payload.sh

uses busybox to invoke the wget utility and download a script from a remote server.
BusyBox is a single executable that provides minimalist versions of common UNIX
utilities, often used in embedded systems. In many attacks, adversaries exploit
BusyBox to run commands on compromised systems where traditional binaries may
not be available.

Understanding and interpreting this command-line activity is therefore essential
for accurate threat classification and effective response.

Chapter 3

Data

3.1 Collection of the Data: Honeypots and Honeyfarms

Honeypots are network-connected systems designed to collect information about
the intent, methods, and origins of cyberattacks. These systems are purposefully
crafted to closely resemble real environments, presenting themselves as legitimate
targets to adversaries and encouraging them to reveal their full range of tools and
techniques.

To achieve this, the GCA operates a honeyfarm consisting of more than 197 hon-
eypots distributed across 25 countries. These use ProxyPot honeypots to collect real-
time attack traffic. The standout feature of this technology is its ability to proxy
incoming traffic to actual devices, allowing the system to record full, unencrypted
Packet Capture files (PCAPs) for in-depth analysis. ProxyPot performs high-level,
automated analysis of these PCAPs, extracting valuable information across a wide
range of features. It supports multiple protocols, including FTP, HTTP, HTTPS,
ICMP, SFTP, SSH, and Telnet.

The data we receive is highly diverse. As shown in Table 3.1, one of the key fields
is allCommands, which lists all commands executed during a session. We will limit
our analysis to sessions that include at least one executed command.

TABLE 3.1: Some relevant fields of AIDE Data Using ProxyPot Tech-

nology

Field Description Field Description

_id Unique docu- _index Document index
ment identifier name

@timestamp Event recording session Unique session
time (ISO8601 identifier
UTC)

sessionLength Session dura- startTime Session start
tion (endTime - timestamp
startTime)

endTime Session end protocol Communication
timestamp protocol used

clientVersion Client software clientIP Intruder IP ad-
version dress

clientPort Intruder source as_org Organization as-
port sociated with IP

asn Autonomous city_name City location

System Number

Chapter 3. Data

country_name Country name category Session clas-
sification
(Scan/ Attempt/Intrusion)
allCommands All executed commands Fully emulated
commands Unix commands
hashes Downloaded virustotal VirusTotal analy-
malware file sis results
hashes
urls Accessed URLs country_code2 Two-letter coun-

try code

country_code3 Three-letter dma_code Designated Mar-
country code ket Area code
ip IP address latitude Location latitude
longitude Location longi- timezone IP timezone
tude

The deployment of ProxyPot technology in the honeyfarm began in November
2024. As mentioned, this upgrade enhances the realism of the emulated systems,
leading to improved coverage of real-world attack traffic. Earlier data, which has
already been studied in works such as Cristian Munteanu, 2021 and Rodriguez et
al., 2024, would lead to different conclusions and is excluded for consistency.

It is important to note that, despite these improvements, sophisticated adver-
saries may still identify honeypots after a few steps. Therefore, we expect the data
to reflect real-world attack patterns within those limitations.

3.2 First sight

To perform this analysis, we use attack data collected from November 2024 to Jan-
uary 2025—covering a full three months. During this period, considering only at-
tacks that include at least one executed command, we have a total of 8195845 entries.

With a first view of the data we can see a lot of commands are repeated or almost
the same. In fact, if we count the number of different commands that we have this
number reduces to 72365, with some commands appearing a lot of times (the most
common one appears 2370649 times, for example).

To avoid having to classify those huge amount of data, making it pass thorough
two different models we will normalize it by deleting non important information.
We used a function designed to preprocess and normalize command-line strings
found in our raw data. This standardization supports cleaner analysis and machine
learning by ensuring consistent formatting and reducing noise. Almost all functions
we used to build it were from Rodriguez et al., 2024 work.

This function performs the following transformations:

1. Bracket Removal: Square brackets [] are stripped using regex to clean en-
closing structures.

2. BusyBox Simplification: Any word immediately following /bin/busybox is
removed, standardizing BusyBox command calls, as they appear to be random
and we can not extract any information from them.

3. Root Pattern Replacement: Replaces occurrences of the pattern root : password
with the word root

Chapter 3. Data 9

4. Word Pair Replacement: Substrings of the form "word1
\nword2" are replaced by the placeholder word replace to generalize multiline
strings.

5. Empty String Filtering: Commands consisting solely of repeated single quotes
(e.g.,) are removed from the DataFrame.

6. Specific Command Removal: The command ‘w’ (possibly indicating a mini-
mal or non-useful entry) is explicitly filtered out.

7. Echo Simplification: Echo commands with flags and quoted strings (e.g., echo
-n "hello") are replaced with a generic form: echo "string".

From his functions, the one that reduces the dataset the most is the busybox
simplification. In the following example we can see how this works for most of the
cases. We know busybox allows you to run built-in commands by appending the
applet name. The applet or command BOTNET is not standard, so we can not know
what it does. Then, deleting it does not make us lose information because we did
not have it already.

Original:
sh; enable; system; shell; /bin/busybox BOTNET
Normalized:

sh; enable; system; shell; /bin/busybox

Then, after this normalization we get a much smaller dataset of only 619 classes
of normalized commands. We can take some conclusions of the variability of this
data if we look at plot 3.1.

100 A

90 1

80 A

70 A

60

50 A

40

30 A

2! 23 2 2’ 2?
FIGURE 3.1: Distribution of data in logarithmic scale.

We can see that with the most common command we have 30% of the data cov-
ered, and with the 4 more common commands we get more than 80% of it. This

Chapter 3. Data 10

unbalanced dataset don’t have to make us forget about the tail data. It is very im-
portant to analyze and understand when talking about cyberattacks. In 3.2 we have
a list of the 4 more common commands after the normalizing.

Command-Line Percentage | Number of Appearances

sh; ping; sh; shell; 28.92% 2370649
enable; system; /bin/busybox
/proc/self/exe; cat /bin/echo

enable; ; system; ; shell; ; 22.56% 1849582
sh; ; /bin/busybox

sh; enable; system; shell; 19.35% 1586255
/bin/busybox

sh; ping; sh; enable; 10.84% 888684
system; shell; linuxshell;
/bin/busybox

TABLE 3.2: Command-Line Usage Statistics

This normalization is useful to reduce the non-informative command-lines and
reduce drastically the number of commands, but the result can have no sense. We
can see in this four examples we have blank commands or commands without argu-
ments. That is why what we will be doing for the classification task is to use for each
normalized command class the most common non-processed example to represent
them, so the model understands it correctly.

Another thing we can observe in this first sight of the data before we classification
it is the homogeneity of data in terms of protocol used. We saw that ProxyPot could
support more than seven different protocols, but in the data we are analyzing we
have only two of them. Telnet is the most used, appearing in 8195075 entries, and
then we have SSH appearing 773 times.

11

Chapter 4

Methodology

The initial methodology proposed by the ACC involved using the OpenAl API to
label a substantial number of commands with the tactics they employed. With this
labeled dataset, the goal was to train a language model from scratch capable of clas-
sifying all commands as accurately as possible. However, as described in Section 1.1,
the limitations of pretrained models in understanding and classifying command-line
inputs made this approach infeasible.

As an alternative, we propose dividing the problem into two separate models:

* A first model that interprets and translates command-line inputs into natural
language. The input to this model is a raw command, and the output is a
description in English.

* A second model that maps the English description to the corresponding MITRE
ATT&CK tactics and techniques.

This two-model approach addresses the two main limitations separately: the
poor performance of general-purpose models on command or code understanding,
and the high number of classification labels. By decoupling the tasks, we can focus
on training specialized models with more targeted datasets and fine-tuning. This
was not feasible with the original task due to the lack of existing examples and la-
beled data.

Raw command

Command description
in English

List of tactics
identified

Chapter 4. Methodology 12

4.1 First Task

For the first task, we explore various approaches and evaluate them to identify the
most effective solution. The primary resource for this is the dataset NL2SH.

This dataset (Westenfelder et al., 2025) was designed to support the develop-
ment of models that generate command-line instructions from natural language.
The dataset comprises pairs of natural language descriptions and their correspond-
ing commands. It was compiled by merging and refining existing public datasets,
shown in Figure 4.1, many of which were scraped from platforms like Stack Over-
flow.

NL2Bash NL2CMD LinuxCommands | | text_to_bash tidr-pages (scraped)
9,305 rows 10,347 rows 17,450 rows 124 rows 20,595 rows
Lin et al., 2018 Ramesh et al., 2024 || Romit et al., 2024 | [Mali et al., 2024 Krishna et al., 2024

manually curated

T
combined and deduplicated
- \ 4
manually verified,
InterCode-Bash ranked and increased ‘ NL2SH-ALFA (teSt) d|s]o|nt NL2SH-ALFA (train)
224 rows }‘ 600 rows 40,939 rows

Yang et al., 2023 Ours, 2025 Ours, 2025

FIGURE 4.1: Source: Westenfelder et al., 2025

However, these datasets have two significant limitations: (1) the command-description
pairings are not always verified, and (2) the descriptions often vary in format and
may contain incorrect or inconsistent English. Therefore, we will use this data with
caution, complementing quantitative evaluation with qualitative, manual analysis.

One useful aspect of the dataset is that it is thoughtfully partitioned into training
and test sets. The training set contains more than 40,000 pairs (with the aforemen-
tioned caveats), while the test set includes 600 manually verified pairs like the five in
Table 4.1. We can see that there are not one but two command lines for each natural
language description. For our tests, we will only use the bash2 ones, as they are more
complete and specific usually. This verified test set greatly enhances the reliability
of our evaluation.

TABLE 4.1: Five examples of the verified test set

nl bash bash2

list open files 1sof lsof -P -i -n

create a copy of cp /testbed/hello.php cp /testbed/hello.php
/testbed/hello.php /testbed/hello-COPY.php /testbed/hello-COPY.php
named -v

/testbed/hello-COPY.php

print the current date ~ date date -R
and time

Chapter 4. Methodology

13

nl

bash

bash2

encrypt the file
setup_nl2b_fs_1.sh
using AES-256-CBC
with password
‘password’ and save it
to out.enc

openssl enc
-aes-2b6-cbc -in
setup_nl2b_fs_1.sh
-pass pass:password
-out out.enc

openssl enc
-aes-256-cbc -in
setup_nl2b_fs_1.sh
-pass pass:password
-out out.enc

Move files in
/workspace accessed
less than one day ago

find /workspace -atime
-1 -type f -exec mv {}
/5

find /workspace -type f
-atime -1 -print0 |
xargs -0 -I {} mv {} /

to directory /

Once we defined the dataset, we needed to define the models and methodologies
to be used. In this era, where many large language models (LLMs) are publicly
available, we considered it more practical to fine-tune pretrained models rather than
creating one from scratch. After experimenting with several options—and to avoid
the risk of getting lost in the vast landscape of LLMs—we selected the following
models for fine-tuning and comparison:

¢ Llama 3.2 Instruct 3B (Meta Platforms, Inc., 2024): A 3-billion-parameter model
based on transformer architecture. It is a general-purpose language model
trained for multilingual dialogue use cases, including agentic retrieval and
summarization tasks.

¢ Stable Code Instruct 3B (Phung et al., 2024): Also based on transformer archi-
tecture, this model is specifically trained for coding and software engineering
dialogues.

The choice of model size was constrained by the limitations of our virtual envi-
ronment; 3B was the largest model we could feasibly manage. Larger models would
likely yield better performance. Nonetheless, evaluating the performance of smaller
models is valuable in this project, especially for comparison with OpenAl’s models,
which we had initially planned to use.

4.1.1 Fine-Tuning

Our idea for the project was to apply to the both models a fine tuning using the
train set, and compare them to the its raw versions for the translation task. We
chose 500 command-description (the same for fine-tuning) both models) pairs from
the train set at random to do it. Fine-tuning was carried out using the LoRA (Low-
Rank Adaptation) method, a technique that injects trainable low-rank matrices into
specific layers of a pre-trained model to enable efficient task-specific adaptation with
minimal memory overhead.

In the technical aspects, we employed the PEFT (Parameter-Efficient Fine-Tuning)
framework from the peft library, which supports LoRA configurations. A LoraCon-
fig object was defined with key hyperparameters: rank r=8, scaling factor lora_alpha=32,
and dropout probability lora_dropout=0.1. This configuration modifies the attention
layers of the transformer to insert low-rank adapters while keeping the rest of the

Chapter 4. Methodology 14

pre-trained weights frozen, significantly reducing the number of trainable parame-
ters.

Tokenization was performed using the model’s native tokenizer with trunca-
tion and padding to a maximum length of 256 tokens. The dataset was mapped
accordingly to ensure uniform input shape for batch training. We specified a batch
size (per_device_train_batch_size=1), number of epochs (num_train_epochs=3), and
mixed precision training (fp16=True) to leverage half-precision floating. All this hy-
perparameters were chosen with the main objective of using the less memory and
GPU capacity as possible, as the neither the virtual machine I was using nor Colab’s
GPUs were capable of managing anymore of this batch size.

Overall, this fine-tuning pipeline leverages modern transformer tooling to ef-
ficiently adapt a large language model to a downstream code interpretation task,
while maintaining scalability and low computational requirements.

4.2 Second Task

The goal of this task is to classify natural language descriptions of system commands
into the corresponding MITRE ATT&CK tactics. This is a multi-label classification
task, meaning that each command can be associated with more than one of the 14
available tactics. Due to the limited number of labeled examples (only 30 commands
with associated tactic labels), we must employ techniques such as zero-shot and few-
shot learning, leveraging pretrained models to achieve satisfactory performance.

In conventional supervised learning, a model requires large amounts of labeled
data to learn to classify new examples. However, in many practical scenarios —
such as cybersecurity — labeled data is scarce or expensive to obtain. To address
this limitation, we explore zero-shot and few-shot learning techniques.

Zero-shot learning refers to the ability of a model to make predictions on tasks
it has never seen during training, by leveraging prior knowledge encoded in large-
scale pretrained language models. For example, a zero-shot model may infer the
most relevant MITRE tactic for a command description without having been ex-
plicitly trained on any examples of that mapping. In contrast, few-shot learning
involves adapting a model using a very small number of labeled examples — in our
case, 30 command descriptions paired with their corresponding MITRE tactics — to
improve its performance on a specific downstream task. These approaches are es-
pecially valuable in our setting, where only a limited annotated dataset is available.
The classification is approached through three complementary strategies described
below.

421 OpenAl Model

For this task, we used the general pretrained OpenAl gpt-4o0 model OpenAl, 2024,
deployed via Azure. The prompt used was as follows:

"You are a cybersecurity assistant helping map commands to MITRE
ATT&CK tactics based on their function and description. Use only
publicly available information and do not simulate execution. Respond
with a list of MITRE ATT&CK tactics in brackets. Remember these

are the tactics: [Reconnaissance, Resource Development, Initial
Access, Execution, Persistence, Privilege Escalation, Defense Evasion,
Credential Access, Discovery, Lateral Movement, Collection, Command
and Control, Exfiltration, Impact].

Chapter 4. Methodology 15

f"Given the following description of a simulation of an attack,
identify all MITRE ATT&CK tactics used. Description to analyze:
{sanitize_description(data.loc[i, ‘description’])}."

This lengthy and detailed prompt was necessary to bypass Azure’s content man-
agement filters. Simpler prompts consistently triggered the following error message:

"The response was filtered due to the prompt triggering Azure OpenAl’s
content management policy. Please modify your prompt and retry."

This issue was likely due to the prompt being flagged as a potential jailbreak
attempt.

4.2.2 Pretrained Model Specialized in MITRE Tactics Mapping

This model (Wei, 2024b) is a fine-tuned BERT-based classifier designed to map tex-
tual descriptions of commands or activities to MITRE ATT&CK tactics. It builds
upon the BERT architecture by incorporating case-based representations, meaning
it is trained to consider subtle linguistic cues in a context-sensitive way — preserv-
ing case distinctions (e.g., “PowerShell” vs. “powershell”) that can be semantically
meaningful in cybersecurity settings.

The dataset used for this fine-tuning (Wei, 2024a) consists of 14,000 examples of
natural language descriptions of attacks with their corresponding tactics. To under-
stand the mismatch with our data, consider some example descriptions from this
dataset:

During the 2015 Ukraine Electric Power Attack, Sandworm Team modified in-
registry internet settings to lower internet security.

ghOst RAT operators have used dynamic DNS to mask the true location of their
C2 behind rapidly changing IP addresses.

For Operation Honeybee, the threat actors stole a digital signature from Adobe
Systems to use with their MaoCheng dropper.

As we can see, these examples differ significantly from the kind of data we have.
This motivates our attempt to replicate the fine-tuning process of this model with
our much smaller dataset.

4.2.3 Similarity-Based Classification with Contrastive Fine-Tuning

To improve classification accuracy under limited supervision, we adopt a similarity-
based approach enhanced by fine-tuning with Contrastive Loss. Each data point con-
sists of a command description and a set of associated MITRE tactics. The tactic
set and their natural language definitions are stored in a dictionary mapping tactic
names to descriptions.

We use the all-mpnet-base-v2 sentence transformer model (Reimers and Gurevych,
2019) to encode both command descriptions and tactic definitions into a shared se-
mantic space. To adapt the model to our classification task, we employ a leave-one-
out (LOO) fine-tuning strategy, in which the model is updated using all but one
sample and evaluated on the held-out instance. By this way we can use all data to
train and there is no data leak in teh evaluation.

Chapter 4. Methodology 16

In each iteration, we construct a training set consisting of both positive and neg-
ative pairs:

* Positive pairs: A command description c paired with the definition d;“ of each
associated tactic t;’.

* Negative pairs: The same command c paired with a randomly sampled unre-
lated tactic definition d,” corresponding to t, ¢ {t;r}

These pairs are used to fine-tune the model using a Contrastive Loss, which en-
courages the embedding similarity to be high for positive pairs and low for negative
ones. When trying to use only positive pairs the performance was worse, assigning
almost every time all tactics to the command. To do it given embeddings f(c) and
f(d), the loss is defined as:

If(c) = (@) ify =1

Econ rastive —
st {max(O,margin— If(e) = f(d))? ify =0

where the label y € {0,1} denotes whether the pair is a true match, and the margin
controls separation for negative examples.

The model is fine-tuned for one epoch on the constructed training set in each
LOO fold. Once fine-tuning completes, the held-out test command c* is encoded
and compared to all tactic embeddings using cosine similarity:

sim(c*, t;) = cos(f(c*), f(d;))

Each tactic is predicted as relevant if its similarity score exceeds a threshold 7 (we
used T = 0.95 as it was the one reporting better results):

X {1 if sim(c*, t;) > T

yi= 0 otherwise

The dataset used for this few-shot learning task contains only 30 samples, which
were extracted from our main dataset. These include the 10 most common tactics,
10 moderately common ones, and the 10 least common, all manually labeled. The
dataset is highly imbalanced, as shown in Figure 4.2.

25

15

10

1T

o 1B

N .) \ e S
N a0 0™ e e «© o o o o ¢ o5
P I CallS: M S “a“ e o e

© \ X Q G
+ ¢ o P & 0q 3 o0 2O 27 A
© ‘\e‘\(’e e© O o 8 e a\\h Qj‘ et AN
o i‘(\“\\e @ (N“b(\ N W
@ e

FIGURE 4.2: Distribution of tactics in our labeled dataset.

Chapter 4. Methodology 17

The absence of examples for six tactics poses a significant challenge for our model.
However, it is important to consider that the type of data we aim to analyze is in-
herently imbalanced, as illustrated in Figure 3.1. Therefore, it is reasonable for the
model to specialize in classifying the most frequently occurring tactics.

18

Chapter 5

Evaluation

5.1 First task

To evaluate the quality of the translated natural language commands produced by
the models, we employed four complementary metrics: ROUGE, BLEU, BERT score,
and cosine similarity using TF-IDF embeddings. Each of these metrics quantifies the
similarity between generated descriptions and the ones in the given dataset, but they
do so in fundamentally different ways: ROUGE through recall-based n-gram over-
lap, BLEU through precision-based n-gram matching with a brevity penalty, BERT
Score through contextual semantic similarity, and TF-IDF cosine similarity through
vector-based comparison of term importance across sentences. Even though BERT
Score is the only metric that captures deep semantic meaning, the others—including
TF-IDF—still provide valuable, interpretable insights about surface-level and lexical
similarity between commands.

5.1.1 Evaluation Metrics

Cosine Similarity (TF-IDF)

Cosine similarity with TF-IDF (Term Frequency-Inverse Document Frequency) is
a vector-based metric used to evaluate the lexical similarity between two text se-
quences. Each sentence is transformed into a high-dimensional vector where each
dimension corresponds to a term, weighted by its frequency in the sentence and its
rarity across the corpus. The cosine of the angle between the two vectors reflects
their similarity:

A-B
cosine_similarity(A, B) = ——————
lAlBII
where A and B are the TF-IDF vectors of the generated and reference sentences,

respectively.

We included this metric to assess the lexical overlap between the generated com-
mand and the reference, independently of word order. While it lacks the semantic
awareness of contextual models like BERT, it provides a lightweight, interpretable
measure of whether the key terms used in both sentences are aligned.

ROUGE
ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a family of metrics
designed to evaluate the overlap between generated and reference texts. In our case,
we used ROUGE-L. This is a metric based on the Longest Common Subsequence

Chapter 5. Evaluation 19

(LCS), which allows comparison without requiring consecutive or contiguous n-
grams.

LCS(X,Y)

LCS(X,Y) . _2:P-R
length(Y)’

ROUGE-Lyecan = m/ 1= m

ROUGE'Lprecision =
where X and Y are the candidate and reference sequences, respectively.

We chose ROUGE F1 score primarily for its recall orientation: it measures if the
model-generated command includes relevant content from the reference. This is cru-
cial when evaluating whether critical semantic elements from the original command
are preserved.

BLEU
BLEU (Bilingual Evaluation Understudy) is a precision-based metric that computes
how many n-grams in the candidate text appear in the reference text. It is defined
as:

N
BLEU = BP - exp (Z wy log Pn)

n=1
where:

* puis the modified precision for n-grams of size n,

* w, are weights for each n-gram size (in our case uniform by default, e.g., w, =
0.25forn = 1to 4),

¢ BP is the brevity penalty to discourage excessively short candidates:
BP = {1ifc >r,exp(l—r/c)ifc<r }

with c and r being the lengths of the candidate and reference texts, respectively.

BLEU counts matching n-grams with a cap to prevent rewarding repeated words.
It is effective for identifying exact syntactic matches but is less sensitive to para-
phrasing. Despite this, BLEU remains a strong baseline and a widely recognized
standard, making it valuable for comparing system performance under reproducible
and consistent conditions.

BERT Score
BERT Score represents a newer generation of evaluation metrics based on deep con-
textual embeddings from pre-trained models such as BERT. Rather than relying on
surface-form n-gram overlap, BERT Score measures semantic similarity at the token
level in embedding space. The process involves:

1. Tokenizing both the candidate and reference using a BERT-compatible tok-
enizer.

2. Encoding each token using a BERT model to obtain contextual embeddings.

3. Computing a pairwise cosine similarity matrix between all candidate and ref-
erence tokens.

4. For each token, identifying the maximum similarity match in the other sen-
tence (either precision or recall direction).

Chapter 5. Evaluation 20

The scores we are using are precision, recall and F1.
Mathematically, for a candidate C = {cy, ..., ¢, } and reference R = {ry,..., 7 }:

1 & 1 &
Precision = -) maxcos(e(c;), e(r;)), Recall = p” Y maxcos(e(r;), e(c;))
i=1 J j=1 !

We use BERT Score to address cases where the model’s output may not match
the reference exactly in wording but retains semantic equivalence. This is common
in natural language tasks, where multiple phrasings can convey the same meaning.
BERT Score is particularly powerful in recognizing synonyms, paraphrases, and re-
ordering, which traditional metrics might penalize unfairly.

Summarizing, we have:

* Cosine Simmilarity of TF-IDF to observe similarity independent to the word
order.

* ROUGE that captures the degree to which critical elements from the reference
command are retained in the output, prioritizing content completeness.

e BLEU that provides a robust standard for measuring exact n-gram overlap and
is useful for benchmarking.

¢ BERT Score that offers deep semantic comparison, capable of rewarding mean-
ingful but non-identical reformulations.

Together, these metrics provide a balanced view: from surface-level lexical align-
ment (Cosine Similarity of TF-IDF and BLEU), through recall-based informativeness
(ROUGE), to deep semantic alignment (BERT Score). This expanded set of metrics
is especially important for the task of translating executable commands into human-
readable language, where both accuracy and preservation of meaning are essential.
By including both shallow and deep comparison techniques, we ensure that the eval-
uation reflects not only exact word overlap but also broader conceptual equivalence.

5.1.2 Results

We can see in the table 5.1 how the fine-tuned Llama model and the original Llama
one get the best results in the metrics, some of them very far from the Stable models.

Model Cos Sim BLEU ROUGE BERT Rec BERT Pre BERT F1

Stable 0.6327 0.0471 0.1977 0.8224 0.9004 0.8595
Llama 0.7338 0.3735 0.3544 0.9025 0.9137 0.9077
FT Stable 0.6481 0.1204 0.2555 0.8009 0.8824 0.8393
FT Llama 0.7153 0.3999 0.3593 0.9044 0.9037 0.9037

TABLE 5.1: Mean scores for each experiment across multiple evalua-
tion metrics

For further analysis and with the objective to chose the model that best does this
task, we will observe how this metrics are distributed in the following plots.

Chapter 5. Evaluation

0.8
0.6
0.4
0.2
0.0

1.000
0.975
0.950
0.925
0.900
0.875
0.850
0.825
0.800

0.95
0.90
0.85
0.80
0.75

st

st

st

BERT PRECISION

0.4
0.3

BLEU

0.8
0.7
0.6
0.5

0.2
0.1
0.0

st_ft Il_ft

1.00
0.95
0.90
. 0.85
0.80
0.75
- 0.70
Il st_ft Il_ft

BERT F1 1.0

0.9
0.8
0.7
0.6
0.5
0.4

0.3
st ft Il_ft

;

st

st

ROUGE

st_ft

BERT RECALL

Sl

st_ft

MILARITY

st_ft

FIGURE 5.1: Box plots for all of the evaluated metrics.

Il_ft

Il_ft

Il_ft

Chapter 5. Evaluation 22

After watching this plots we should have even less doubt on how Llama general
model outperformed the Stable one, focused in coding interpretation. In the follow-
ing line we will look at specific examples to see the issues that each model have in
this task.

We can start by watching some examples of translations and what does each
model output:

First example

Bash Command | Is -1

NL description | list files in the current directory

Stable This command lists the details of all files and directories in
the current directory in a long format. It includes details
such as file permissions, number of links, owner, group,
size, and modification time.<|im_end | >

Llama List the files and directories in the current directory in a
detailed, long format.

Fine-tuned Stable | List files in long format.

Response: List files in long format.

Explanation: List files in long format, which includes de-
tails such as file permissions, number of links, owner,
group, size, and modification time.

Example: " Is -1

Response: List files in long format.

Explanation: List files in long format, which includes de-
tails such as file permissions, number of links, owner,
group, size, and modification time.

Example: “*Is -1

Response: List files in long format.

Explanation: List files in long format, which includes de-
tails such as file permissions, number of links, owner,
group, size, and modification time.

Example: “*1s -1

Response: List files in long format.

Fine-tuned Llama | List files in long format with detailed information.

Second example

Bash Command | In -s /testbed/dir3/subdirl/subsubdirl/FooBar

NL description | Create a symbolc link in the
/testbed /dir3/subdirl/subsubdirl /FooBar to root folder

Chapter 5. Evaluation 23
Stable This command creates a symbolic link
named '"FooBar" that points to the directory
"/testbed/dir3/subdirl/subsubdirl/". The symbolic
link "FooBar" is a shortcut to that directory, allowing users
to navigate to it more easily.<|im_end | >
Llama Create a symbolic link named "FooBar" in

the current directory, pointing to the file
"/testbed /dir3/subdirl/subsubdirl/FooBar".

Fine-tuned Stable

Create a symbolic link to a file or directory.

Response: Create a symbolic link to a file
or directory named "FooBar" in the directory
"/testbed/dir3/subdirl/subsubdirl/".

Response: Create a symbolic link to a file
or directory named '"FooBar" in the directory
"/testbed /dir3/subdirl/subsubdirl/".

Response: Create a symbolic link to a file
or directory named "FooBar" in the directory
"/testbed/dir3/subdirl/subsubdirl/".

Response: Create a symbolic link to a file
or directory named "FooBar" in the directory
"/testbed/dir3/subdirl /subsubdirl/".

Response: Create a symbolic link to a file or directory
named "FooBar" in the directory "/testbed /dir3/

Fine-tuned Llama

Create a symbolic link to a directory in the testbed direc-
tory.

Third example

Bash Command

tind /workspace -name "*.txt" | xargsIs -1d

NL description

List the details of all the text files in /workspace directory.

Chapter 5. Evaluation

24

Stable

This command finds all .txt files in the /workspace direc-
tory and lists their details (including file type and permis-
sions, ownership, size, and modification/creation date).
Here’s a breakdown of the command: 1. ‘find /workspace
-name "*.txt": This part of the command locates all files
named "*.txt" in the /workspace directory and its subdirec-
tories. 2. “| xargsls -1d’: This part of the command takes the
output from the ‘find’ command (a list of file paths), passes
them as arguments to ‘Is -1d’, which lists the details of the
tiles and directories. The ‘-1d” option tells ‘Is” to display the
file type and permissions, ownership, size, and modifica-
tion/creation date.

In summary, this command lists the details of all .txt files
found in the /workspace directory and its subdirecto-
ries.<|lim_end | >

Llama

Find all files with the extension ".txt" in the "/workspace"
directory and its subdirectories, then display detailed infor-
mation about each file.

Fine-tuned Stable

Find all files with the extension ".txt" in the /workspace di-
rectory and list their details.

Response: Find all files with the extension ".txt" in the
/workspace directory and list their details using the "Is -1d"
command.

Explanation: The command will search for all files with the
extension ".txt" in the /workspace directory and list their
details using the "ls -1d" command. The "-1" option will dis-
play the details of the files and the "-d" option will display
directories themselves, not their contents.

Example: “* find /workspace -name "*.txt" | xargs Is -1d **

Output: “ drwxr-xr-x 2 user group 4096 Jan 1 12:00
/workspace/filel.txt drwxr-xr-x 2 user group 4096 Jan 1
12:00 /

Fine-tuned Llama

List all files with the extension ".txt" in the "/workspace"
directory and display their detailed information.

We can see that the

both Stable models give strange outputs, even the finetuned

one. We tried prompt tuning but we did not find the way to get a response similar
tho the one we want, that is, as short as concise as possible for the model to be faster.

Exploring the Llama models, they both perform good for the BLEU and ROUGE
score, but we have some sentences with 0 (or very close to 0) score. We can observe in
5.2 that the both are correlated, but we realized there are very extreme examples. We
will study this examples with a very low score in both metrics, and examples with
a big difference between metrics. We will do it only for the normal Llama model

because the fine-tuned

one is analogous.

Chapter 5. Evaluation

25

ROUGE Score
© © ©
> o @

o
N

0.0{ +-

0.0 0.2 0.4 0.6 0.8
BLEU Score

FIGURE 5.2: BLEU vs ROUGE score for Llama model

Bash commands

bind -P

Given description

print all readline bindings

Model description | Bind a process to a specific port.
BLEU score 2.351252065921332e-78
ROUGE score 0.0

TABLE 5.3: Llama example with the lowest BLEU and ROUGE scores.

Bash commands

wc setup_nl2b_fs_1.sh

Given description

Count the lines, words, and characters in
setup_nl2b_fs_1.sh

Model description | This command sets up a Bash script named
‘setup_nl2b_fs_1.sh’.

BLEU score 0.416678667227553

ROUGE score 0.0

TABLE 5.4: Llama example with very low ROUGE but high BLEU

scores.

Chapter 5. Evaluation 26

We can see here a big problem, as some (the worst) Llama outputs are not se-
mantically close to the given description, even though they have high BERT score.
After all this analysis we have that:

¢ The Llama models are better than the Stable ones in all the metrics evaluated.
They all have the same size and Stable should be more specialized, but the
Llama one must have been trained better.

* Most of the descriptions are correct, but we will have to deal with a tail of
incorrect ones when using any of those models.

e BERT isn’t able to capture the semantics of the sentences, probably because
of the small size model that we had to use. Then, the non-semantic metrics
are the ones that we have to guide with. That point will makes us chose the
fine-tuned Llama, as it has better scores in ROUGE and BLEU.

5.2 Second Task

The second task addresses a multi-label classification problem, where each input can
be assigned one or more labels (tactics). The goal is to correctly predict all relevant
labels associated with a given attack. The dataset used is the one described in 4.2.3,
as is the only one we have.

5.2.1 Evaluation Metrics

To measure model performance in this multi-label context, we employ micro-average
and macro-average precision, recall, and F1-score.

Micro-average
Micro-averaged metrics compute global performance by aggregating all true posi-
tives, false positives, and false negatives across labels before calculating the metric:

Y, Th Y, Th
, Recallicro =
Y TP + Y, Fp oimieo = & Tp Ly N

Precisionmjcro =

2 - Precisionmijcro - Recallmicro
I31micro =

Precisionmjcro + Recallpicro

Micro-averaging is sensitive to the performance on frequent labels, making it a
good measure of overall performance in imbalanced datasets.

Macro-average
Macro-averaged metrics treat all labels equally, calculating metrics per label and
then averaging them:

L TP,

1
Recallmacro = 7) 751 FN:

.. 1
Precisionmacro = i
I=1

i TP,
-1 TP, + FP/’

1 L
Flmacro = L Z F1,

This provides a better view of how well a model performs across all classes,
especially underrepresented ones.

Chapter 5. Evaluation 27

5.2.2 Results

We begin by examining the proportion of exact matches—instances where all pre-
dicted labels were correct and complete:

Model Fully Correct Predictions (%)
Pretrained MITRE 10.00
Similarity-based 20.00
OpenAl 10.00

TABLE 5.5: Percentage of fully correct multi-label predictions.

In Table 5.6 we can see the performance on the mentioned metrics, and how our
trained model outperforms the other ones in all metrics.:

Model Micro Average Macro Average

Precision Recall F1 Precision Recall F1

Pretrained MITRE 0.65 058 0.61 0.52 044 047
Similarity-based 0.72 0.68 0.70 0.61 0.57 0.59
OpenAl 0.40 035 037 0.28 022 024

TABLE 5.6: Micro and macro averaged precision, recall, and F1-scores
for each model.

The OpenAl model, with the worst performance, exhibited a significant flaw: it
almost half of the times predicted no labels at all, despite every sample having at
least one tactic. This systematically damages its recall and reliability.

Even though our trained model is the best among the three, we cannot fully trust
its results due to the following reasons:

* The overall accuracy is very low.

¢ The data imbalance showed in 4.2.3 leads to biases in the model. For example,
when we examine accuracy scores for each tactic, we find that most of them
(11) have an accuracy above 85%, while the Discovery tactic only achieves 43%.
In general, the accuracy tends to be lower for the more common tactics, which
is a significant concern.

On the positive side, this is the only one of the three models that is scalable—that
is, it has the potential to improve its performance as more data becomes available.
This is something the other two models cannot achieve.

28

Chapter 6

Conclusions and future work

This project set out to tackle two interrelated challenges: understanding and clas-
sifying command-line activity gathered from honeypot systems using the MITRE
ATT&CK framework, and developing a practical, interpretable interface that could
assist in cybersecurity incident analysis. Our aim was to go beyond conventional
approaches and explore cost-effective, domain-specific models that avoid reliance
on commercial large language models (LLMs).

Summary of Results

The first part of our pipeline, which focused on understanding and translating CLI
(Command Line Interface) commands into natural language, achieved encouraging
results. The model demonstrated a good capacity to generalize and produce coher-
ent descriptions for a broad variety of commands. These outcomes are particularly
promising considering the relatively modest computational resources used. We be-
lieve that with a moderate increase in computing capacity and some targeted op-
timizations—such as refining regular expressions to catch structural errors in pars-
ing—further improvements are readily attainable.

This efficiency is not just technically beneficial; it is also economically and envi-
ronmentally significant. Avoiding the use of large-scale LLMs like GPT-40, which are
computationally expensive and energy-intensive, makes our approach more scalable
and accessible for long-term deployment in resource-constrained environments. It
shows that understanding CLI behavior does not necessarily require heavy, general-
purpose models, especially when a well-adapted, lightweight model can perform
comparably well on focused tasks.

On the second objective—classifying commands into MITRE ATT&CK tactics—the
performance of large language models proved to be underwhelming. Despite their
general strength in natural language processing, models like GPT-4 did not achieve
a level of accuracy that would make them reliable for unsupervised classification
in cybersecurity contexts. In particular, their performance was limited by the com-
plexity and imbalance of the classification task: with over 14 defined tactics and
scarce data for many of them, the models often produced biased or incorrect pre-
dictions. These limitations underline the necessity of domain-specific solutions for
threat analysis.

Nevertheless, these models did show some utility as a tool for exploratory data
analysis (EDA). Their ability to generate preliminary classifications or identify po-
tentially interesting patterns could make them useful in an assisted analysis work-
flow—provided that a human analyst verifies the output.

Chapter 6. Conclusions and future work 29

Limitations and the Need for Data

A recurring limitation throughout the project was the scarcity and imbalance of la-
beled data. This affected both training and evaluation, particularly in the classifi-
cation component. The lack of representative examples for some tactics hampered
the model’s ability to generalize effectively across all classes. Consequently, the re-
liability of the system—especially in an automated security context—remains con-
strained.

We also note that although our custom model architecture is cost-efficient, it still
lacks the robustness and generalization needed for deployment in a real-time oper-
ational environment. Greater data availability, particularly from diverse honeypot
systems, will be essential to overcome this barrier.

Future Work

For the first task (command understanding), future improvements could involve:

¢ Scaling up the computational infrastructure to train and fine-tune models more
effectively.

* Enhancing pre-processing techniques, particularly through the use of more ad-
vanced regular expression patterns, to catch subtle syntax errors and ambigu-
ities in command parsing.

For the second task (tactic classification), the most critical direction is data acqui-
sition:

* Expanding the training dataset with more examples across all MITRE tactics
to address the class imbalance problem.

¢ Exploring data augmentation methods to synthetically increase the number of
labeled samples per class.

Another possible line of research could involve prompt engineering and fine-
tuning of commercial LLMs like GPT-4 for this specific task. However, this direction
is less appealing due to the high cost and limited scalability of commercial APIs,
which run counter to the project’s goal of developing economically viable and sus-
tainable solutions.

Final Remarks

This work illustrates the potential and limitations of applying machine learning
techniques to cybersecurity problems such as command-line interpretation and tac-
tic classification. While much work remains to be done—particularly in data acquisi-
tion and model refinement—the results obtained thus far suggest that with targeted
efforts and resource-aware design, it is possible to build tools that support cyberse-
curity analysts in meaningful and efficient ways. As the field progresses, we hope
our contributions provide a foundation for further, scalable advancements in auto-
mated threat classification.

30

Appendix A

Source Code

The reader can find the source code with the implementation explained in this doc-
ument in

https://github.com/HugCamps/TFM-HoneyPotClasification.git

There is each one of the eight notebooks used, as long as a README file that
explains each of them.

The dataset and trained models used in this project are not publicly available due
to privacy and data-sharing restrictions.

The project was developed using both Google Colab and a virtual machine pro-
vided by ACC. As a result, file paths and data-loading methods may vary across
notebooks, and a unified environment was not used.

https://github.com/HugCamps/TFM-HoneyPotClasification.git

31

Bibliography

Cristian Munteanu Said Jawad Saidi, Oliver Gasser Georgios Smaragdakis Anja Feld-
mann (Oct. 2021). “Fifteen Months in the Life of a Honeyfarm”. In: IMC 23: Pro-
ceedings of the 2023 ACM on Internet Measurement Conference, pp. 282-296. URL:
https://doi.org/10.1145/3618257.3624826.

Meta Platforms, Inc. (2024). Llama 3.2 3B Instruct. https://huggingface.co/meta-
1lama/Llama-3.2-3B-Instruct. Released Sept 25, 2024; Accessed: 2025-06-11.

OpenAl (2024). GPT-40: OpenAl's Omnimodal Model. https://openai . com/index/
gpt-4o. Accessed: 2025-06-15.

Phung, Duy et al. (2024). Stable Code 3B.

Reimers, Nils and Iryna Gurevych (Nov. 2019). “Sentence-BERT: Sentence Embed-
dings using Siamese BERT-Networks”. In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing. Hong Kong, China: Association
for Computational Linguistics, pp. 3982-3992. DOI: 10.18653/v1/D19-1410. URL:
https://aclanthology.org/D19-1410.

Rodriguez, David Rosado et al. (2024). “Enhancing Cybersecurity Intelligence through
Machine Learning: Clustering and Forecasting Analysis of Honeypot Data”. In:
Agencia de Ciberseguretat de Catalunya. URL: https://ciberseguretat . gencat .
cat/web/ .content /04 _actualitat/Noticies /2024 /PDF /Paper - reviewed -
honeypots-IA.pdf.

Wei, Sarah (2024a). MITRE ATT&CK v16 Case-Based Dataset for Tactic Classification.
https://huggingface. co/sarahwei/MITRE-v16-tactic-bert - case-based.
Dataset used to train the MITRE-v16-tactic-bert-case-based model. Accessed: 2025-
06-13.

— (2024b). MITRE-v16-tactic-bert-case-based. https : //huggingface . co/sarahwei/
MITRE-v16-tactic-bert-case-based. Accessed: 2025-06-13.

Westenfelder, Finnian et al. (2025). “LLM-Supported Natural Language to Bash Trans-
lation”. In: arXiv: 2502 . 06858 [cs.CL]. URL: https://arxiv.org/abs/2502.
06858.

https://doi.org/10.1145/3618257.3624826
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://openai.com/index/gpt-4o
https://openai.com/index/gpt-4o
https://doi.org/10.18653/v1/D19-1410
https://aclanthology.org/D19-1410
https://ciberseguretat.gencat.cat/web/.content/04_actualitat/Noticies/2024/PDF/Paper-reviewed-honeypots-IA.pdf
https://ciberseguretat.gencat.cat/web/.content/04_actualitat/Noticies/2024/PDF/Paper-reviewed-honeypots-IA.pdf
https://ciberseguretat.gencat.cat/web/.content/04_actualitat/Noticies/2024/PDF/Paper-reviewed-honeypots-IA.pdf
https://huggingface.co/sarahwei/MITRE-v16-tactic-bert-case-based
https://huggingface.co/sarahwei/MITRE-v16-tactic-bert-case-based
https://huggingface.co/sarahwei/MITRE-v16-tactic-bert-case-based
https://arxiv.org/abs/2502.06858
https://arxiv.org/abs/2502.06858
https://arxiv.org/abs/2502.06858

	Abstract
	Acknowledgements
	Introduction
	Objectives

	Preliminaries
	MITRE ATT&CK Framework
	Understanding the Command Line

	Data
	Collection of the Data: Honeypots and Honeyfarms
	First sight

	Methodology
	First Task
	Fine-Tuning

	Second Task
	OpenAI Model
	Pretrained Model Specialized in MITRE Tactics Mapping
	Similarity-Based Classification with Contrastive Fine-Tuning

	Evaluation
	First task
	Evaluation Metrics
	Results

	Second Task
	Evaluation Metrics
	Results

	Conclusions and future work
	Source Code
	Bibliography

