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Enhancing Few-Shot Learning with Large Language Models

by Joel DIEGUEZ VILA

Recently, Few-Shot Learning has gained significant momentum in the machine
learning community. This field focuses on enabling models to learn from extremely
limited data, often just a handful of examples per class. Unlike traditional deep
learning, which relies on large-scale datasets, few-shot learning requires novel, ef-
ficient strategies that challenge conventional assumptions and fundamentally shift
the paradigm toward "learning to learn", for faster, more adaptable models.

In this work, we explore the most common approaches to few-shot learning and
introduce our own method. Building upon the SemFew framework, we propose a
metric-based meta-learning approach using Prototypical Networks, enhanced with
a semantic support module. This module uses class descriptions from WordNet,
refined through a Large Language Model, to provide high-quality semantic embed-
dings that guide the model in understanding novel classes. Our proposed model
is remarkably simple yet highly effective, achieving competitive performance with
state-of-the-art methods, specially in 1-shot scenarios (only one example per class).

We validate our method across three widely used few-shot classification bench-
marks: CIFAR-FS, FC100, and MinilmageNet. The results consistently demonstrate
the effectiveness of incorporating semantic guidance to face unseen classes. Further-
more, we present an in-depth study of modern LLMs, evaluating their performance
across different prompting strategies, and investigating multiple sources of data for
generating the best semantic representations. This analysis offers valuable insights
into how semantic guidance can be optimized for few-shot learning.

Overall, this work demonstrates the power of combining simple metric-based
learning with rich semantic embeddings, offering a practical and competitive alter-
native to more complex architectures while encouraging new directions for future
research in few-shot learning.

The source code is available at: https://github.com/jdieguvil5/TFM-SemFew.


HTTP://WWW.UB.EDU
http://mat.ub.edu
https://github.com/jdieguvi15/TFM-SemFew
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Chapter 1

Introduction

1.1 Motivation

In recent years, the exponential growth of digital life and online activity has gener-
ated a massive amount of publicly available data from different sources like social
networks, multimedia platforms, mobile devices, and distributed sensors. This phe-
nomenon has enabled the creation of large annotated datasets such as ImageNet,
which contains over 14 million images classified into more than 20,000 categories,
and has served as a turning point in the evolution of deep learning. Thanks to the
availability of this large-scale data, deep neural network models have achieved un-
precedented advances. Models like the Transformers, which are highly dependent
on huge volumes of data to function properly, have revolutionized many fields such
as natural language processing and computer vision. This phenomenon has consol-
idated an approach to machine learning based on big data and intensive computa-
tion.

However, this trend contrasts with a fundamental limitation in many real-world
scenarios: the scarcity of annotated data. Although the total volume of data gener-
ated is very high, the data available in each specific domain or per individual device
is often very limited, with only a few examples per class or scene. This phenomenon
is known as the "long tail" effect, where most classes or environmental conditions
are poorly represented in the dataset. For example:

¢ In medicine, rare disease diagnosis have an extremely low number of samples
per category.

¢ In language processing, many dialects, indigenous languages or specialized
contexts have little data available.

¢ In computer vision, the detection of rare animals or unusual scenes.

Even if we have lots of data, it is often not applicable to specific domains where
collecting labeled data is difficult, costly, or simply not feasible. Therefore, the need
arises to develop artificial intelligence systems that are able to learn from limited
data and successfully identify it.

Few-Shot Learning (FSL) is the branch of machine learning that seeks to tackle
this problem. Its concept is inspired by the robust reasoning and analytical capabili-
ties of humans: we are capable of recognizing a new class or object with only a few
examples, thanks to our ability to abstract relevant features, compare patterns and
apply previous knowledge in order to learn from them.

Moreover, today’s most powerful Al models, Large Language Models, can ef-
fortlessly generate detailed class descriptions. We could explore the idea of using
these information to significantly simplifying the process of learning to recognize
new concepts.
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1.2 Context of the Project

In early work on few-shot learning for image classification, researchers focused pri-
marily on visual-based approaches [Dong et al., 2022b, Hao et al., 2023], extracting
features directly from image data. Despite many successes in this direction, visual-
only models struggle when the only data support for a class are periphery samples,
specially if there is only one, i.e. in one-shot scenarios. Hence, the idea of applying
auxiliary information to help the model better understand the data.

From this perspective, the field began to incorporate semantic information as an
auxiliary source of knowledge. Instead of relying only on what the image looks like,
we add some textual information to tell the model something about what the class
actually means. In the beginning, some works used just the class names [Chen et al.,
2023b, Yan et al., 2021, Wang et al., 2019], however, just a name is not enough to
understand a new class. Even for humans, if a person never saw a zebra, just the
name would not be enough to be able to identify them, they would need a definition
like "a horse with black and white stripes". Moreover, some class names like "organ"
or "ear" are polysemous, which can further confuse the model. Therefore, it is very
important to collect high-quality semantics.

That is where Large Language Models (LLMs) come into play. It would be
very consuming to manually write high-quality definitions to all of the different
classes. Furthermore, few-shot learning requires the fast adaptation to new un-
known classes, thus, we need a way to automate the process. LLMs have shown
strong capabilities in understanding and generating natural language: generate com-
prehensible text, analogies, paraphrase, and they are easily adaptable to new do-
mains, making them a perfect tool for this task.

This approach has already been attempted in the paper Semantic-Aided Few-Shot
Learning (SemFew) [Zhang et al., 2024], which demonstrated state-of-the-art perfor-
mance in few-shot classification. Building on this foundation, the goal of this thesis
is to enhance the effectiveness of semantic guidance by carefully designing and opti-
mizing the prompts used to generate class descriptions, as well as introducing some
modifications to their integration into the model.

1.3 Objectives

The main objective of this thesis is to explore how Large Language Models can be
used to generate high-quality semantic representations of visual classes, with the
aim of improving few-shot learning performance. Specifically, our objectives are:

¢ Study the state-of-the-art in few-shot learning, establishing a foundation for
analysis and meaningful comparison of results.

¢ Analyze the approach proposed by SemFew, understand its strengths and lim-
itations, and propose new paths for improvement.

¢ Design and evaluate different prompt formulations for LLMs to produce the
most informative and precise class descriptions.

¢ Validate the results across different classification tasks and datasets.

1.4 Contributions

This thesis makes several key contributions to the field of few-shot learning:
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1.5

Extensive analysis on the different possible prompt formulations and LLMs,
and their resulting definitions, quantitatively and qualitatively.

A new proposal for prompting to improve the class definitions used in previ-
ous works.

An accuracy improvement of SoA of over 1% in few-shot testing over prior
approaches using similar architectures.

Validation of results in multiple datasets widely used for few-shot learning:
minilmageNet, CIFAR-FS, and FC100, demonstrating the robustness and gen-
eralizability of our approach.

Organization of the Report

This report is structured into five main chapters:

1.

Introduction introduces the motivation, context and objectives behind this
work, and highlights its main contributions.

Scientific Background presents the knowledge required to understand the the-
sis. It begins with the most focal research topic of the thesis: Few-Shot Learn-
ing (FSL), its differences from traditional machine learning and the principal
approaches used in the field. Then, we cover other topics relevant to the thesis
such as Large Language Models (LLMs) and machine learning ensembles.

Methodology describes the proposed model, how is its architecture composed,
how we get the semantics for the classes and how to integrate them with the
visual features.

. Validation presents the validation process and experimental results. It ex-

plains the experimental setup: datasets used, evaluation metrics, ... and re-
ports the main findings, along with an ablation study to study the impact of
individual components.

Discussion reflects on the results, analyzes the advantages and limitations of
the approach. It also presents possible future lines of development and reflects
on the future for few-shot learning.

Finally, in the annexes, we include additional figures and results that further
illustrate and complement the main findings of our work.






Chapter 2

Scientific Background

The Scientific Background chapter provides an overview of the basic concepts, method-
ologies and challenges required to understand the project. It is intended for readers
with basic notions of machine learning, including the basics of supervised learn-
ing, neural networks and training paradigms such as transfer learning. If the reader
needs a more detailed explanation of these topics, they can refer to my previous
work [Diéguez, 2023].

In this section, we begin by formally introducing the main topic of this thesis:
the few-shot learning problem, including its task formulations, motivations, and
different approaches to tackle it. Following this, we explore other necessary topics
of machine learning that will be used for the development of the proposed model,
such as Large Language Models, Prompt Engineering, and Ensembles.

2.1 Few-Shot Learning

Few-Shot Learning (FSL) is an advanced technique within the field of Machine Learn-
ing that allows an artificial intelligence model to learn to make accurate predictions
from a very limited number of labeled examples. Unlike traditional approaches,
which require large volumes of data to achieve good results, FSL tries to optimize
the generalization capacity of the model from only a few examples per class.

This paradigm is based on learning general representations (i.e. patterns, ab-
stract features and latent structures), which can be transferred to new tasks with
little or no additional retraining. This means that the model not only learns to clas-
sify certain classes, but also to extract the features that allow it to identify new classes
and differentiate them. In other words, it develops a deeper understanding of the
structure of the problem, which allows it to adapt quickly to unfamiliar contexts
[Tyukin et al., 2021].

2.1.1 Differences with traditional Machine Learning

The main differences between traditional Machine Learning and Few-Shot Learning
are:

¢ Amount of data: traditional learning requires a large amount of data (thou-
sands or millions of examples per class), while few-shot works with very small
datasets (as few as 1-10 examples per class).

* Inspiration: traditional learning is based on statistical modeling and curve
fitting, while few-shot is inspired by human cognition and fast pattern recog-
nition from limited examples.
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* Model architecture: traditional training typically uses simpler, task-specific
architectures, while few-shot learning relies on more sophisticated architec-
tures such as meta-learning or siamese networks, spcialized for fewer data.

¢ Task Adaptability: traditional learning often needs significant retraining or
fine-tuning for a specific task, while few-shot can quickly adapt to new tasks
without retraining the entire model. For example, adding a new class of rare
animal to a typical image classification model would require lots of retraining
but few-shot would be prepared for it.

2.1.2 Problem formulation

Based on the commonly used formulation proposed in [Wang et al., 2020].

Let Cpase be a set of base classes with a large number of labeled examples, and
Chovel a disjoint set of novel classes, where only K labeled examples per class are
available. The objective is to generalize from Cp,ge to Chovel-

The structure of FSL training and evaluation generally follows the N-way K-shot
framework, where:

¢ N is the number of classes in a task.
¢ K is the number of labeled examples (or "shots") per class.

For example, in 3-way-2-shot we classify images among 3 classes based on 2 exam-
ples given from each class, like in Figure 2.1. The most common cases are 5-way-5-
shot, 5-way-1-shot (typically called one-shot), and 5-way-0-shot (called zero-shot). But
this last one is quite different, as it does not use supporting images, thus it requires
different strategies.

Training task 1 Training task 2 Test task 1

Support set Support set Support set

FIGURE 2.1: The few-shot task example for 3-way 2-shot.

In N-way-K-shot classification, the model undergoes multiple episodes of train-
ing, each consisting of one or more training tasks. Likewise, the model is evaluated
via test tasks, following the same structure. Each training and test episode comprises
disjoint subsets:
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e The support set S = {(x;,y;)}]'K, which contains K labeled training samples
for each of the N classes. The model uses this data to learn representations or
prototypes for each class.

e The query set Q = {(x;,y;) ]Ai 1» Which contains unseen examples from the
same N classes. The model is evaluated using a loss function £ based on its
ability to correctly classify these examples using only the information learned
from S.

The model is trained over multiple episodes, each consisting of different tasks
sampled from Cp,ge.

As out objective it to generalize well to unseen data, rather than focusing on
recognizing any specific classes, each training task includes different classes.

During each episode, the model minimizes a loss function over the query set:

Cr= @( Y 0(fo(5:8),y)

xy)€Q

where fj is the few-shot model parameterized by 6, which uses information from
S to make predictions on Q, and £ is the loss function (normally cross-entropy). With
the goal to optimize the parameters 6 that minimizes the expected loss over query
sets from new tasks 7T:

min E7; [L7:(fo, Si, Qi)]

An important aspect of FSL is that the model is evaluated on test tasks built
from entirely unseen classes, i.e. not used during training. This ensures the model’s
ability to generalize, rather than memorize specific classes.

2.1.3 Approaches to FSL

There are a few different approaches to tackle few-shot learning [Song et al., 2022,
Tsoumplekas et al., 2025]. The main ones are Data Augmentation, Transfer Learning,
Meta-Learning, Multimodal Learning, and Continual Learning. Each category offers
different assumptions and strategies to overcome data scarcity. Let us see them in
detail in the following.

1. Data Augmentation

Data augmentation refers to techniques that synthetically increase the number of
training examples by generating new data points from existing ones. Consequently,
we "solve" the small dataset by adding artificially generated new data.

It normally consists in applying various transformations (e.g. rotations, crop-
ping, color scale changes, ...) to the pre-existing data, as shown in Figure 2.2. There-
fore, increasing the size and diversity of the training dataset, which also helps to
avoid overfitting.

However, it also has some disadvantages. It is very limited by the diversity of the
original dataset. Thus, with very few data, adding more variations of it may cause
some risk of overfitting. Moreover, there are some domains where transformations
are hard (e.g. in medical imaging).
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Flip Rotation Blur

Original
image

Augmented images

FIGURE 2.2: Data Augmentation applied to the image of a cat.

2. Transfer Learning

Transfer Learning is a property of ML models that consists on using knowledge
learned from a task for a different related task in order to boost its performance. For
example, the knowledge gained from training a model to recognize cats on images
can greatly help to learn to recognize dogs in images.

It is based on the principle that the base of the model, i.e. extracting the main
features of the data, is quite similar among different related tasks. Thus, it us useful
for all of them. The later layers specified on the particular task.

Transfer learning plays a crucial role in FSL. A common and effective approach is
to first train a model on a large-scale dataset (such as ImageNet for image classifica-
tion), to learn how to extract features. This results in a strong backbone that captures
general useful representations to various tasks and domains. Once the backbone is
trained, the model can be adapted to a new task involving a small number of exam-
ples by training only the final layers on top of the frozen features.

Moreover, the pretraining can be effectively carried out using Self-supervised
learning (SSL), which enables the model to learn general-purpose representations
without the need for manual labeling (e.g. contrastive learning methods like Sim-
CLR [Chen et al., 2020], MoCo [Majumder et al., 2021], DINO [Zhang et al., 2022]).

3. Meta-Learning

Meta-learning, also known as “learning to learn”, is a learning paradigm that con-
sists on training on different tasks in an episodic training mechanism. Each episode
simulates a different unseen task, so the model has to learn a large number of more
general auxiliary tasks, building high-level strategies or initialization states to adapt
to all tasks. During this process, the model samples both the data and task space,
developing an abstract learning ability. Therefore, it seeks to train a model not just
to perform a specific task, but to rapidly adapt to a distribution of new tasks, which
makes it more flexible and efficient in low-resource scenarios. Figure 2.3 shows an
example of meta-learning training.

Meta-learning is not the same as FSL. Few-shot learning is the goal it is aming at,
and meta-learning is a strategy to get there. Although, it is currently considered the
best approach to address the FSL problem.
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Hotdog Not Hotdog

& X

Cat Dog R 2
i META LEARNING = 2N y =
ALGORITHM AT '
Flower Tree

Lion vs
O ’ Gazelle

FIGURE 2.3: Graphical representation of meta-learning. The model is
trained on different tasks per episode and then evaluated on differen-
tiating lions vs. gazelles.

One could say that meta-learning is more oriented to future tasks instead of op-
timizing the current one. However, it is only effective when the testing and training
tasks are relatively similar and it is very dependent on the network structure. There
will always be a domain gap between training and testing. So it is important to
properly define the model structure and the task selection per episode.

There are three main approaches to meta learning: metric-based learning, model-
based learning and optimization-based learning.

Metric-based

This approach focuses on learning an embedding space that captures the main
important parts of the data and use a distance metric, predefined or learned, to mea-
sure the similarity between pairs of data points. The feature representation extractor
can be the same for all tasks: Task-Invariant Representations or tailored for each:
Task-Specific Representations.

Some examples of Task-Invariant Representations are:

¢ Siamese Networks [Koch et al., 2015], where both the support and the query
are encoded using the same exact network and the matching is done between
each query sample and each support sample.

¢ Matching Networks [Vinyals et al., 2016], which employ different embeddings
for support and query. Then, the prediction is calculated using an attention
mechanism using cosine similarity between query and support embeddings.

¢ Prototypical Networks [Snell et al., 2017], based on learning feature embed-
dings that can be clustered to form a single class prototype representation (like
calculating the mean). Then, the query samples are classified based on prox-
imity to the class prototypes. Figure 2.4 illustrates the process.

* Relation Networks [Sung et al., 2018] are similar to Prototype networks but
instead of using a nearest class prototype algorithm, they use an MLP.

On the other hand, some examples of Task-Specific Representations:
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(a) Few-shot (b) Zero-shot

FIGURE 2.4: Graphical representation of Prototypical Networks. In

the few-shot scenario, the prototype is generated with the mean of

the support samples. In the 0-shot, it is extracted from external data
not coming from the support

e TADAM [Oreshkin et al., 2018] introduced modulation on the feature extrac-
tor based on the task using learnable shift and scale vectors per convolutional
layer. Moreover, the loss function incorporates learnable metric scaling to han-
dle different distance metrics.

* FEAT [Ye et al., 2020] uses self-attention to contextualize each support sample
relative to others in the set.

e SSFormers [Chen et al., 2023a] is transformer-based method that contextual-
izes local image features both within an image and across other support set
images. It detects the most relevant patches based on the task and uses sparse
attention over them to improve the matching.

¢ Other works like [Hu et al., 2022a] and [Hu et al., 2022b] propose to finetune
the backbone for each task individually using different methods like cross-
sample attention, background patch fusion or masked segmentation training,
with the objective of having more separable and compact feature representa-
tions by enhancing intra-class coherence.

Optimization-based

Optimization is a crucial part of any branch of deep learning. In this case, as
we are facing different tasks with very limited data, there is no guarantee that we
will reach an optimal solution. Optimization-based meta-learning aims to learn op-
timization procedures to improve the optimization process across different tasks
without multiple iterations or large volumes of data. It consists on "learning how
to optimize". It can be categorized into three types: learning the update rule, learn-
ing the initial parameters, and learning to control the update rule.

¢ Learning the update rule. Inspired by the principle that learned features are
better than hand-crafted ones, they replace hand-designed optimizers, like
Stochastic Gradient Descent (SGD) [Ruder, 2017], with learned update rules.
This is achieved by casting the design of the rule as a learning problem.

[Andrychowicz et al., 2016] proposes to use an LSTM (Long Short-Term Mem-
ory RRN) to control the update steps. LSTMs are suitable for this since they
maintain past information in their internal state, allowing for previous updates
to inform next ones. Meta-Learner LSTM from [Ravi et al., 2016] extends this
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by using LSTMs for both initialization and update strategy. However, these
methods do not scale well and have trouble capturing any dependencies be-
tween different model parameters. Instead, [Li et al., 2017a] formulates the
optimization as a Reinforcement Learning (RL) problem to learn update poli-
cies via guided policy search.

¢ Learning the initial parameters. They focus on learning initial parameters that
converge to optimal parameters with only a few iterations.

The famous Model-Agnostic MetaLearning (MAML) [Finn et al., 2017] was
the first work that aimed to tackle this. It proposes to cast meta-learning as
bi-level optimization, in two different levels. The inner loop adapts the initial
parameters to the task at hand and the outer loop optimizes the initial param-
eters using the errors across training tasks. Therefore, it captures the shared
information across tasks in the initial state, simplifying as much as possible
the optimization within each task.

After this, many models tried to improve it. MAML++ [Antoniou et al., 2019]
added an outer-loop loss dependent on the inner-loop loss, training stabiliza-
tion and other improvements. [Behl et al., 2019] introduced hypergradient de-
scent. REPTILE [Nichol et al., 2018] used first-order approximation of MAML
that simplified the calculation by avoiding second-order derivatives. [Rusu et
al., 2019] proposed different initialization for different tasks.

¢ Learning to control the update rule. Just learning to update the rule can some-
times lead to non-convergence and they lack the main inductive bias of gra-
dient descent. Therefore, this methods focus on learning how to control the
update of a known optimizer. For example, [Li et al., 2017b] proposed to adapt
MAML by also learning the learning rates and learning directions for each pa-
rameter. However, this also doubles the number of parameters, increasing the
computational complexity. [Lee et al., 2018] proposed to learn which parame-
ters are shared across tasks and use task-specific masks to select them.

Model-based

In the model-based approach, the meta-learner learns to develop the model’s
architecture in such a way that it can quickly adapt it to new tasks. There are two
main categories: Architecture-based and Memory-based.

* The Architecture-based approach uses an "internal memory". In the beginning,
RRNs were used [Duan et al., 2016], using the internal state to generate models
and adapting the problem as reinforcement learning to quickly adapt to new
tasks while remembering previous general data. Or Gated Recurrent Units
(GRU), with a fast learner that learned to adapt to each task while the slower
optimizes the policy across tasks.

Later, more complex and general architectures were proposed. SNAIL [Mishra
et al., 2018] combines temporal convolutions with self-attention to learn from
sequences of experience. This allows us to attend to relevant patterns over
longer time scales.

* Memory-based methods use external memory module to retain relevant in-
formation related to rare classes. For example, Meta Networks [Munkhdalai
et al.,, 2017] uses an external memory to store "fast weights", which are tem-
porary, task-specific parameters for rapid adaptation across tasks. It consists
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on a meta-learner that generates these weights, which allow the base learner to
quickly adapt to each new task. Other approaches rely on external memories to
store refined sample representations. Memory-Augmented Neural Networks
(MANN ) [Santoro et al., 2016] store sample representations in memory and
retrieve them using soft attention.

4. Continual Learning

Continual learning, also known as "lifelong learning", addresses the challenge of
learning from a stream of new tasks or data distributions over time while retaining
previously acquired knowledge. It has to maintain a balance between stability (pre-
serving past knowledge) and plasticity (learning new information), a core dilemma
known in continual learning as the stability-plasticity dilemma. Unlike traditional
machine learning, where all data is accessible at once, continual learning is based on
incremental updates without catastrophic forgetting, i.e. the model does not worsen
its performance on earlier tasks when learning new ones. This is particularly use-
ful in real-world scenarios where data often arrives in small batches and models
must learn from only a few examples per task. Continual learning allows systems to
adapt continuously and efficiently, without retraining from scratch whenever new
information becomes available, as shown in Figure 2.5.

Continual Learning
Machine Learning Model

Data Stream Up-To-Date
Data Application

) 0%

— N ‘

FIGURE 2.5: Continual Learning diagram

$
N )

Several techniques have been developed for continual learning. Regularization-
based methods, such as Elastic Weight Consolidation (EWC) [Kirkpatrick et al.,
2017], penalize changes to model parameters that are important for previous tasks,
thus preserving past knowledge. Replay-based approaches use a memory buffer to
store and replay a subset of previous data during training on new tasks, ensuring
that past experiences are revisited and not forgotten.

In contrast, dynamic-architecture-based methods expand or adapt the model’s
structure to include new tasks without interfering with previously learned ones.
Progressive Neural Networks [Rusu et al., 2016], allocate a new neural network col-
umn for each incoming task. Instead of modifying the parameters of previous tasks,
the new column connects laterally to earlier columns through frozen weights. There-
fore, the model is able to transfer useful knowledge while preventing interference.
This design ensures that previously learned tasks remain intact while still enabling
the system to adapt to new information.
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While meta-learning and continual learning have a very similar objective: learn-
ing on many different tasks, they differ fundamentally in their assumptions. Meta-
learning focuses on learning to quickly adapt to new tasks by learning shared pat-
terns across tasks during training and continual learning deals with a dynamic and
ongoing stream of tasks, where the same model accumulates knowledge over time
and retains it across tasks.

The main advantages of continual learning are real-time adaptability and no
need for retraining from scratch. But they also present some disadvantages: sen-
sitivity to task order, limited memory capacity for replay methods, and the inherent
difficulty of simultaneously learning new tasks and preserving performance on old
ones.

5. Multimodal Learning

Multimodal learning enhances few-shot learning by integrating information from
multiple data modalities, such as text, images, and audio, to compensate for the lack
of samples. This approach is inspired by human learning, where knowledge is rarely
acquired through a single sense. Instead of relying only on limited visual exam-
ples, multimodal FSL draws information from richer contextual clues provided by
other modalities. Furthermore, multimodal approaches benefit from transfer learn-
ing across different domains. For example, it can use semantic descriptions in text to
guide the visual classification of novel images. Thus, it compensates to some extent
the lack of single-modal data in FSL.

For instance, Contrastive Language-Image Pretraining (CLIP) [Radford et al.,
2021] learns powerful representations by aligning image and text embeddings in a
shared space. This is great for FSL as this enables classification of unseen images
using only their textual descriptions or class names. Even without visual examples,
the model can infer what it might look like through linguistic context alone.

However, there are limitations. Multimodal models require large and curated
datasets with carefully aligned modalities (e.g. each image with its proper descrip-
tion), which can be hard to obtain. Additionally, the alignment can be noisy, it may
be ambiguous, incomplete, or inconsistent with the visual content. For example, a
caption like “a person doing something interesting” provides little concrete infor-
mation for classification.

In this work, we will try to use multimodal learning to improve the classification
of images with the aid of some class descriptions obtained using an LLM.

2.2 Large Language Models

Large Language Models (LLMs) are large generative deep neural networks designed
to process and generate human language. Their defining characteristics are their
scale, being composed of billions or even trillions of parameters, and their pretrain-
ing strategy, which allows them to understand language and basic world knowl-
edge. Famous examples of LLMs include the GPT (Generative Pretrained Trans-
former) by OpenAl, Google’s Gemini, Meta’s LLaMA, DeepSeek...

Technically, modern LLMs are built upon the transformer architecture, intro-
duced by [Vaswani et al., 2017]. In particular, LLMs use an autoregressive variant
of the transformer, where the model generates text by predicting one token at a time
based on previous generated tokens. This structure allows them to be trained as
generative models that can produce coherent, contextually appropriate text.
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LLMs are pre-trained on vast amounts of data using self-supervised learning,
a form of unsupervised learning where the ground truth is derived directly from
the input data itself. The model learns by solving proxy tasks that require under-
standing the structure and meaning of language. Common pretraining objectives
include masked language modeling, i.e. predicting missing words in a sentence (see
the example in Figure 2.6), and sentence order prediction, where the model must
determine the order of the sentences in a paragraph. This procedure grants them
the ability to understand grammar and languages and provides lots of knowledge
about the world.

eating walking z00
- [15% | 5% | .. | 0%
Prediction
Language model
Random T T T T T T T
Masking The cat is [MASK] some food A
Input The cat is eating some food

FIGURE 2.6: Example of masked language modeling. One word is
hidden in the sentence and the Language model has to guess it based
on the sorrounding words.

Later, LLMs are typically fine-tuned with supervised learning on curated, task-
specific datasets. This step helps the model follow human prompts more reliably
and safely and allows them to perform on real-world applications.

In recent years, LLMs have also expanded into multimodality, moving beyond
text to incorporate other data types such as images, audio, and video. Thanks to
their vast world knowledge and powerful pattern recognition abilities, multimodal
LLMs can interpret images with natural language prompts, answer questions about
visual content, generate image captions, ...

2.21 In-Context Learning

LLMs are great for any Natural Language Processing (NLP) tasks, such as transla-
tion, summarization, question answering, and reasoning. But they also accumulate
great knowledge about the world, so they can apply it to solve new tasks. Fun fact is
that this ability was not programmed directly, it emerged as models got bigger and
were trained on more data.

In-Context Learning (ICL) is a key feature of large language models where they
"learn" new tasks without changing their internal weights. Instead of retraining, the
model is conditioned by a few examples from the prompt and it is able to generalize
the pattern purely from context. For example, as we will see later in this thesis, this
mechanism enables zero-shot, one-shot, and few-shot image classification without
being never been explicitly trained on them.

Compared to traditional meta-learning, ICL is much more fast, flexible, and easy
to use, as it does not require any parameter updates or training. However, it is not
very reliable as it is sensitive to prompt design, it does not retain memory between
uses, and can fail on tasks that require deep reasoning or structured adaptation.
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2.2.2 Prompt Engineering

As previously discussed, prompts are fundamental to how LLMs operate. They
define both the communication interface and the specific function the model is ex-
pected to perform. Therefore, the branch of Prompt Engineering has gained a lot
of popularity recently, becoming a very fundamental part of any interaction with
LLMs.

Prompt engineering refers to the process of designing and optimizing input prompts
to guide the behavior of LLMs, since it defines the ICL tasks.It is different for each
model and takes some time to adjust.

Techniques such as chain-of-thought prompting [Wei et al., 2022] have also shown
that guiding the model to reason step-by-step can significantly improve performance
on complex tasks like arithmetic or logic. More recently, methods like "automatic
prompt generation" [Zhou et al., 2022] or "instruction tuning" [Wang et al., 2022]
have enabled LLMs to generalize better across unseen tasks. As models become
more powerful but also more opaque, prompt engineering serves as an interface for
control and interpretability.

2.3 Ensembles in Machine learning

Ensemble methods are a very powerful strategy in machine learning. It consists on
improving the model performance by combining the outputs of multiple models to
produce a single, often more robust and accurate prediction. The core idea is that
models by themselves may make errors in different ways, but aggregating diverse
"opinions" (e.g., different architectures, training strategies, or modalities), the en-
semble can correct for individual weaknesses and take advantage of complementary
strengths.
Ensemble strategies can be categorized into several types:

1. Bagging (Bootstrap Aggregating) [Breiman, 1996]: Models are trained inde-
pendently on random subsets with replacement (bootstrapping) of the data,
and their outputs are averaged or voted upon. This approach reduces vari-
ance without increasing bias, making it effective for models sensitive to data
changes.

One classical example of bagging is the Random Forest [Breiman, 2001], where
multiple decision trees are trained on random subsets of the data and features.
The final prediction is typically made through majority voting (for classifica-
tion) or averaging (for regression). Despite their simplicity, Random Forests re-
main a strong baseline in many tasks due to their robustness and interpretabil-

ity.

2. Boosting: Models are trained sequentially, where each new model focuses on
correcting the mistakes of its predecessors. Well-known examples are Ad-
aBoost [Freund et al., 1997], and Gradient Boosting Machines like XGBoost
[Chen et al., 2016].

3. Stacking Wolpert, 1992: Multiple models are trained on the same data and
their output is combined by a meta-learner trained to learn the optimal way to
integrate them. Unlike bagging or boosting, stacking typically uses different
types of algorithms trained on the same dataset, and the meta-learner learns
how to best combine their outputs.
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In this work, we focus on meta-learning approaches, specifically metric-based
methods, which are the ones that are having most success nowadays. In particu-
lar, we build upon Prototype Networks using the mean, a very simple but effective
approach to classify images. Also, we take on some multimodal learning, as we
incorporate another modality data in the form of text class descriptions.

Moreover, we will use LLMs to generate the definitions, we use an LLM. In this
case, prompt engineering serves as a crucial tool to refine the semantic representa-
tions.

Finally, we use both the only-visual approach and the semantic-aided approach
at the same time, combining their different inductive biases to generate better pre-
dictions in a stacking ensemble approach.
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Chapter 3

Methodology

In this section, we present our model for few-shot classification. Our approach
builds upon the SemFew framework [Zhang et al., 2024]. Our primary contributions
focus on enhancing the semantic alignment module to improve overall performance.

We present the overall structure of the model in Figure 3.1 and our proposal for
the semantic module in Figure 3.2.

The model is quite simple. During training, text descriptions and class images
are encoded, concatenated, and passed through the Alignment module, which is
trained to minimize the distance between each sample and the class prototypes.
During testing, the frozen modules combine semantic features and text encodings
to form class prototypes, which are then used to classify queries based on similarity
to the query image encodings.

Training
Semantic Text
module Encoder
Semantic
69—) Alignmen
t

&

-

Ii | Vision
“.—' Il Encoder
LR T

Reduce distance to
J* class prototype

Testing

- Semantic Text
m module Encoder
Semantic
E}—) Alignmen
t

Vision
Encoder
support
P . Choose closest
& \ision * class prototype
3 Encoder
query

& Trainable | Frozen

FIGURE 3.1: Diagram of the training and testing stages of the model.

Our method follows a metric-based meta-learning approach, specifically using
the Prototypical Network paradigm. We compute a prototype for each class by fus-
ing the data provided by the support samples and the semantic alignment. Then,
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Semantic Module

¢ "Anapple typically has a smooth, glossy

i skin that varies in color from vibrant red, i

sunny yellow, to fresh green, often with 1

| subtle streaks, speckles, or a faintwaxy |

sheen. Its shape is spherical to slightly
oblong, ...

E “fruit with red or
5 " yellow or green skin
------------- and sweet to tart
class name crisp whitish flesh",
___________ Image Base64
Ecnoder image

class images

FIGURE 3.2: Diagram for the Semantics module. The class name, its

WordNet description and images from the class are possible inputs

for the Online LLM, who will generate the final description of the
class.

for each query sample, we predict its class by measuring the distance between its
embedding and each class prototype.

Additionally, our approach falls within the Multimodal Learning category, as it
integrates information from both visual and textual modalities. Furthermore, it can
be viewed as a stacking ensemble, because we combine two different approaches to
classification and learn the proper way to combine them.

3.1 Visual-Only Approach

Few-shot learning datasets rely on two disjoint datasets: a base set Dpase = { (%, 1) |
X € XpasesrY € Cpase} used for learning a feature space, and a novel set Dyovel =
{(x,¥) | x € Xnovel, ¥ € Cnovel} used for evaluation, where x is the image, y is the
class label and C is the label set. It is important to note that the label sets are disjoint:
Chase N Crovel = .

During evaluation, an N-way K-shot task is constructed from the Doy}, using

a support set S = {(x;,y;)}1iX containing N different classes and K examples per

class, and a query set Q = {(x;,y;)}2iM containing M examples per class. The
model has to classify each query image into one of the N classes.

In our approach, we will define a class prototype and classify the query images
based on the similarity between its embedding and each class prototype. A simple
yet effective strategy to generate the class prototypes, is to use the mean encoding of
the samples of the class. Therefore, for class t, its prototype would be denoted as p;

and would be defined as:

p=rgr L f(x) @)
|St| X €Sy
where &; is the support set for class t and f is the image encoder function. We
will call this visual-only prototype as proto. This is our naive approach and it will
be improved in the following sections.
Then, for each query image g, its predicted class would be:

. exp(d(q, p1))
7 = argmax P(y = t) = argmax (3.2)
te{1,..,N} te{1,..,N} Zil\il exp(d(q, pi))
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where d() is a similarity function which can be the cosine similarity function:

-b
d(ab) = 27 .
(8:0) = Gl (3.3)

Or the negative of the euclidean distance:

da,b) = —lb—al? = — Y (b —a)’ (54)

i=1

where (a - b) is the inner product and || || is the norm.

3.2 Semantic Module

The naive approach just mentioned works pretty good but we will improve it using
our Semantic Module, shown in Figure 3.2.

As discussed before in this work, some methods tried boosting class knowledge
of the model by simply incorporating the encoded class names. However, we can
improve it. We propose to transform the class names into short WordNet definitions
and expand them into high-quality semantics.

First, we need to handpick the most appropriate WordNet definition for each
class. This was necessary because many class names are polysemous, and the de-
fault WordNet entry was often inaccurate. Moreover, in some cases, such as "aquar-
ium_fish", which is composed of two words, the term lacked any entry in the Word-
Net dictionary. We also experimented with using an LLM to automatically select
the most accurate definitions, but the results were very lacking. We tried to contact
the authors of SemFew for clarification on their WordNet definition selection pro-
cess, but, unfortunately, we never received any response. Given the fundamental
role of the descriptions for the process of generating semantics in our method, we
ultimately decided to select the definitions manually, and generate the missing ones.

Once the definitions are ready, we use the LLM to improve them. In this step,
we experimented with many different prompting strategies, which will be discussed
in the Validation section of the report. Some included incorporating images to the
prompt, mentioning the most confusable classes for the class, or even returning the
previous output of the same LLM. Our final proposal and the prompt that achieves
the best results is:

The following is a definition of the class "{class})’: "{definition}”. Using this as context
(only if useful), write a short visual description to help an Al model recognize "{class}” based
on appearance alone. Do not include other classes. One paragraph only.

The resulting descriptions are much better, with rich details truly describing the
visual appearance of the classes and their distinguishing features with respect to
others.

3.3 Semantic Alignment

After obtaining the high-quality semantics in the step before, now we need to incor-
porate them into the model so that it can use the information to make better class
prototypes. The Semantic Alignment module aims to enhance class prototypes by
aligning multimodal information (visual and semantic) to generate the class cluster
centers.
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As shown in Figure 3.1, the image encoding and the semantic are concatenated
into one long feature vector which is fed to the Alignment module. This module will
fuse both sources of data to generate an improved prototype.

Contrary to intuition, we deliberately chose a minimal design for the module.
In the few-shot learning paradigm, there is very limited data, and a complex model
would risk overfitting. We kept the architecture as simple as possible, a two-layer
MLP. The design of the Semantic Alignment module is illustrated in Figure 3.3.

Semantic Alignment

FIGURE 3.3: Diagram of the Semantic Alignment module. It is com-
posed by two linear layers with weights W; and W, and an activation
function ¢ in between.

As shown in Figure 3.1, this module is the only one that we train, the rest are
pre-trained and frozen.

During training, we encode every image and its corresponding class description
and concatenate them. The resulting representations are fed to the Alignment mod-
ule to make a prototype proposal. The module is updated to minimize the distance
between each proposal and the center of each class, generated using the mean of all
available images for the class. The objective function to optimize is the following.

Let V denote the visual features, T the text features and C the class centers. The
Semantic Alignment module learns an alignment between V & T and C using the
following loss function:

min £ (a((v & T) W)Wy, c) , (3.5)
Wi, W2
where W; and W, are learnable parameters and ¢ is an activation function.

During testing, we use a N-way K-shot set that is randomly sampled from the
novel set. For each image in the support set, we encode it and its class description
using the visual encoder and the text encoder respectively. The result is concatenated
and passed through the Semantic Alignment module, now frozen. This represents
the feature vector for each support sample. The class prototype is the mean of the
feature vectors for all K support samples of a class. We will call it the generated
prototype or gen_proto, or r; in equation (3.6):

K
n== Y h(V,&T) (3.6)
KiH
where V; are the visual features of the image, T; are the text features of the class, and
h() is the Semantic Alignment function.

This method already outperforms the naive prototype approach mentioned in
the introduction of this section, where the class prototypes are computed using only
the visual features:

1 K
i=1
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However, to further improve the performance of our approach, we combine the two
approaches together. This helps to keep the results more grounded in the visual
aspect and acts as a residual layer, ensuring that we do not lose any relevant visual
information. The merging is performed using convex combination regulated by a k
factor:

pr =kri+ (1 —k)uy, (3.8)

where k € [0,1] is the fusion factor, r; is the generated prototype and u; is the
naive prototype.

We considered traning k as a new learnable parameter of the model, but the re-
sults showed that its performance was stable over a wide range of values. Therefore,
we decided to select the best performing value based on the training results.

Once the refined prototypes are obtained, we classify each query image by iden-
tifying the class whose prototype is closest to the image’s encoded representation.
This is done using the same prediction formula as in the naive approach (Equa-
tion (3.2)), using the cosine distance as the similarity metric.
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Chapter 4

Validation

In this section, we present the results of our experiments. We begin by stating the
experimental setup, followed by an evaluation of our final proposal and its perfor-
mance compared to state-of-the-art methods. Finally, we present a detailed ablation
study to justify the key design decisions, with special emphasis on the prompt selec-
tion.

4.1 Experimental Setup

In the following, we describe the specific conditions under which our experiments
were conducted and their specific implementation details.

Our work builds upon the work from SemFew framework [Zhang et al., 2024],
which was the foundation for both our codebase and evaluation protocol. It was our
baseline to surpass. In most of the testing, we recreated and evaluated their code and
ours under the same conditions to ensure a fair comparison and isolate the impact
of our proposed changes to the Semantic Module. We recreated their performance
on our machine and evaluated both results using the same metrics.

4.1.1 Datasets

Dataset Image | Split Description
Size
CIFAR-FS 32x32 | 64 train, | Simple, low-resolution dataset with high

RGB 16 val, | inter-class similarity. Widely used in our
20 test experiments.

FC100 32x32 | 60 train, | More robust split based on superclasses
RGB 20 wval, | (12/4/4 split). Reduces information leak-
20 test age across splits by grouping semantically
related classes together. More challenging
than CIFAR-FS.

MinilmageNet | 84x84 | 64 train, | Higher resolution and greater visual diver-
RGB 16 wval, | sity. More complex and realistic for real-
20 test | world scenarios.

TABLE 4.1: Table describing tje datasets used.

We evaluate the proposed method on three established FSL datasets: CIFAR-FS
[Bertinetto et al., 2019] and FC100 [Oreshkin et al., 2018] from the CIFAR-100 dataset
[Krizhevsky, 2009] and MinilmageNet [Vinyals et al., 2016] from ImageNet [Deng
et al., 2009]. Each dataset has its classes already split into train/val/test to evaluate
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few-shot learning capabilities. Each class has 600 images. More information about
the datasets in Table 4.1.

4.1.2 Implementation details
Architecture

Our model is composed of three trainable components: the vision encoder, the text
encoder, and the semantic module.

¢ Vision Encoder. The majority of our experiments were done using a pre-
trained ResNet-12 backbone [He et al., 2016], due to its good results and fast
computational speed, which allowed us to evaluate results faster. To validate
our approach, we also evaluated performance with Swin-T [Liu et al., 2021],
which is another typical benchmark, and CLIP [Radford et al., 2021]. The out-
put dimension for each encoder is: 640 for ResNet-12, 768 for Swin-T, and 512
for CLIP.

¢ Text Encoder. In this case, we focused on the CLIP pre-trained text encoder.
Prior works also considered using BERT [Devlin et al., 2019], however, there
are many insights stating that CLIP outperforms BERT in this context [Zhang
et al., 2024; Yan et al., 2022; Chen et al., 2023c], so we decided to focus on it.
For both the CLIP text and vision encoders, we used the open-source imple-
mentation from OpenCLIP [Cherti et al., 2022], which outputs 512-dimensional
embeddings.

¢ Semantic Alignment Module. To combine visual and textual embeddings,
we use a very lightweight Semantic Alignment module consisting of two fully
connected layers with a LeakyReLU activation function [Maas et al., 2013] in
between. The hidden layer’s dimension is 4096 and the output dimension is
the same as the visual embedding.

Semantics module

The semantics module, detailed in Figure 3.2, supports many different usage proto-
cols to generate the text descriptions. The semantics can be extracted using the class
names, randomly selected images of the class or WordNet descriptions. The input(s)
chosen will be fed to the LLM with the proper prompt to generate the detailed de-
scription. Some of the protocols also allow to resend the output text to the LLM to
refine it with different criteria.

We experimented with different state-of-the-art LLMs. There is summary of their
characteristics in Table 4.2.

The LLMs where chosen to be varied, have state-of-the-art performance and be
free (or at least inexpensive). It was also valued that they had good results and low
latencies in their free version. Multimodal input for both text and image was also
important, as it was required for many of our tests. To access them, we used the
OpenAl, GenAl or Groq APlIs.

Training Protocol

During training, we freeze the weights of the pre-trained encoders (both visual and
text) and train only the alignment module.
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Model Origin Params Description
GPT-4 OpenAl, ~1.76T Strong reasoning and instruction-
2023 following capabilities; most famous
model. GPT-3.5 was used in SemFew.
LLaMA-3 Meta, 2024 | 8B Very low latency, especially in Groq API;
widely used in our experiments.
LLaMA-4 Meta, 2025 | 17B active, | Mixture-of-Experts architecture with 16
Scout 109B total | experts; very limited free access.
LLaMA-4 Meta, 2025 | 17B active, | Mixture-of-Experts with 128 experts;
Maverick 400B total | very limited free access.
Gemini-2 Google, N/A Faster, simplified version of Gemini 2; fa-
Flash Lite 2024a mous for multimodal capabilities (text,
image, audio, video).
Mistral Mistral Al 24B Compact and efficient.
Small 3.1 2025
Gemma-3 Google, 27B Open-source model; we used the largest
2024b available version.
Qwen-2.5 Alibaba, 72B Open-source model, particularly good at
2024 recognizing common objects in images.
DeepSeek | DeepSeek- | 37B active, | Open-source model using Mixture-of-
R1 Al 2025 671B total | Experts; great detail.

TABLE 4.2: Summary of LLMs used in this work.

All experiments were run on Kaggle Notebooks using an NVIDIA P100 GPU. We
use a batch size of 128 and the Adam optimizer [Kingma et al., 2015] with a learning
rate of 1 x 10~%, which decays after 30 epochs by a factor of 0.1. The model is trained
for a maximum of 50 epochs. We save the best-performing model on the validation
set and use it for final testing.

Evaluation Protocol

We use the standard N-way K-shot few-shot learning settings, using 600 randomly
sampled tasks. We focused on 1-shot and 5-shot and we used 15 query samples per
class.

For each experiment, we report the mean accuracy through all tasks and the 95%
confidence interval.

4.2 Few-Shot Results

Table 4.3 summarizes the performance of our approach compared to other state-of-
the-art methods on CIFAR-FS, which is our primary evaluation dataset. Our main
goal for this work was to outperform our baseline, which is inspired by the SemFew
framework!, and so we did, even achieving state-of-the-art results for the Few-shot
classification task on CIFAR-FS, improving on the main benchmarks.

1t is worth noting that the accuracy values reported for SemFew in the original paper and the
baseline results obtained empirically do not exactly match. In some cases, such as with CIFAR-FS,
the results were quite close, likely due to minor differences such as random seed differences during
testing. However, for more complex datasets like FC100 and MinilmageNet, the discrepancies were
larger and unlikely to be caused by such small variations alone. Therefore, in our results report, we
call "Baseline" to the reproduced results using their official code and embeddings.
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CIFAR-FS
Method Author Backbone 1-shot 5-shot
V  ProtoNet Snell et al., 2017 ResNet-12 7220 £0.70 83.50 +£0.50
V  MetaOptNet Lee et al., 2019 ResNet-12 72.80 £ 0.70 84.30 £ 0.50
V MABAS Kim et al., 2020 ResNet-12 73.51 +£0.92 85.65 + 0.65
V RFS Tian et al., 2020 ResNet-12 71.50 £ 0.80 86.00 = 0.50
V SUN Dong et al,, 2022a  ViT-S 78.37 +0.46 88.84 +0.32
V FewTURE Hiller et al., 2022  Swin-T 77.76 £ 0.81 88.90 + 0.59
V CPEA Hao et al., 2023 ViT-S/16 77.82 +0.66 88.98 + 0.45
V SMKD He et al., 2022 ViT-S 80.08 + 0.18 90.63 = 0.13
S SP-CLIP Chen et al.,, 2023b  Visformer-T 82.18 + 0.40 88.24 + 0.32
S SemFew-Res Zhang et al., 2024 ResNet-12 83.65 +0.70 87.66 + 0.60
S SemFew-Trans Zhangetal.,, 2024 Swin-T 84.34 +0.67 89.11 = 0.54
S FewVS-Res Lietal., 2024 ResNet-12 84.40 + 0.35 88.14 + 0.31
S Baseline Ours ResNet-12 82.72 +0.71 86.98 + 0.56
S Ours Ours ResNet-12 83.51 +0.70 87.08 +0.63
S Baseline Ours Swin-T 84.32 + 0.68 88.70 + 0.62
S Ours Ours Swin-T 84.91 + 0.69 89.36 + 0.59

TABLE 4.3: Comparison with state-of-the-art methods on CIFAR-FS
under 5-way 1-shot and 5-way 5-shot settings. Visual methods are
marked with V, semantic methods with S.

Moreover, in Tables 4.4 and 4.5, we also report our accuracy results compared
to many state-of-the-art methods, both from visual-only approaches and semantic-
aided approaches. From these results, we can see that our approach consistently
improves the baseline, which was our objective. It also provides a competitive point
of view, able to compete with other much more computationally expensive methods.

Overall, our approach shows the best results in the 1-shot scenario, proving the
semantic aid to be key for low-data problems. In the 5-shot scenario however, while
it provides a substantial performance boost, purely visual approaches with strong
representation learning capabilities, such as SMKD and CPEA, continue to achieve
superior results, as they use a much stronger visual backbone.

4.3 Ablation study

In this section, we analyze the contribution of each component in our approach to
validate each design decision.

4.3.1 Alignment Source

First of all, we need to analyze how much each module contributes to the model’s
final performance, to see if it is even worth it contemplating the semantic module.
As shown in Table 4.6, the semantic component plays a fundamental role. In the
5-way 1-shot scenarios, the semantic approach clearly outperforms the visual one,
achieving results up to 9 points higher and significantly driving the overall perfor-
mance. In the 5-way 5-shot cases, the visual component becomes more important,
having better results than the semantic one. However, neither component alone is
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FC100
Method Author Backbone 1-shot 5-shot
V  ProtoNet Snell et al., 2017 ResNet-12 4154 +0.76 57.08+0.76
V TADAM Oreshkin et al., 2018 ResNet-12 40.10 + 040 56.10 +0.40
V  MetaOptNet Leeetal., 2019 ResNet-12 47.20 + 0.60 55.50 + 0.60
V  MABAS Kim et al., 2020 ResNet-12 4231 +0.75 58.16 +0.78
V RFS Tian et al., 2020 ResNet-12 42,60 +0.70 59.10 + 0.60
V  FewTURE Hiller et al., 2022 Swin-T 47.68 +0.78 63.81 £ 0.75
V CPEA Hao et al., 2023 ViT-S/16 4724 + 058 65.02 + 0.60
V  SMKD He et al., 2022 ViT-S 50.38 + 0.16 68.37 £ 0.16
S SP-CLIP Chen et al., 2023b Visformer-T 48.53 +0.38 61.55 +0.41
S Baseline Ours ResNet-12 51.16 + 0.74 60.48 + 0.76
S Ours Ours ResNet-12 52.62 £ 0.71 60.85 + 0.74
S Baseline Ours Swin-T 50.89 + 0.80 62.59 +0.78
S Ours Ours Swin-T 52.68 £ 0.79 62.76 + 0.78
TABLE 4.4: Comparison with state-of-the-art methods on FC100 un-
der 5-way 1-shot and 5-way 5-shot settings.
MinilmageNet
Method Author Backbone 1-shot 5-shot

V  MatchNet Vinyals et al., 2016 ~ ResNet-12 ~ 65.64 +0.20 78.72+0.15
V  ProtoNet Snell et al., 2017 ResNet-12 62.39 +0.21 80.53+0.14
V TADAM Oreshkin et al., 2018 ResNet-12 58.50 + 0.30 76.70 + 0.30
V CAN Hou et al., 2019 ResNet-12 63.85+048 79.44 +0.34
vV CIM Lietal., 2019 ResNet-18 64.12 +0.82 80.51 +0.13
V RFS Tian et al., 2020 ResNet-12 62.02 £ 0.63 79.64 + 0.44
V FEAT Ye et al., 2020 ResNet-12 66.78 £ 0.20 82.05+0.14
V  Meta-Baseline Chen et al., 2021 ResNet-12 63.17 £ 0.23 79.26 +0.17
V SUN Dong et al., 2022a ViT-S 67.80 £ 0.45 83.25+0.30
V  FewTURE Hiller et al., 2022 Swin-T 72.40 £ 0.78 86.38 + 0.49
V FGFL Cheng et al., 2023 ResNet-12 69.14 + 0.80 86.01 + 0.62
V  Meta-AdaM Gao et al., 2023 ResNet-12 5989+ 049 7792 +0.43
V CPEA Hao et al., 2023 ViT-S/16 7197 £ 0.65 87.06 = 0.38
S KTN Peng et al., 2019 Conv-128 64.42 +0.72 74.16 + 0.56
S AM3 Xing et al., 2019 ResNet-12  65.30 +0.49 78.10 = 0.36
S TRAML Xu et al., 2022 ResNet-12 67.10 £ 0.52 79.54 + 0.60
S AMBS3-BERT Yan et al., 2021 ResNet-12 68.42 + 0.51 81.29 + 0.59
S SP-CLIP Chen et al., 2023¢ Visformer-T 7231 +0.40 83.42 +0.30
S Baseline Ours ResNet-12 7291 +0.65 7892 +0.78
S  Ours Ours ResNet-12 7321 +£0.66 79.77 +0.78
S Baseline Ours Swin-T 7485 +0.70 81.74+0.75
S  Ours Ours Swin-T 75.02 £ 0.69 82.72 +0.79

TABLE 4.5: Comparison with state-of-the-art methods on Minilma-

geNet under 5-way 1-shot and 5-way 5-shot settings.
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CIFAR-FS MinilmageNet
Method | 5-way 1-shot 5-way 5-shot ‘ 5-way 1-shot 5-way 5-shot
\Y% 7255+092 86.07+0.65 | 59.87+0.80 77.73+0.88
S 80.57+0.75 81.71+0.74 | 68.52+0.69 68.27 +0.96

V+S ‘ 83.51+0.70  87.08 + 0.63 ‘ 73.21+0.66  79.77 £ 0.78

TABLE 4.6: Results on different alignment sources. V means visual
features, S represents semantic features, V + S both.

sufficient to compete with the state of the art. The true potential lies in combining
both modalities, complementing each other.

4.3.2 Prompt

A large part of this work involved determining the best way to interact with the
chosen LLM in order to obtain the most precise and informative descriptions i.e.
prompt engineering.

It is important to highlight that a well-crafted prompt is fundamental to the suc-
cess of the model. As shown in Figure 4.1 and Table 4.7.

Method Shot V Acc(%) S Acc (%) k Mix Acc (%) Gap
Only Names 1-shot 72.55+0.92 7220+080 022 75.06+1.03 251
WordNet 1-shot 72.55+092 7133+099 029 73.88+1.03 1.33
LLM help 1-shot 72.55+092 80.57+0.75 0.20 83.51+0.70 10.96
Only Names 5-shot 85.82+0.89 7531+1.19 058 86.60+0.87 0.78
WordNet 5-shot 86.07+0.65 73.54+1.17 0.60 86.43+1.03 0.36
LLM help 5-shot 86.07+0.65 81.71+0.74 054 87.08+0.63 1.01
TABLE 4.7: Comparison of methods with different text embeddings
and their corresponding accuracies and metrics. V accuracy for the
only visual part, S accurcy for the semantic part.
Comparison of Accuracy Comparison of Improvement
= Vordnet N 10.96 = Vordnet
- M 83.51 86.60 86.43 87.08 - M
©| 75.06 73.88 ’
12
i 1 ey

1-shot 5-shot 5-shot

FIGURE 4.1: Results using just names, just WordNet descriptions or

the full LLM proposed descriptions for both 1-shot and 5-shot. The

first table shows the accuracy results and the second the gap between
the final accuracy and the only-visual accuracy.
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Just using the class names or the WordNet descriptions is not enough. Perfor-
mance improves significantly with a good prompt. Moreover, we analyzed the dis-
tribution of the classes and how they cluster, as illustrated in Figures A.1, A.2 and
A.3 in the Annex A. From this analysis, we conclude that using only the class names
does not provide sufficient information. While WordNet descriptions offer more de-
tail that helps to better separate classes, much of this information is not relevant for
the visual classification tasks. Therefore, it is necessary to refine these descriptions
through prompts specifically tailored for the LLM.

Our base prompt, proposed in SemFew [Zhang et al., 2024], asks the LLM to
refine the WordNet description by adding visual characteristics. We will refer to this
as Prompt 0. Upon examining this prompt, we identified certain shortcomings: it
relied too heavily on the original WordNet text, often resulting in descriptions with
many irrelevant details for visual classification. Additionally, we hypothesized that
it would be useful to mention potentially confusing classes to help the model focus
on the most discriminative features.

Despite some differences, all proposed prompts shared some key similarities:
they requested visual information specific to each class (given our goal of visual
classification) and constrained the output to a single paragraph long. We further ob-
served that longer descriptions generally led to better performance, up to an equi-
librium point around five lines, beyond which additional information had minimal
impact.

In the following, we present the various ideas we proposed for improving the
descriptions, along with their advantages and disadvantages. We then provide the
exact prompts used to evaluate each approach. Finally, we present a study of the
resulting descriptions from the calls using said prompts for an example class: "baby",
followed by both qualitative and quantitative analyses of these outputs.

The improvement ideas we explored were:

* Remove WordNet descriptions. WordNet definitions often include multiple
meanings and, in some cases, are missing entirely, like in the of the class "aquar-
ium_fish". For example, take the definitions provided for the class "baby":

‘(slang) sometimes used as a term of address for attractive young women’,

- ’a very young child (birth to 1 year) who has not yet begun to walk or
talk’,

- “the youngest member of a group (not necessarily young)’,

- ’an immature childish person’, ‘an unborn child; a human fetus’,

- ’a very young mammal’,

— ’a project of personal concern to someone’,

- “treat with excessive indulgence’
Only one of these definitions is acceptable for the images in our dataset, and it
is not even the first.

At first, we considered removing them from the prompt altogether, relying
solely on the LLM-generated descriptions. However, this sometimes intro-
duced more uncertainty, as polysemous words could lead to misunderstand-
ings. For this reason, we decided to manually curate the set of WordNet defi-
nitions, carefully selecting or completing them when missing. These manually
selected descriptions will be used in the prompts that required them, addi-
tional context to help avoiding ambiguities.
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* Guide the prompt toward specific visual aspects. For example, we explicitly

asked the LLM to focus on "color, shape, texture, size, or key parts" of each
class. While this approach did help emphasize visual features, it often led to
overly detailed descriptions or too specific details that could not actually be
seen in the images.

Mention all other classes to highlight discriminative features. The idea here
was to explicitly mention the other classes so the LLM would emphasize dis-
tinguishing characteristics. However, since there are so many classes, the LLM
rarely followed this instruction successfully.

Mention only the most commonly confused classes. We analyzed the confu-
sion matrices from previous results and applied K-means clustering to iden-
tify the classes most similar to the target class. For example, for "baby", the
most confused classes were "man", "woman", "boy" and "girl." In this case, the
LLM did correctly address the request and provided relevant distinguishing
details. However, it often structured the text by directly comparing to these
other classes (e.g., "The difference between a boy and a girl is..."). Simply men-
tioning other class names can distort the embedding in undesirable ways, even
if they are mentioned only for comparison. We validated this effect through the

analysis shown in Figure A 4.

Explicitly request not to mention other classes. Following the findings above,
we tried to explicitly instruct the LLM not to mention other classes. Unfortu-
nately, many current LLMs struggle to follow negative instructions, and this
request was often ignored. More details on this limitation are discussed in the
section on LLM Validation.

Include class images in the prompt. If the goal is to describe an image class
accurately, what better way than providing actual images? The idea was to
follow the 1-shot or 5-shot setup: in the 5-shot case, for example, we would
give the support set images to the LLM so it could generate a description us-
ing its vision capabilities. Due to limited access to LLMs, we could not make
as many calls as required for every episode, so we tested this by using five
random images per class from the dataset.

The results were quite good, in fact, among the most visually accurate. How-
ever, in many cases, the descriptions included references to irrelevant details
about the form of the images, such as "blurry definition" or mentions of non
discriminative elements in the images, which sometimes worsen the recogni-
tion performance. This issue was more pronounced in the 1-shot case. We
also have to consider the possibility that some of this information would be
redundant as it could be easily extracted from the vision module.

Emphasize visual classification from an Al By explicitly stating in the prompt
that the text would be used for image classification by an Al model, we can
guide the LLM to focus more on visual aspects typically detectable by com-
puter vision systems.

Multi-prompt strategy. Finally, we developed a multi-stage prompt strategy.
The first stage would use the WordNet description and the most confusing
classes to request additional detailed information of all types without length
constraints. The second stage would incorporate images of the class and ask
the LLM to summarize the content, focusing on visual features present in the
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provided examples. The third stage would refine the result, removing any
mention of other classes while preserving the semantic content.

The main limitation of this approach is that not all models support image in-
puts in prompts. Thus, despite its great potential, we were unable to fully
exploit this method.

In the Appendix B, we provide a detailed list of the different prompts that were
tested, along with examples of their outputs for the class "baby." Each prompt is
accompanied by a qualitative commentary analyzing why that particular approach
worked or did not work. Additionally, Table 4.8 presents a quantitative analysis of
the prompt results.

Prompt

Entropy Min D.

Mean D.

Acc.

Most Confused Classes

Default

4.9247

0.0202

0.1453

82.72 £ 0.71

girl <> woman
dolphin <+ whale
snake < lizard

Just names

4.9771

0.0958

0.3428

75.06 £1.03

man < plain
boy <+ girl
boy <> man

WordNet

4.7199

0.0593

0.4226

73.88 +1.03

man < woman
tiger < leopard

tulip <+ poppy

Prompt 0

4.8757

0.1180

0.3595

82.44 £ 0.72

couch < bed
boy <+ girl
chair < table

Prompt 1

4.9753

0.1073

0.3586

81.44 £ 0.74

girl <+ woman
boy «+ man
bear <+ rabbit

Prompt 2

4.7490

0.0924

0.3423

83.45 + 0.71

girl <+ woman
man <> woman
couch <> bed

Prompt 3

4.8819

0.1084

0.3719

81.70 £ 0.70

girl <+ woman
bear <+ rabbit
man <> woman

Prompt 4

4.8887

0.1300

0.3947

82.84 £ 0.74

lion < tiger
mouse <+ squirrel
motorcycle « bicycle

Prompt 5

4.8628

0.1355

0.3936

81.74 £ 0.69

lobster <> crab
palm_tree <+ pine_tree
shark <+ whale

TABLE 4.8: Summary of the performance of the different Prompt ap-
proaches. Min D. and Mean D. represent the minimum distance and
the mean distance between text embeddings using the cosine dis-
tance. The accuracy was evaluated on 5-way 1-shot on CIFAR-FS
using the ResNet-12 backbone. The tests were done using LLaMA-
3 as it was the model with the fastest latencies.

In conclusion, we found that the prompt providing the best results is:
Prompt 2: Improved knowledge
The following is a definition of the class ‘class’: "definition”.
Using this as context (only if useful), write a short visual description to help an Al model
recognize class’ based on appearance alone. Do not include other classes. One paragraph

only.
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This prompt effectively combines the clarifying definition from WordNet with-
out being strictly tied to it, using its information only when helpful. It also provides
context that guides the LLM to focus on the most visually relevant aspects of the
class. Furthermore, this prompt does not require input images, making it compati-
ble with a broader range of LLMs, including text-focused models that do not support
image input but can generate exceptionally detailed textual descriptions, as shown
in the following section.

433 LLM

For this project, we considered the following LLMs: GPT-4, LLaMA-3, LLaMA-4
Scout and Maverick, Gemini-2, Gemma-3, Mistral-3.1, Qwen-2.5, and DeepSeek-R1.
In this case, conducting a purely qualitative analysis is more challenging. While we
could focus on the well-known strengths of each model, for example, GPT’s ability to
follow detailed instructions, Gemini’s conciseness, Qwen’s strong image recognition
capabilities, or DeepSeek’s high level of descriptive detail, these are subjective qual-
ities. We cannot confidently assert that they directly translate into improvements in
the resulting embeddings. Therefore, we opted to carry out a quantitative study to
objectively evaluate their impact. The results are shown in Table 4.9.

The numbers clearly point to DeepSeek as the winner, and when we look at its
descriptions, it’s not surprising as they stand out for their remarkable detail and
precision. For example, in the description of "apple," it describes its color as: "vibrant
red, sunny yellow, to fresh green, often with subtle streaks, speckles, or a faint waxy sheen",
a level of precision none other has achieved.

Nearly all of the descriptions we used are available in the GitHub repository as
JSON files, should anyone wish to explore them further.

4.3.4 Other considerations

Loss formula

During the model improvement process, we considered using a modified loss
function to explicitly penalize commonly confused classes, such as "rose" and "poppy.
However, this idea was ultimately discarded due to the nature of the few-shot meta-
learning paradigm. In this setting, only five classes are compared at a time, and it
is rare for specific confusing pairs to appear together in the same episode, which
would result in unnecessary complexity in the loss function.

Moreover, each dataset has a different class split: for example, in CIFAR-FS,
classes like "boy" and "man" appear in the train and test sets respectively, whereas
in FC100, both belong to the test set. None of those classes are in MinilmageNet. As
a result, any weight designed to penalize these pairs would often have no practical
effect.

It also feels conceptually wrong to introduce such class-specific penalties in a
few-shot learning scenario, where the goal is precisely to evaluate the model’s ability
to adapt to unknown classes.

A different approach could be to penalize embeddings that are overly similar
regardless of the class, but this is essentially what we already achieve with our Se-
mantic Alignment strategy:.

Prototype generation

We can also vary the way we generate the "centers" or "prototypes." The most
common method is to calculate the arithmetic mean, but we also considered alterna-
tives such as clustering algorithms. Several studies suggest that using the mean is

"
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LLM Entropy MinD. MeanD. Acc. Most Confused Classes

GPT-4 4.9481 0.0743 0.3957  79.04 +0.79 hamster <> mouse
hamster <+ squirrel
mouse ¢+ squirrel

LLaMA-3 4.7490 0.0924 0.3423  83.45+0.71 girl > woman
man <> woman
couch < bed

Gemini-2 4.6518 0.0747 0.3654  82.84 +0.74 mouse <> shrew

couch <> bed

girl <+ woman
LLaMA-4 S 4.8758  0.0977 0.3439 8250+ 0.71 bowl < cup

man <+ woman

apple <+ pear
LLaMA-4 M 4.8729 0.0791 0.3349 82.73+£0.72 girl <+ woman

boy <+ man

couch <> bed
Mistral-3.1 47623  0.1051 0.3709  82.74+0.72 motorcycle « bicycle

boy <+ man

man <> woman
Gemma-3 4.8679 0.0974 0.3704 8254 +0.72 girl <> woman

motorcycle < bicycle

boy <+ girl
Qwen-2.5 4.7808 0.0829 0.3594  82.86+0.69 girl <> woman

boy <+ man

couch <> bed
DeepSeek-R1 ~ 4.8349 0.1135 0.3802  83.51+0.70 girl <> woman

man <+ woman

boy <> girl

TABLE 4.9: Summary of the performance of the different LLMs. Min
D. and Mean D. represent the minimum distance and the mean dis-
tance between text embeddings using the cosine distance. The accu-
racy was evaluated on 5-way 1-shot on CIFAR-FS using the ResNet-12
backbone. The tests were done using their best performing prompt.

The GPT-4 results were a bit different. As we did not have access to
the API at the time, it was generated with the Chat interface. Probably

due to token limitations, the output descriptions were quite short.

good enough for these cases. In experiments with our model, we observed an accu-
racy of 82.39% using the mean and 82.65% with clustering, a very small difference,
especially in few-shot scenarios with very limited support samples, and tending to
favor the mean. In this case, we believe the mean is the most efficient and effective
approach.

k value calculation

Our approach determines the optimal value of k € (0,1) at each validation itera-
tion, using a step size of 0.01. At the end of the execution, we review the performance
history for each k and select the one that achieved the best overall results.

We also experimented with introducing a learnable parameter to directly opti-
mize k, but we observed that the results remained very stable and did not differ
significantly. As shown in Figure 4.2, the range of optimal values is fairly broad and
it is consistently found with the current algorithm. For this reason, we opted to keep
the simpler, explicit search approach.
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FIGURE 4.2: Accuracy vs k value graphic.

4.3.5 CLIP backbone

In our experiments, we not only tested with ResNet-12 and SWIN-T encoders, we
also want to present the results obtained using CLIP in Table 4.10.

Dataset Encoder Semantic k V Acc (%) S Acc (%) Mix Acc (%)
CIFAR-FS CLIP Justnames 057 97.16 +0.30 84.04 +1.14 97.64 0.27
CIFAR-FS CLIP DeepSeek 041 97.16+0.30 91.11+0.82 97.72+0.26
FC100 CLIP DeepSeek  0.56 84.71+0.90 56.29+1.10 85.59 +0.87

MinilmageNet CLIP DeepSeek 0.46 9719+£029 90.13+0.70 97.51+0.24

TABLE 4.10: Summary of results using CLIP encoder for all dataset
in 5-way 1-shot classification.

We believed in the potential of CLIP, as it has demonstrated impressive perfor-
mance on similar tasks. However, the results we obtained exceeded all expectations,
achieving near-perfect accuracy on almost every dataset, significantly surpassing
any officially published results.

This exceptional performance is likely due to the fact that the pre-trained CLIP
model may have been trained on a dataset containing our data. Although it was
not trained for our specific task, it may have already seen many of the test images,
which would make these results unreliable and not truly a sign of generalization
capabilities.

Given this situation, we decided not to include these results in our main per-
formance tables. Instead, we focus on ResNet-12 and SWIN-T, which are the most
widely used in the literature and allow for a fair comparison with existing approaches.

4.4 0-shot classification

During the course of this project, we became curious about evaluating the ability of
LLMs to classify the images on their own, maybe rendering useless any attempt of
doing it any other way. Given their well-known multimodal capabilities and exten-
sive world knowledge, we decided to try it. Additionally, these experiments were
useful to decide our choice of LLM to integrate into our final model.

The results in Table 4.11 clearly demonstrate the superior performance of GPT-4.
Additionally, these findings further validate that our proposed DeepSeek descrip-
tions are the most effective when used with the CLIP encoder.

However, it is important to note (as mentioned earlier for CLIP) that these results
should not be taken at face value. It is highly likely that these models have been
exposed to these datasets during their training, which could artificially inflate their
performance.
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Model Accuracy
CLIP (Just names) 0.8110
CLIP (WordNet descriptions) 0.8420
CLIP (Gemini image descriptions)  0.9005
CLIP (DeepSeek descriptions) 0.9220
LLaMA-3 0.8874
Mistral Small 3.1 0.6702
Qwen-2.5 0.8624
Gemma-3 0.8233
Gemini-2.0 0.9211
GPT-4 0.9639

TABLE 4.11: Zero-shot classification results using LLMs and CLIP.

The tests were done without any support images (true zero-shot set-

ting), but not in a 5-way setup: each image was presented individ-

ually and the model was asked to classify it into one of all possible

classes. Some additional post-processing was required, as the LLMs

did not always strictly follow instructions to return only the class
name.
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Conclusions

In this thesis, we have thoroughly explored what few-shot learning and meta-learning
are, as well as their many variants and different approaches to addressing data
scarcity. We focused on the metric-based approach inspired by the Prototype Net-
works given their well-demonstrated advantages. In particular, we used the Sem-
Few [Zhang et al., 2024] work as our baseline and aimed to improve it by incorpo-
rating a stronger semantic component.

To achieve this, we investigated several enhancement strategies using different
data sources, analyzed the most widely used LLMs today, conducted an in-depth
prompt engineering study, and examined how these elements interact. We proposed
a new prompting method that consistently outperforms the baseline, as validated on
multiple benchmarks: CIFAR-FS, FC100, and MinilmageNet.

Furthermore, we also demonstrated how modern LLMs and CLIP models can
easily solve the 0-shot problem without any specific training, and we discussed po-
tential directions for the future of few-shot learning.

5.1 Contributions and Limitations

The main contribution of this work is proposing a remarkably simple model to tackle
the few-shot learning problem. Excluding the pretrained encoders, the model only
requires two trainable fully connected layers in the semantic alignment module to
merge the visual and semantic information. Despite its simplicity, it achieves out-
standing results, competing with the state of the art, especially in 1-shot tasks, where
semantic assistance especially shines. Moreover, apart from demonstrating the use-
fulness of incorporating semantic guidance in few-shot learning, this thesis also pro-
vides a detailed study on the impact of different semantic sources, such as images
and large language models, and how they interact with various prompt styles. Such
insights may be very useful for future research in this field.

This work has still some limitations when compared to purely visual approaches.
While our model performs exceptionally well in 1-shot tasks, the advantage of se-
mantic assistance diminishes as the size of the meta-learning support set increases,
and it becomes increasingly important to have a strong visual backbone, an area
where we cannot quite compete with other state-of-the-art methods. Additionally,
the semantic aid requires knowing the class names beforehand, which is not always
guaranteed in real-world scenarios. Our approach also involves the manual selec-
tion of WordNet descriptions, future work could focus on automating this process.
Finally, it is important to note that our method relies on access to a large language
model, which brings its own problems, such as significant water usage and energy
consumption, issues that deserve greater public awareness as LLMs become more
widespread.
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5.2 Future work

In the near future, it is important to update the class descriptions using the latest ad-
vances in large language models, as this field is evolving at an incredible pace. Look-
ing further ahead, one could explore new approaches that make even better use of
semantic embeddings. From the beginning of this project, we had the idea of using
"entities", i.e. instead of relying on full-text descriptions, we could extract distinct
visual components and guide the model to recognize these elements, making clas-
sification more intuitive and potentially more accurate. This approach would also
benefit from the fact that some entities may be shared among the learned and novel
classes, simplifying the adaption to new tasks. However, this idea would require a
more powerful vision backbone and a deeper integration between feature extraction
and entity recognition. Beyond this, it would also be valuable to test these discov-
eries in less controlled few-shot scenarios to better understand how they perform in
real-world conditions.

The field of few-shot learning is incredibly interesting and full of potential that
challenges all we know about machine learning. However, my critical opinion is
that it is somewhat difficult to get into this field at first because many papers ei-
ther exaggerate their results or use non-standard methods that deviate from the core
principles of meta-learning. It is striking to see how, on platforms like Papers with
Code, there are countless works presenting nearly perfect accuracies, while papers
published in the principal venues often struggle to exceed 80% accuracy on the same
datasets. It also seems to be a common practice to omit or downplay stronger results
from other works in order to make new contributions appear more impressive.

Personally, I believe few-shot learning still has a lot to offer, but the current
benchmark datasets have become oversaturated. Today, there are multiple ways
to achieve almost perfect accuracy, as we demonstrated in the 0-shot classification
section, even without additional training. Models like CLIP and LLMs make these
tasks almost trivial. At this point, it no longer makes sense to frame progress as
simply pushing for higher accuracy scores, overyone can "chase" or train to create a
distilled version of CLIP [Li et al., 2024].

The future of this field lies not in chasing higher metrics, but in exploring more
realistic and less controlled scenarios to truly understand how these models perform
in the real world. We need to re-visit how we think about learning, develop new
strategies, and develop new strategies that can genuinely benefit the entire machine
learning community.


https://paperswithcode.com/
https://paperswithcode.com/
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K-means.
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FIGURE A.2: Graphical representation of the text embeddings when
using word embeddings. The classes are split into clusters using K-
means.
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Appendix B

Prompt templates

Prompt 0: Definition refinement

"{definition}" is the definition of the {class}. Please
rewrite and expand this definition to make it more detailed and
consistent with scientific fact. Briefness is required, using
only one paragraph.

"baby": "A baby, also known as an infant, refers to a very young
child from birth to approximately 1 year of age, characterized
by significant physical and cognitive development. At this
stage, the infant has not yet begun to walk or talk, relying on
caregivers for mobility and communication. Typically, infants
start to discover their environment, develop basic motor skills,
and begin to babble and make sounds to initiate communication,
although they may not yet utter recognizable words. During this
period, they are completely dependent on their caregivers for
nutrition, comfort, and safety, and undergo rapid growth and
development, achieving major milestones such as lifting their
head, rolling over, sitting up, and eventually standing with
support."

The output relies too heavily on the given wordnet description, expanding on
details that are irrelevant to the intended task. Concepts such as "nutrition"
and "growth" do not introduce meaningful visual information.
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Prompt 1: Guide detail

Write a short, visually detailed description of the class
’{class}’ that will help a vision model correctly recognize

and distinguish it from other classes. Focus only on unique and
visible traits such as color, shape, texture, size, or key parts.
Do not mention other classes. Limit to a single paragraph.

"bpaby": "The class ’baby’ typically consists of a small, rounded
human figure, usually between 0-2 years old. They have a
relatively large head compared to their body, with a soft and
smooth texture to their skin. Their hair is often fine, thin,
and lightly colored, and their facial features are characterized
by large eyes, a small nose, and a mouth with a subtle, gentle
curve. Their attire often includes onesies or diapers with
distinctive patterns and colors, and they may be accompanied by
pacifiers, toys, or other childcare-related accessories. The
overall size of a baby is compact, typically under 40 inches in
length, and their movements are often fluid and uncoordinated,
with a characteristic lack of muscular definition."

In this case, the LLM describes fine-grained details that, although theoreti-
cally visual, cannot be perceived in images at this resolution. Moreover, these
details tend to be subjective.

Prompt 2: Improved knowledge

The following is a definition of the class ’{class}’:
"{definition}". Using this as context (only if useful), write a
short visual description to help an AI model recognize ’{class}’
based on appearance alone. Do not include other classes. One
paragraph only.
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"baby": "A baby typically has a small, rounded body with a large
head in proportion to their body. Their facial features are soft
and delicate, with a short, button nose and full cheeks. Their
eyes are usually large and expressive, and their mouth is small
with a subtle curve. They often have a sparse amount of fine
hair on their head, and their skin tone can vary. Their limbs
are short and not yet fully developed, with tiny hands and feet,
and they are often unable to control their movements, resulting
in a somewhat floppy posture."

No comments. The description is the kind of description we are looking for. I
think the success from this prompts comes from explicitly saying "only if use-
ful" on the prompt, letting it forget about the wordnet description if deemed
necessary, and focusing on the role of being an Al trying to identify images.
This prompt actually resulted in the one that obtained the best results when
paired with DeepSeek.

Prompt 3: Confused classes

Define visually the class ’{class}’, focusing on visual and
physical traits. Also, focus on the traits that make the
{class} visually distinct from similar categories like {confused
classes}. Do not mention other classes. Briefness is required,
using only one paragraph.

"baby": ": The class ’baby’ is visually characterized by a
small, rounded body, typically with a chubby face, soft features,
and a smooth, often hairless head. Their eyes are usually

large in proportion to their face, with a curious and innocent
expression. They have a distinct physical vulnerability, with
short limbs, a plump torso, and often a reliant posture. A
diaper or onesie often completes their signature look. Compared
to similar categories, a baby visually differs from a boy or
girl by their smaller size, softer features, and developmental
immaturity; from an apple by their obvious biological form; from
a man by their tiny stature and facial features; and from a house
by their movable, living form."

The output mentions too many other classes, causing the model to be con-
fused.
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Prompt 4: All classes

Please write a detailed visual definition of the class {class}.
Make it more visually detailed and consistent with scientific
fact for an AI model to differentiate it from this class to other
classes like {other classes}. Briefness is required, using only
one paragraph.

"baby": "A baby is a small, typically human primate
characterized by a proportionally large head, large eyes, and

a relatively underdeveloped body compared to adults. Its skin

is smooth and soft, often displaying a range of colors determined
by genetics, and may be covered in fine, downy hair. Limbs are
short and stubby, with tiny hands and feet. Facial features
include a small nose, full cheeks, and a mouth often pursed

or open, suggesting frequent expressions of crying, smiling,

or sucking. The baby’s behavior is mainly characterized by
reflexes and a lack of fine motor control, relying heavily on
caregivers for basic survival needs such as feeding, hygiene, and
protection. Its eyes are typically focused forward, reflecting

a binocular vision required for seeing and interpreting facial
expressions from close range."

It did not pay any attention to the prompt demands. It also commits the same
mistakes as Prompt 0.

Prompt 5: Image based

These 5 images are examples from the class ’{class}’. Based on
these images, give a detailed visual description that summarizes
the typical appearance of this class. Focus on the content of
the images, not the format. Briefness is required, using only
one paragraph.

"baby": "The images show babies of diverse ethnicities, mostly
appearing to be between 6 and 12 months old, with varying hair
colors and textures. They are predominantly shown lying down
or sitting up, often with light clothing or blankets. Facial
expressions range from neutral to slightly smiling. All images
are slightly blurry."
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I included here a particularly poor example to illustrate my point. With this
style of prompting, the description becomes highly dependent on the attached
images, resulting in either vague statements or overly specific details tied to
those particular examples. Moreover, it comments on the form or style of the
image rather than its actual content.

Multi Prompt: Iterative refinement

1. Definition of the class ’{class}’: {definition}. Expand this
with scientific and visual information about typical appearance
and attributes. Also, contrast this class with the following
visually similar/confused classes: {confused classes}.

2, Here is a preliminary description of the class ’{class}’:
{previous output}. Now, refine this based on the following 5
example images from the class. Focus only on what is actually
visible and typical in these images. Update the description
accordingly to help an AI model recognize the class visually.

3. Here is a visual description of the class ’{cls}’: {previous
output} Revise this to remove any mentions to other classes

like {confused classes}. The output should be a long paragraf
that only describe the target class ’{class}’ and not rely on
comparisons to others.

"baby": "The class ’baby’ refers to a human infant that can

be visually characterized by a distinctive set of features. A
baby typically has a round face with a soft, smooth complexion,
often with a pink or fair skin tone. The face is often the
most prominent feature, with a focus on the eyes and mouth.

The eyes are usually large in proportion to the face, and the
mouth is small, often appearing slightly open. The hair on the
head is typically sparse or absent, and the overall appearance
of the head is rounded and smooth. The body is often soft and
curved, with a subtle definition of the limbs, which may not be
clearly visible. The baby is often depicted wearing clothing
or wrapping, such as diapers or swaddling, which adds to their
distinctive visual appearance. The images of babies often have
a blurred or soft focus, suggesting a close-up shot or low image
quality, and the background may not be clearly visible. Overall,
the visual cues that define a baby include a round face, large
eyes, small mouth, sparse or no hair, and a soft, curved body,
often with a subtle presence of clothing or wrapping. The
combination of these features, along with the characteristic
soft focus and prominent facial features, helps to create a
distinctive visual identity for the class ’baby’."
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This prompt appeared promising but ultimately did not deliver as expected.
In this case, the output is overly long and focuses too much on the image’s
form rather than its actual content. As in previous examples, it seems the
model did not fully understand the intended task. I believe this prompt has
significant potential; however, since not all of our selected LLMs had access
to image input, and those that did faced token limitations, we were unable to
explore this approach to its fullest potential.
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