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Abstract

In the theory of large cardinals, the Structural Reflection research program
has the ultimate goal of providing a uniform way of characterizing any large
cardinal notion in terms of structural reflection principles. In the present
work, we study and provide such a characterization for Erdős, Ramsey, Row-
bottom and Jónsson cardinals, which are large cardinal notions commonly
defined in terms of partition properties and contained in the region below
the first measurable cardinal. We introduce three new families of structural
reflection principles: the invariant structural reflection principles, which char-
acterize Erdős and Ramsey cardinals; the two-cardinal structural reflection
principles, which characterize Rowbottom cardinals; and the proper struc-
tural reflection principles, which characterize Jónsson cardinals. Finally, we
show how a particular generalization of a proper structural reflection princi-
ple yields a characterization of exacting cardinals.
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Chapter 1

Introduction

The main and most prominent first-order axiomatization of set theory, the
ZFC theory, allows us to formalize all of mathematics. However, it is a
well-known fact that, as a consequence of Gödel’s Incompleteness Theorems,
if ZFC is a consistent theory, then it is also an incomplete theory. This
means that there are statements expressible in the language of ZFC that are
independent of ZFC; i.e. there are statements that, under the assumption
that ZFC is consistent, neither they nor their negations are theorems of ZFC.
Consequently, there are plenty of questions, either purely set-theoretical or
belonging to any thinkable area of mathematics (e.g. arithmetics, geometry,
topology, real analysis, etc.) that ZFC cannot settle (Bagaria, 2023b).

It was also Gödel who proposed that ZFC can be enriched with extra axioms
that allow to decide those questions that ZFC does not provide an answer
for (Gödel, 1947). Among the different families of new possible axioms for
set theory, the so-called large cardinal axioms postulate the existence (which
cannot be proven in ZFC) of infinite cardinal sets (typically known as large
cardinals) that satisfy set-theoretic properties that “prescribe their own tran-
scendence over smaller cardinals and provide a superstructure for the analysis
of strong propositions” (Kanamori, 2003).

Thus, the theory of large cardinals is one of the most central and relevant
areas of research in modern set theory. It studies how large cardinal axioms
form a linear hierarchy of increasingly strong set-theoretic systems. Further-
more, it plays a crucial role in the task of both successfully settling many
relevant independent questions and providing a way to compare different
mathematical systems in terms of consistency strength (Koellner, 2011).
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The success of the theory of large cardinals in providing a framework that
gives answer to a high number of important questions belonging to many
different mathematical fields allows us to argue that large cardinal axioms
are indeed acceptable and well-justified axioms of set theory; i.e. that they
can be legitimately added to the axioms of ZFC to form a richer theory of sets.
However, it has also been argued that this kind of extrinsic justification (since
it appeals to consequences yielded by the new axioms in areas of mathematics
that are, strictly speaking, external to set theory) is by itself an insufficient
argument for the status of large cardinal axioms as real and valid axioms of
set theory (Tait, 2001). Thus, forms of intrinsic justification (i.e. arguments
that present and appeal to purely set-theoretical evidence and reasons) of
the validity of large cardinal axioms have also been proposed and studied
(Koellner, 2009).

The distinction between extrinsic and intrinsic justifications was pointed out
by Gödel (1947), who argued in favor of the higher importance of the in-
trinsic evidence and, in particular, of the reflection principles studied by
Lévy (1960a,b, 1962) as being the main source of (intrinsic) justification for
set-theoretic axioms (Wang, 1997). Nevertheless, the family of reflection
principles analogous to Lévy’s presents relevant weaknesses and limitations
(Koellner, 2009, p. 217–218; Bagaria, 2023a, p. 22–28), which has led to the
search of alternative forms of reflection that provide a better and stronger
justification of the naturalness of the large cardinal hierarchy.

It is in this context that the Structural Reflection research program has been
proposed and developed in recent years (Bagaria, 2023a). The ultimate goal
of the program is to provide a uniform way of characterizing any large cardi-
nal notion, which not only aims at any currently known kind of large cardinal
already present in the large cardinal hierarchy (e.g. inaccessible cardinals,
Mahlo cardinals, weakly compact cardinals, measurable cardinals, supercom-
pact cardinals, huge cardinals, etc.), but also allows devising new natural
large cardinal notions as yet unknown. Thus, the Structural Reflection pro-
gram aims to, among other relevant questions, show internal relational pat-
terns between different regions of the large cardinal hierarchy, explain “the
fact that all known large cardinals line up into a well-ordered hierarchy of
consistency strength” (Bagaria and Lücke, 2024, p. 3398) and eventually
“fill up an outstanding, and somewhat embarrassing, definitional void in the
theory of large cardinals; i.e. the definition of ‘large cardinal’ itself” (Bagaria
and Ternullo, 2025, p. 34).

In Lévy’s kind of conception, the phenomenon of reflection consists, generally
speaking, in the non-existence of a set-theoretical statement (i.e. a formula
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written in the language of set theory) that is satisfied by the universe of all
sets and only by the universe of all sets. Thus, the original Montague-Lévy
reflection principle, which is a theorem of the ZF theory (i.e. ZFC minus the
Axiom of Choice), says that, if a formula in the language of ZF is true in the
universe of all sets (which is not a set, but a proper class), then there is a
set-sized initial segment of the universe where that formula is also satisfied.
Consequently, there is no formula in the language of set theory that defines
the universe of all sets.

This principle of the indefinability of the set-theoretic universe can be traced
back to Cantor (1883), that is, to the very origin of set theory, and it was
also accepted and elaborated by Gödel (Wang, 1997):

The universe of sets cannot be uniquely characterized (i.e. dis-
tinguished from all its initial segments) by any internal structural
property of the membership relation in it which is expressible in
any logic of finite or transfinite type, including infinitary logics
of any cardinal number.

In order to transcend the limitations of Lévy’s kind of reflection, the struc-
tural conception of reflection relies on Gödel’s understanding of the phe-
nomenon of indefinability and postulates that what is to be reflected are not
the formulas, but the internal structural properties of the set-membership re-
lation. In other words, the main original idea of the Structural Reflection
program is to reflect the structural content of the universe of all sets, instead
of reflecting its theory (Bagaria, 2023a, p. 29–30).

In order to state this structural conception of reflection in a precise, math-
ematical form, the notion of “a structural property of the set-membership
relation” is formalized in terms of a formula φ (possibly with parameters) in
the first-order language of set theory that defines a (possibly proper) class
C of structures of the same type. Thus, the class C materializes the struc-
tural property expressed by the formula φ. Then, the reflection of such a
structural property consists in the following phenomenon: there exists a set-
sized initial segment of the set-theoretic universe which, for every structure
A belonging to C, contains a structure B that also belongs to C and that
is like A. This “being like” relation denotes a resemblance between both
structures that could ideally be formalized in terms of the existence of an
isomorphic map between them. However, since the cardinality of A may
very well be much larger than the cardinality of B, what is required by the
structural conception of reflection is that B can be elementarily embedded
into A. Therefore, the general principle of structural reflection is as follows
(Bagaria, 2023a, p. 30):
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For every definable, in the first-order language of set theory, pos-
sibly with parameters, class C of relational structures of the same
type, there exists an ordinal α that reflects C; i.e. for every A
in C, there exists B in C of rank less than α and an elementary
embedding from B into A.

Starting with Bagaria (2012) and Bagaria et al. (2015), the Structural Reflec-
tion program has so far shown that many different large cardinal notions are
equivalent to some concretion or variant of the general principle of structural
reflection quoted in the previous paragraph (see section 2.3 of the present
work for a brief sample), both in lower (Bagaria and Väänänen, 2016) and
higher (Bagaria and Lücke, 2023) regions of the large cardinal hierarchy.
Most recently, its ability to produce and justify new large cardinal notions
at the highest levels of the hierarchy has proved instrumental in the current
research and discussion on the configuration of the set-theoretic universe and
Woodin’s HOD and Ultimate-L Conjectures (Aguilera et al., 2024). The pro-
gram is fully alive and there is yet much work to do in it. Currently, there
are regions in the large cardinal hierarchy whose characterization in terms of
structural reflection principles is yet to be devised.

The goal of this work is to study and provide such a characterization for
the large cardinal notions that are commonly defined in terms of partition
properties and contained in the region below the first measurable cardinal;
to wit, the well-known notions of Erdős, Ramsey, Rowbottom and Jónsson
cardinals.

To that end, the present work is structured as follows. In chapter 2, we
fix our framework and notation, and we briefly present a few tools that
will be of use in the subsequent chapters. The reader not familiar with the
Structural Reflection program should not skip section 2.3. The contributions
of the present work are found in the next three chapters. In chapter 3,
we introduce the family of Erdős and Ramsey cardinals and, in section 3.3,
we define new principles of structural reflection that characterize Erdős and
Ramsey cardinals. We proceed analogously in chapter 4 with the family
of Rowbottom cardinals and, in section 4.3, we provide its characterization
in terms of new principles of structural reflection. In chapter 5, we present
Jónsson cardinals, we characterize them by means of new structural reflection
principles in section 5.2 and we briefly discuss a particular strengthening of
such a characterization in connection with the notion of an exacting cardinal
in section 5.3. Finally, we draw our conclusions and propose a few open
questions for further work in chapter 6.
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Chapter 2

Preliminaries

This chapter includes three brief sections where we introduce some set-
theoretic and model-theoretic tools that will be extensively employed in
chapters 3 to 5. In section 2.1, we present Skolem functions and Skolem
hulls. In section 2.2, we introduce basic definitions and facts about relative
constructibility, as well as the well-known Mostowski’s Collapsing Theorem
and Gödel’s Condensation Lemma (both the original and the generalized
version). Finally, a quick review of some structural reflection principles is
provided in section 2.3. Since all these tools are available in the literature,
no proofs are included in this chapter, but the corresponding references for
the interested reader.

We work in ZFC. Except for specific points where we explicitly indicate the
reference we are working with (and referring the reader to), we follow Jech
(2003) for definitions and proofs of basic set-theoretic notions and results,
Kanamori (2003) for definitions and proofs of known facts and results in
large cardinal theory, and Tent and Ziegler (2012) for definitions and proofs
of basic model-theoretic notions and results. We next fix some basic notation
for the rest of the document.

Notation.

• ‘iff’ stands for ‘if and only if’.

• ∅ denotes the empty set.

• f“A denotes the image of the set A under the function f .

• A ∼ B denotes that the sets A and B are bijectable.
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• f : A ∼ B denotes that the function f : A → B is a bijection.

• idA denotes the identity function with domain A.

• Ord denotes the class of ordinals.

• Card denotes the class of cardinals.

• For α, β ordinals, α < β denotes α ∈ β, α ≤ β denotes α ⊆ β, α > β
denotes β ∈ α, and α ≥ β denotes β ⊆ α.

• cf(α) denotes the cofinality of the ordinal α.

• ot(A,◁) denotes the order-type of the well-order (A,◁).

• Vα denotes the initial segment of rank α of the cumulative universe of
all sets.

• rk(A) denotes the rank of the set A.

• tc(A) denotes the transitive closure of the set A.

• Hκ denotes the set of sets hereditarily of cardinality less than κ.

• A language is a countable first-order language with equality.

• L∈ denotes the language of ZFC; i.e. the language with one single prim-
itive non-logical symbol, ∈, whose interpretation is the set-membership
relation.

• L(ċ), L(ḟ), L(Ṗ ) denote the languages resulting from augmenting the
language L by the constant symbol ċ, the function symbol ḟ , the pred-
icate symbol Ṗ , respectively.

• An L-formula is a formula written in the language L.

• φ(x1, . . . , xn) ∈ L denotes that φ is an L-formula whose free variables
are x1, ..., xn.

• |L| denotes the cardinality of the set of L-formulas.

• A structure is a structure for some language.

• An L-structure is a structure for the language L.

• Calligraphic letters (A, B, M, N , etc.) denote structures and, unless
stated otherwise, the same non-calligraphic letters (A, B, M , N , etc.)
denote their respective universes.

• The cardinality of a structure is the cardinality of its universe.
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• The rank of a structure is the rank of its universe.

• LA denotes the language of the structure A; i.e. A is an LA-structure.

• A ↾ L denotes the reduct of the structure A to the language L, where
typically L ⊆ LA.

• A ≺ B denotes that the structure A is an elementary substructure of
the structure B.

• A ≺n B denotes that the structure A is a Σn-elementary substructure
of the structure B.

• f : A ↪→ B denotes that the function f : A → B is an embedding from
the structure A into the structure B.

• f : A ∼= B denotes that the function f : A → B is an isomorphism
between the structures A and B.

2.1 Skolem functions and Skolem hulls

Provided a structure M and a set X ⊆ M with |X| < |M |, a very natural
question arises:

Is there a proper elementary substructure of M whose universe
contains X as a subset?

It is a well-known model-theoretic fact that the answer to that question is
affirmative (Tent and Ziegler, 2012, p. 18; Kanamori, 2003, p. 8; Jech, 2003,
p. 156):

Yes, the Skolem hull of X in M with respect to some complete
set of Skolem functions for M.

The tools typically employed to prove this fact, which we next briefly present,
include the well-known Tarski-Vaught criterion.

Definition 2.1.1. Let M be a structure. Let φ(x, x1, . . . , xn) ∈ LM. Then,
fφ : M

n → M is a Skolem function for φ iff, for every a1, . . . , an ∈ M ,

M |= ∃xφ[a1, . . . , an] =⇒ M |= φ[fφ(a1, . . . , an), a1, . . . , an].

If a well-ordering of the universe of the structure is available, then Skolem
functions can be defined by taking least elements as witnesses. Since we work
in ZFC, we can always provide such functions.
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Definition 2.1.2. A complete set of Skolem functions for a structure M is
the closure of some set {fφ : φ ∈ LM} of Skolem functions under functional
composition.

Any complete set of Skolem functions for a structure is equinumerous with
the set of formulas in the language of the structure. Hence, in our setting,
the cardinality of such a set is ℵ0.

Definition 2.1.3. Let M be a structure. Let X ⊆ M . Let {fα : α < |LM|}
be a complete set of Skolem functions for M. The Skolem hull of X in M
is the substructure of M whose universe is

{fα(a1, . . . , an) : α < |LM|, a1, . . . , an ∈ X}.

Notation. We denote the Skolem hull of X in M by HM(X), or just H(X)
if the context is clear. Moreover, we denote the universe of H(X) by H(X).

Clearly, X ⊆ H(X). Furthermore, the cardinality of the Skolem hull of X in
M is |X|+ |L|+ ℵ0. Hence, in our setting, |H(X)| = max{|X|,ℵ0}.

Finally, by the Tarski-Vaught criterion, which we next present, the Skolem
hull of X in M is an elementary substructure of M; i.e. HM(X) ≺ M.

Theorem 2.1.4 (Tarski and Vaught, 1957). Let M be a structure. Let
X ⊆ M . The following are equivalent:

(1) X is the universe of a elementary substructure of M.

(2) For every φ(x, x1, . . . , xn) ∈ LM and for every a1, . . . , an ∈ X,

M |= ∃xφ[a1, . . . , an] =⇒ ∃a ∈ X such that M |= φ[a, a1, . . . , an].

Proof. See Theorem 2.1.2 in Tent and Ziegler (2012, p. 18). ■

2.2 Relative constructibility

The hierarchy of constructible sets was introduced by Gödel (1940) in his
seminal proof of the consistency (relative to ZF) of the Axiom of Choice and
the Generalized Continuum Hypothesis. In this section, we mainly follow
Devlin (2016, p. 102–106) and Jech (2003, p. 67–69) to briefly present the
related concepts of relative constructibility and the Generalized Condensa-
tion Lemma, which will prove useful in chapters 3 to 5.
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First, we provide definitions for the hierarchy of sets constructible relative to
some set.

Definition 2.2.1 (Definability over a structure).

• Let M be a structure. A set A ⊆ M is definable over M iff there is
an LM-formula φ(x) such that A = {a ∈ A : M |= φ[a]}.

• Let X, M be sets. DefX(M) denotes the set of subsets of M that are
definable over the L∈(Ẋ)-structure ⟨M,∈, X ∩M⟩, where Ẋ is a unary
predicate symbol; i.e.

DefX(M) := {A ⊆ M : A is definable over ⟨M,∈, X ∩M⟩}.

Definition 2.2.2 (Universe of sets constructible relative to X). Let
X be a set.

• The hierarchy of sets constructible relative to X is defined by the fol-
lowing recursion on the ordinals:

L0[X] := ∅;
Lα+1[X] := DefX(Lα[X]);

Lα[X] :=
⋃
β<α

Lβ[X], if α is a limit ordinal.

• The universe of sets constructible relative to X is the proper class de-
fined as

L[X] :=
⋃

α∈Ord

Lα[X].

Observation 2.2.3. The proper class L[X] is ∆1-definable in ZFC with X
as a parameter. See Lemmas 13.12 and 13.14 in Jech (2003, p. 186–187) for
more details.

Notation. We write L to denote L[∅] (i.e. Gödel’s original formulation of
the universe of constructible sets) and Lα to denote Lα[∅].

Next, we provide a few useful properties of the hierarchy of sets constructible
relative to some set.

Proposition 2.2.4. Let X be a set.
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1. Lα[X] is a transitive set, for every ordinal α.

2. α = Ord ∩ Lα[X], for every ordinal α.

3. |Lα[X]| = |α|, for every infinite ordinal α.

4. Lα[X] ⊆ Lβ[X], for any ordinals α ≤ β.

5. Lα[X] ⊆ Vα, for every ordinal α.

6. Lα[X] ∈ H|α|+, for every infinite ordinal α.

Proof. Easily, by induction on α. See the proof of Lemma 1.1 in Devlin
(2016, p. 58–60) for more details. ■

We now introduce the well-known notions of transitive collapse, well-founded
extensional relations, extensional classes, and Mostowski’s Collapsing The-
orem, which is an essential ingredient in the Condensation Lemmas. These
notions and results show how every extensional class is ∈-isomorphic to some
transitive class.

Definition 2.2.5. Let A be a class. Let E be a well-founded set-like (i.e.
for every x ∈ A, {y ∈ A : yEx} is a set) binary relation on A.

• The transitive collapse of (A,E) is the following function π defined by
well-founded recursion on E: for every x ∈ A,

π(x) := {π(y) : yEx}.

• The relation E is extensional iff, for every x, y ∈ A, if x ̸= y, then

{z ∈ A : zEx} ≠ {z ∈ A : zEy}.

• The class A is extensional iff the relation ∈ on A is extensional; i.e. iff
x ∩ A ̸= y ∩ A for every x, y ∈ A such that x ̸= y.

Observation 2.2.6.

1. The range of the transitive collapse π of (A,E) is a transitive class and,
moreover, for every x, y ∈ A, if xEy, then π(x) ∈ π(y).

2. By the Axiom of Foundation, the set-like binary relation ∈ is well-
founded on any class.
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Theorem 2.2.7 (Mostowski’s Collapsing Theorem). Let A be a class.
Let E be a well-founded extensional relation on A.

1. There is a unique transitive class M and a unique transitive collapse
π : (A,E) ∼= (M,∈).

2. Consequently, if A is an extensional class, then there is a unique tran-
sitive class M such that π : (A,∈) ∼= (M,∈). Moreover, for every tran-
sitive B ⊆ A, we have that π ↾ B = idB.

Proof. See the proof of Theorem 6.15 in Jech (2003, p. 69). ■

Finally, we close this section by introducing both Gödel’s original formulation
of his well-known Condensation Lemma (i.e. restricted to limit ordinals and
initial segments of the constructible universe L) and its generalized version
to infinite ordinals and initial segments of relative constructible universes.
These lemmas are extremely useful. As already pointed in Proposition 2.2.4,
the initial segments of universes of constructible sets are transitive, highly
well-behaved sets. Condensation shows, via Mostowski’s transitive collapse,
how elementary substructures of initial segments of universes of constructible
sets are isomorphic to initial segments of universes of constructible sets.

Lemma 2.2.8 (Gödel’s Condensation Lemma). For every limit ordinal
α, if ⟨M,∈⟩ ≺1 ⟨Lα,∈⟩, then there is π : ⟨M,∈⟩ ∼= ⟨Lβ,∈⟩ for some limit
ordinal β ≤ α.

Proof. See the proof of Theorem 2.5 in Devlin (2016, p. 80–82). ■

Lemma 2.2.9 (Generalized Gödel’s Condensation Lemma). For ev-
ery infinite ordinal α, if ⟨M,∈, X ∩ M⟩ ≺1 ⟨Lα[X],∈, X ∩ Lα[X]⟩, then
there is π : ⟨M,∈, X ∩M⟩ ∼= ⟨Lβ[X

′],∈, X ′⟩ for some infinite ordinal β ≤ α,
with X ′ = π“(X ∩M).

Proof. See the proof of Lemma 1.3 in Magidor (1990, p. 96–97). ■

2.3 Structural reflection principles

We start by introducing the three “basic” formal versions of the general
principle of structural reflection (see chapter 1). We follow, although not
literally, Bagaria and Lücke (2024) in the next definitions.
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Notation. For the rest of this work, the calligraphic letter C denotes some
arbitrary (possibly proper) class of structures definable by a L∈-formula (pos-
sibly with parameters).

Definition 2.3.1 (SR). The SR(C) principle states: There is an ordinal α
such that, for every structure A ∈ C, there is a structure B ∈ C with |B| < α
and there is j : B ↪→ A elementary.

Definition 2.3.2 (HSR). The HSR(C) principle states: There is an infi-
nite cardinal α such that, for every structure A ∈ C, there is a structure
B ∈ C ∩Hα and there is j : B ↪→ A elementary.

Definition 2.3.3 (VSR). The VSR(C) principle states: There is an ordinal
α such that, for every structure A ∈ C, there is a structure B ∈ C ∩ Vα and
there is j : B ↪→ A elementary.

Notation. For any principle P of structural reflection, we write α |= P(C)
to denote that the ordinal α witnesses the principle P(C); e.g. α |= SR(C)
denotes that α witnesses SR(C).

Observation 2.3.4. If κ is an infinite cardinal, then κ |= HSR(C) implies
both κ |= SR(C) and κ |= VSR(C). Furthermore, if κ is a fixed point of
the Beth function, then Vκ = Hκ, whence κ |= VSR(C) iff κ |= HSR(C);
and if moreover the class C of structures is closed under isomorphic images,
then κ |= SR(C) implies κ |= HSR(C). Thus, if C is closed under isomorphic
images and if κ |= ℶκ, then κ |= SR(C) iff κ |= HSR(C) iff κ |= VSR(C).

Now, we introduce the generalized versions of the previous principles for any
Σn-definable or Πn-definable, with and without parameters, class of struc-
tures, for some natural number n. We follow, although not literally, Bagaria
(2023a, p. 31) in the next definition.

Definition 2.3.5. Let n ∈ ω.

• The Σn-SR principle states: There is an ordinal α such that, for every
Σn-definable, without parameters, class D of structures, α |= SR(D).

• For A a set, the Σn(A)-SR principle states: There is an ordinal α
such that, for every Σn-definable, with parameters in A, class D of
structures, α |= SR(D).
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• The Σn-SR principle states: There is a proper class of ordinals α such
that α |= Σn(Vα)-SR.

Observation 2.3.6. The following principles are defined in the same way
as in Definition 2.3.5:

• Πn-SR, Πn(A)-SR, Πn-SR;

• Σn-HSR, Σn(A)-HSR, Σn-HSR, Πn-HSR, Πn(A)-HSR, Πn-HSR;

• Σn-VSR, Σn(A)-VSR, Σn-VSR, Πn-VSR, Πn(A)-VSR, Πn-VSR.

Conceptually speaking, the theorems we present next can be considered the
first results of the Structural Reflection program. On the one hand, the
principles Σ0-VSR and Σ1-VSR happen to be equivalent theorems of ZFC.
Hence, they do not yield any large cardinal notion.

Definition 2.3.7. Let n ∈ ω. C(n) := {α ∈ Ord : (Vα,∈) ≺n (V,∈)}.

Observation 2.3.8. C(0) = Ord. For every n ∈ ω \ {0}, C(n) is a Πn-
definable club proper class of cardinals. Every element in C(1) is an uncount-
able cardinal and a fixed point of the ℶ function. See Bagaria (2012) for
more details.

Theorem 2.3.9. Let α be an ordinal. The following are equivalent:

(1) α |= Σ0(Vα)-VSR.

(2) α |= Σ1(Vα)-VSR.

(3) α ∈ C(1).

Proof. See the proof of Proposition 3.1 in Bagaria (2023a, p. 31–32). ■

On the other hand, the principles Π1-VSR and Σ2-VSR (and also their bold-
faced versions) are also equivalent and, moreover, yield an equivalent char-
acterization of the existence of a supercompact cardinal, a very strong large
cardinal notion. We refer the reader to Bagaria (2012) and Bagaria et al.
(2015) for the details of the proofs of the next theorems.

Theorem 2.3.10. Let κ be a cardinal. The following are equivalent:

(1) κ is either a supercompact cardinal or a limit of supercompact cardinals.

(2) κ |= Σ2(Vκ)-SR.
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(3) κ |= Σ2(Vκ)-HSR.

(4) κ |= Σ2(Vκ)-VSR.

Theorem 2.3.11. The following are equivalent:

(1) Π1-VSR.

(2) Σ2-VSR.

(3) There exists a supercompact cardinal.

Theorem 2.3.12. The following are equivalent:

(1) Π1-VSR.

(2) Σ2-VSR.

(3) There exists a proper class of supercompact cardinals.

Thus, the main goal of the Structural Reflection program is to provide equiv-
alent characterizations of every large cardinal notion, similarly to the ones
provided for supercompact cardinals in the previous theorems, in the form
of combinations of (i) variations (either strengthenings or weakenings) of
the basic structural reflection principles of Definitions 2.3.1 to 2.3.3 and (ii)
different definable classes, or definable families of classes, of structures.

Section 9 of Bagaria (2023a, 65–68) provides a wide summary of equivalent
characterizations of a broad variety of large cardinals in terms of different
principles of structural reflection:

• The region between supercompactness and Vopěnka’s Principle is char-
acterized by means of Σn and Πn VSR principles.

• The region beyond Vopěnka’s Principle is characterized by means of
the family of Exact Structural Reflection (ESR) principles.

• The region between strong cardinals and “Ord is Woodin” is character-
ized by means of the Product Structural Reflection (PSR) principles,
variations of which also allow us to characterize measurable and glob-
ally superstrong cardinals.

• The families of “sharps” and “daggers” principles are characterized by
the VSR principle applied to specific families of classes of structures
whose universes are initial segments of relative constructible universes.
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• The region below “0# exists” is characterized by means of restricted
versions of VSR and also by the Generic Structural Reflection (GSR)
principles.

• And so forth.
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Chapter 3

Structural reflection for Erdős
and Ramsey cardinals

In this chapter, we provide equivalent characterizations of Erdős and Ramsey
cardinals (and also of Almost Ramsey cardinals) in terms of new structural
reflection principles. To begin with, we introduce the partition properties
commonly associated with the field of Ramsey combinatorics in section 3.1,
after which we briefly present the large cardinal notions targeted in this
chapter in section 3.2. Lastly, we define a new family of structural reflection
principles and show how it characterizes Erdős, Ramsey and Almost Ramsey
cardinals in section 3.3.

3.1 Ordinary partition properties

We first define the family of partition properties that are commonly employed
to define Erdős and Ramsey cardinals, as we will see in section 3.2. We follow
Kanamori (2003, p. 71 and 80), although not literally, since we provide our
definitions in a slightly more general setting.

Definition 3.1.1. Let (A,◁) be a well-order and α be an ordinal.

• [A]α := {X ⊆ A : ot(X,◁) = α}. If A is a set of ordinals, then ◁ is ∈
by default.

• [A]<α :=
⋃

β<α[A]
β.

Definition 3.1.2 (Ordinary partition properties). Let (A,◁) be a well-
order, C be a set and β, δ be ordinals.
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• A −→ (β)δC denotes the following: For every f : [A]δ → C, there is
H ∈ [A]β such that |f“[H]δ| = 1.

• A −→ (β)<δ
C denotes the following: For every f : [A]<δ → C, there is

H ∈ [A]β such that, for every η < δ, |f“[H]η| = 1.

Notation. In the context of an ordinary partition property, we say that the
set H is f -homogeneous. Also, we write −̸→ when the property fails.

Next, we show that ordinary partition properties are preserved if the order-
type of (A,◁) and the cardinality of C are preserved.

Proposition 3.1.3. Let (A,◁) be a well-order, C be a set and β, δ be ordi-
nals.

1. If A −→ (β)δC, then A′ −→ (β)δC′ for any well-order (A′,◁′) ∼= (A,◁)
and for any set C ′ ∼ C.

2. If A −→ (β)<δ
C , then A′ −→ (β)<δ

C′ for any well-order (A′,◁′) ∼= (A,◁)
and for any set C ′ ∼ C.

Proof. 1. Let us assume A −→ (β)δC . Let i : (A,◁) ∼= (A′,◁′), j : C ∼ C ′

and f : [A′]δ → C ′. Let g : [A]δ → C be defined as follows:

g := {⟨x, y⟩ ∈ [A]δ × C : ⟨i“x, j(y)⟩ ∈ f}.

By assumption, there is H ∈ [A]β g-homogeneous. Then, i“H ∈ [A′]β is
f -homogeneous.

2. By the same argument exhibited in point 1. ■

Observation 3.1.4. Most often, ordinary partition properties are particu-
larized for α and γ ordinals, instead of (A,◁) and C, respectively. In such
a context, we always assume α ≥ β ≥ δ > 0 and γ ≥ 2 to avoid trivialities
and nonsensical scenarios.

We close this section by showing, first, the preservation properties of the
ordinary partition properties in terms of ordinals and, second, the conditions
under which the least ordinal α that satisfies an ordinary partition property,
if any, is a cardinal.

Proposition 3.1.5. Let α, β, γ, δ be ordinals.
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1. If α −→ (β)δγ, then α′ −→ (β′)δ
′

γ′ for any ordinals α′ ≥ α, β′ ≤ β,
γ′ ≤ γ and δ′ ≤ δ with δ′ < cf(β).

2. If α −→ (β)<δ
γ , then α′ −→ (β′)<δ′

γ′ for any ordinals α′ ≥ α, β′ ≤ β,
γ′ ≤ γ and δ′ ≤ δ.

Proof. 1. Let us assume α −→ (β)δγ. Let α′ ≥ α and f : [α′]δ → γ. Since
α ⊆ α′, any (f ↾ [α]δ)-homogeneous set H ∈ [α]β ⊆ [α′]β, which exists by
assumption, is f -homogeneous. Let β′ ≤ β and f : [α]δ → γ. By assumption,
there is H ∈ [α]β f -homogeneous, whence any H ′ ∈ [H]β

′
is f -homogeneous.

Let γ′ ≤ γ and f : [α]δ → γ′. Since γ′ ⊆ γ, we have that f is a function from
[α]δ into γ, whence, by assumption, there is H ∈ [α]β f -homogeneous. Let
δ′ ≤ δ with δ′ < cf(β) and f : [α]δ

′ → γ. We define g : [α]δ → γ as follows:
g({ξi : i < δ}) := f({ξi : i < δ′}) for every {ξi : i < δ′} ∈ [α]δ, with ξi < ξj
for every i < j < δ. By assumption, there is H ∈ [α]β g-homogeneous. Let
{ξi : i < δ′} ∈ [H]δ

′
, with ξi < ξj for every i < j < δ′. Since δ′ < cf(β), there

is {ξi : i < δ} ∈ [H]δ such that ξi < ξj for every i < δ′ ≤ j < δ. Hence, by
construction of g, we have that f({ξi : i < δ′}) = g({ξi : i < δ}). Therefore,
H is f -homogeneous.

2. Let us assume α −→ (β)<δ
γ . The cases α′ ≥ α, β′ ≤ β and γ′ ≤ γ

are shown by the same arguments exhibited in point 1. Let δ′ ≤ δ and
f : [α]<δ′ → γ. Since δ′ ⊆ δ, we define g : [α]<δ → γ extending f ; i.e.
g ↾ [α]<δ′ = f . Hence, any g-homogeneous set H ∈ [α]β, which exists by
assumption, is f -homogeneous. ■

Proposition 3.1.6. Let α, γ be ordinals and µ be a cardinal.

1. If α −→ (µ)nγ with n ∈ ω, then the least κ such that κ −→ (µ)nγ is a
cardinal.

2. If α −→ (µ)<ω
γ , then the least κ such that κ −→ (µ)<ω

γ is a cardinal.

Proof. 1. Let us assume α −→ (µ)nγ , with n ∈ ω. Let κ = |α| and f : [κ]n →
γ. Let h : α ∼ κ. We define g : [α]n → γ as follows: g(a) = f(h“a), for every
a ∈ [α]n. By assumption, there is H ∈ [α]µ g-homogeneous. Since µ is a
cardinal, we have that ot(h“H) ≥ µ. Let H ′ ∈ [h“H]µ. By construction of
g, we have that H ′ is f -homogeneous.

2. By the same argument exhibited in point 1. ■
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3.2 Erdős and Ramsey cardinals

We next provide a brief introduction to the notions of Erdős, Ramsey and
Almost Ramsey cardinals. More detailed accounts of these notions can be
found in Kanamori (2003, p. 70-84), for Erdős and Ramsey cardinals, and
in Vickers and Welch (2001), for Almost Ramsey cardinals.

The family of Erdős cardinals was introduced by Erdős and Hajnal (1958) as
a result of their study on ordinary partition properties.

Definition 3.2.1.

• Let β be an infinite ordinal. A cardinal κ is a β-Erdős cardinal iff
κ −→ (β)<ω

2 . Moreover, η(β) denotes the least β-Erdős cardinal.

• κ is an Erdős cardinal iff κ = η(β) for some β (i.e. κ is the least
β-Erdős cardinal for some β).

The Ramsey cardinals are the fixed points in the sequence of Erdős cardinals.

Definition 3.2.2. κ is a Ramsey cardinal iff κ −→ (κ)<ω
2 . In other words,

κ is a Ramsey cardinal iff κ = η(κ).

Furthermore, we also consider the Almost Ramsey cardinals, which are just a
weakening of Ramsey cardinals in terms of the order-type of the homogeneous
set in the partition property.

Definition 3.2.3. κ is an Almost Ramsey cardinal iff κ −→ (β)<ω
2 for every

ordinal β < κ.

It is well-known that Erdős cardinals are strongly inaccessible and that the
existence of η(ω1) implies that V ̸= L (Silver, 1966). Also, Ramsey cardinals
are weakly compact (Kanamori, 2003, p. 81) and measurable cardinals are
Ramsey (Erdős and Hajnal, 1958). Moreover, the least Almost Ramsey car-
dinal, if it exists, has countable cofinality and is larger than η(ω1) (Vickers
and Welch, 2001).

Next, we show Silver’s Theorem, which is a well-known model-theoretic
equivalent characterization of the purely combinatorial ordinary partition
property employed in the definition of Erdős, Ramsey and Almost Ramsey
cardinals. To that end, we first need to introduce the notion of indiscernibil-
ity for a structure.
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Definition 3.2.4. Let (X,◁) be a linear order. X is a set of ◁-indiscernibles
for a structure M with X ⊆ M iff, for every a1, . . . , an, b1, . . . , bn ∈ X such
that a1 ◁ . . . ◁ an and b1 ◁ . . . ◁ bn, and for every φ(x1, . . . , xn) ∈ LM,

M |= φ[a1, . . . , an] ⇐⇒ M |= φ[b1, . . . , bn].

Proposition 3.2.5. If X is a set of ◁-indiscernibles for a structure M,
then X is a set of ◁-indiscernibles for any structure M ↾ L, where L ⊆ LM.

Proof. Because M is the universe of both M and M ↾ L, and because, since
L ⊆ LM, every L-formula is an LM-formula. ■

Theorem 3.2.6 (Silver, 1966, 1971). Let κ be an infinite cardinal and β
be a limit ordinal. The following are equivalent:

(1) κ −→ (β)<ω
2 .

(2) For every structure M with κ ⊆ M , there is a set of ∈-indiscernibles
X ∈ [κ]β for M.

Proof. (1)⇒(2): Let us assume (1). Let M be a structure with κ ⊆ M . Let
{φn : n ∈ ω} be an enumeration of the LM-formulas such that n ≥ k(n) for
every n ∈ ω, where k(n) is the number of free variables of the formula φn.
Let f : [κ]<ω → {0, 1} be defined as follows: for every n ∈ ω,

f({ξ1, . . . , ξn}) = 0, if M |= φn[ξ1, . . . , ξk(n)];

f({ξ1, . . . , ξn}) = 1, otherwise;

where ξ1 ∈ . . . ∈ ξn. By (1), there is X ∈ [κ]β f -homogeneous. Let n ∈ ω.
Let φn ∈ LM. Let ξ1, . . . , ξk(n) ∈ X be such that ξ1 ∈ . . . ∈ ξk(n). Since β is
a limit ordinal, let ξk(n)+1, . . . , ξn ∈ X be such that ξk(n) ∈ ξk(n)+1 ∈ . . . ∈ ξn.
Hence, we have that M |= φ[ξ1, . . . , ξk(n)] iff f({ξ1, . . . , ξn}) = 0. Therefore,
since X is f -homogeneous, X is a set of ∈-indiscernibles for M.

(2)⇒(1): Let us assume (2). Let f : [κ]<ω → {0, 1}. By (2), let X ∈ [κ]β be
a set of ∈-indiscernibles for the structure ⟨κ,∈, f ↾ [κ]n⟩n∈ω. Therefore, X is
f -homogeneous. ■

We close this section by showing a slight generalization of Silver’s Theo-
rem 3.2.6 that will be useful in the next section.
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Theorem 3.2.7. Let α be an infinite ordinal and β be a limit ordinal. The
following are equivalent:

(1) α −→ (β)<ω
2 .

(2) For every structure M with ot(Ord ∩ M) ≥ α, there is a set of ∈-
indiscernibles X ∈ [Ord ∩M ]β for M.

Proof. (1)⇒(2): Let us assume (1). Let M be a structure with ot(Ord ∩
M) = α′ ≥ α. Hence, (Ord∩M,∈) ∼= (α′,∈). By Propositions 3.1.3 and 3.1.5,
we have that (Ord ∩ M) −→ (β)<ω

2 . By the same argument exhibited in
the proof of (1)⇒(2) of Theorem 3.2.6, there is X ∈ [Ord ∩ M ]β a set of
indiscernibles for M.

(2)⇒(1): By the proof of (2)⇒(1) of Theorem 3.2.6. ■

3.3 Structural reflection principles for Erdős

and Ramsey cardinals

In this section, we provide the first main contributions of the present work
in the form of different equivalent characterizations of Erdős, Ramsey and
Almost Ramsey cardinals in terms of principles of structural reflection. In
subsection 3.3.1, we introduce a new family of principles: the invariant struc-
tural reflection principles. We show different definable classes of structures
for which this new family of principles characterizes our targeted large car-
dinal notions. In subsection 3.3.2, we connect the results obtained in the
previous section with the level-by-level principle of structural reflection in-
troduced by Hou (2024). We provide level-by-level versions of the invariant
structural reflection principles and show that they also allow us to character-
ize Erdős, Ramsey and Almost Ramsey cardinals. Finally, in subsection 3.3.3,
we introduce the notion of for-all-levels structural reflection, define for-all-
levels versions of the invariant structural reflection principles and show how
our targeted large cardinal notions can also be characterized by them.

3.3.1 Invariant structural reflection

We first provide a result that leads to the definition of a new family of struc-
tural reflection principles that allow us to characterize Erdős and Ramsey
cardinals. To begin with, we define the property of being an “invariant”
elementary embedding with respect to some linear order.

21



Definition 3.3.1. Let (A,◁A), (B,◁B) be partial orders. A map f : A → B
is ◁-preserving iff, for every x, y ∈ A, if x ◁A y then f(x) ◁B f(y).

Definition 3.3.2. Let M, N be L-structures, j : M ↪→ N be elementary,
and (X,◁) be a linear order where X ⊆ N . We say that j is (X,◁)-invariant
iff |X ∩ ran(j)| ≥ ω and, for every n ∈ ω, for every φ(x1, . . . , xn) ∈ L, for
every a1, . . . , an ∈ M with j“{a1, . . . , an} ⊆ X, and for every ◁-preserving
map h : j“{a1, . . . , an} → X,

M |= φ[a1, . . . , an] ⇐⇒ N |= φ[h(j(a1), . . . , h(j(an))].

The following lemma shows that the relation between ordinary partition
properties and indiscernibility for structures pointed out in the previous sec-
tion implies that the existence of Erdős and Ramsey cardinals is equivalent
to the existence of invariant elementary embeddings between structures that
satisfy the conditions of structure M in Theorem 3.2.7.

Lemma 3.3.3. Let α be an infinite ordinal and β be a limit ordinal. The
following are equivalent:

(1) α −→ (β)<ω
2 .

(2) For every structure A with ot(Ord ∩ A) ≥ α and for every infinite
cardinal µ ≤ α, there is a structure B with |Ord∩B| = |B| = µ and there
is j : B ↪→ A elementary and (X,∈)-invariant for some X ∈ [Ord∩A]β.

Proof. (1)⇒(2): Let us assume (1). Let A be a structure with ot(Ord∩A) ≥
α. By Theorem 3.2.7, there is X ∈ [Ord∩A]β a set of ∈-indiscernibles for A.
Let µ ≤ α be an infinite cardinal. Let Y ∈ [A]µ be such that |Ord∩Y | = µ and
|X ∩Y | ≥ ω. Let B := H(Y ), the Skolem hull of Y in A. Therefore, we have
that B ≺ A, with Y ⊆ B and |B| = |Y | = µ. Moreover, since |Ord∩ Y | = µ,
we have that |Ord ∩ B| = µ. Hence, the identity map j : B → A is an
elementary embedding from B into A with Y ⊆ ran(j). Furthermore, since
|X ∩ Y | ≥ ω, we have that |X ∩ ran(j)| ≥ ω. Let n ∈ ω. Let ξ1, . . . , ξn ∈ B
be such that j“{ξ1, . . . , ξn} ⊆ X and ξ1 ∈ . . . ∈ ξn. Let φ(x1, . . . , xn) ∈ LA.
Let h : {ξ1, . . . , ξn} → X be ∈-preserving. By the elementarity of j and the
indiscernibility of X for A, we have that

B |= φ[ξ1, . . . , ξn] ⇐⇒ A |= φ[ξ1, . . . , ξn]

⇐⇒ A |= φ[h(ξ1), . . . , h(ξn)].
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Therefore, j is (X,∈)-invariant.

(2)⇒(1): Let us assume (2). Let f : [α]<ω → {0, 1}. Let A := ⟨α,∈, fn⟩n∈ω,
where fn(ξ1, . . . , ξn) := f({ξ1, . . . , ξn}) for all n ∈ ω. Let µ ≤ α be an
infinite cardinal. By assumption, there is a structure B = ⟨B,∈, gn⟩n∈ω
such that |Ord ∩ B| = |B| = µ and there is j : B ↪→ A elementary and
(X,∈)-invariant for some X ∈ [α]β with |X ∩ ran(j)| ≥ ω. Let n ∈ ω. Let
ξ1, . . . , ξn ∈ X ∩ ran(j) be such that ξ1 ∈ . . . ∈ ξn. Let c := f({ξ1, . . . , ξn}).
Therefore, we have that A |= “fn(ξ1, . . . , ξn) = c”. Let ς1, . . . , ςn ∈ X. Let
h : {ξ1, . . . , ξn} → {ς1, . . . , ςn} be ∈-invariant. Since j is elementary, we have
j−1(c) = c, j−1(ξ1) ∈ . . . ∈ j−1(ξn) and B |= “gn(j

−1(ξ1), . . . , j
−1(ξn)) = c”.

Therefore, since j is (X,∈)-invariant, we have that

B |= “gn(j
−1(ξ1), . . . , j

−1(ξn)) = c” ⇐⇒ A |= “fn(h(ξ1), . . . , h(ξn)) = c”.

Hence, we have that f({ς1, . . . , ςn}) = fn(h(ξ1), . . . , h(ξn)) = c. Therefore,
X is f -homogeneous. ■

Relying on this result, we next define the following class of structures.

Definition 3.3.4. COrd denotes the class of structures whose universe M is
such that |Ord ∩M | = |M |.

Remark 3.3.5. The class COrd is Σ1-definable.

Proof. Both the condition |Ord∩M | = |M | and the fact that the type of the
structure is countable are Σ1-expressible; the rest (i.e. the fact that every
other element in the structure is either an element of M or a function or a
relation on M) is ∆0-expressible. ■

Now, we are in a position to define the following invariant structural reflec-
tion principle, which yields equivalent characterizations of our targeted large
cardinal notions when applied to the class COrd of structures.

Definition 3.3.6 (ISR). For β an ordinal, the ISR(C, β) principle states:
There is an ordinal α such that, for every structure A ∈ C with |A| ≥ α,
there is a structure B ∈ C with |B| < α and there is j : B ↪→ A elementary
and (X,∈)-invariant for some X ∈ [Ord ∩ A]β.

Observation 3.3.7. If we compare the SR (recall Definition 2.3.1) and ISR
principles, we observe two differences. The first and most obvious one is
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that, while SR requires the existence of just an elementary embedding, ISR
adds to that requirement that the elementary embedding must satisfy an
extra property (namely, the property of being invariant with respect to some
well-order). Moreover, due to this extra property, the ISR principle has a
parametric definition: the parameter β is the order-type of the well-order.
The second difference is that, while SR does not require the structure A to
satisfy any property other than belonging to the class C of structures, ISR
adds the extra requirement that |A| ≥ α. We want to stress the fact that the
second difference is a direct consequence of the first one. If we just require
the existence of an elementary embedding, then the case |A| < α becomes
trivial by picking j the identity map, whence B = A. Then, of course,
the really interesting case in the structural reflection principle is |A| ≥ α.
However, if we require the elementary embedding to satisfy some extra non-
trivial property, then we must block the |A| < α case by explicitly restricting
the principle to the case |A| ≥ α, since the previous trivial solution is no
longer available.

Theorem 3.3.8. Let κ be a cardinal and β be a limit ordinal. The following
are equivalent:

(1) κ is a β-Erdős cardinal.

(2) κ |= ISR(COrd, β).

Proof. By Definition 3.2.1 and Lemma 3.3.3 with µ < κ. ■

Our next step is to observe that the ISR principle has natural counterparts
in the form of invariant HSR and VSR principles. We point out that Obser-
vation 3.3.7 evidently applies to these counterparts as well.

Definition 3.3.9 (IHSR). For β an ordinal, the IHSR(C, β) principle
states: There is an infinite cardinal α such that, for every structure
A ∈ C \ Hα, there is a structure B ∈ C ∩ Hα and there is j : B ↪→ A el-
ementary and (X,∈)-invariant for some X ∈ [Ord ∩ A]β.

Definition 3.3.10 (IVSR). For β an ordinal, the IVSR(C, β) principle
states: There is an ordinal α such that, for every structure A ∈ C \ Vα,
there is a structure B ∈ C ∩ Vα and there is j : B ↪→ A elementary and
(X,∈)-invariant for some X ∈ [Ord ∩ A]β.

And then we also observe that, if we restrict the class COrd to structures with
transitive universes, then we obtain more equivalent characterizations of our
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targeted large cardinal notions in terms of IHSR and IVSR. To that end, we
first prove the following lemma.

Lemma 3.3.11. Let α be an infinite ordinal and β be a limit ordinal. The
following are equivalent:

(1) α −→ (β)<ω
2 .

(2) For every structure A, with A transitive and ot(Ord ∩A) ≥ α, and for
every infinite cardinal µ ≤ α, there is a structure B, with B transitive
and |Ord ∩ B| = |B| = µ, and there is j : B ↪→ A elementary and
(X,∈)-invariant for some X ∈ [Ord ∩ A]β.

Proof. (1)⇒(2): Let us assume (1). Let A be a structure with A transitive
and ot(Ord ∩ A) ≥ α. Let A′ := ⟨A,∈⟩. Let us note that L∈,LA ⊆ LA′ .
By Theorem 3.2.7, there is X ∈ [Ord ∩ A]β a set of ∈-indiscernibles for A′

and, by Proposition 3.2.5, also for A. Let µ ≤ α be an infinite cardinal.
Let Y ∈ [A]µ be such that |Ord ∩ Y | = µ and |X ∩ Y | ≥ ω. Let H(Y )
be the Skolem hull of Y in A′. Hence, we have that H(Y ) ≺ A′, with
Y ⊆ H(Y ) and |H(Y )| = |Y | = µ. Moreover, since |Ord ∩ Y | = µ, we
have that |Ord ∩ H(Y )| = µ. Therefore, by Theorem 2.2.7 (Mostovski’s
Collapsing Theorem), we have an isomorphism j : ⟨B,∈⟩ ∼= H(Y ) ↾ L∈, with
B transitive, j−1“Y ⊆ Ord and |j−1“Y | = |B| = µ, whence |Ord ∩ B| = µ.
We define the LA-structure B with universe B induced by j. Thus, we have
j : B ∼= (H(Y ) ↾ LA) ≺ A, whence j : B ↪→ A is elementary with Y ⊆ ran(j).
Furthermore, since |X ∩ Y | ≥ ω, we have |X ∩ ran(j)| ≥ ω. Let n ∈ ω.
Let ξ1, . . . , ξn ∈ B be such that j“{ξ1, . . . , ξn} ⊆ X and ξ1 ∈ . . . ∈ ξn. Let
φ(x1, . . . , xn) ∈ LA. Let h : j“{ξ1, . . . , ξn} → X be ∈-preserving. By the
elementarity of j and the indiscernibility of X for A, we have that

B |= φ[ξ1, . . . , ξn] ⇐⇒ A |= φ[j(ξ1), . . . , j(ξn)]

⇐⇒ A |= φ[h(j(ξ1)), . . . , h(j(ξn))].

Therefore, j is (X,∈)-invariant.

(2)⇒(1): By the proof of (2)⇒(1) of Lemma 3.3.3. ■

The previous lemma leads to the definition of the following class of structures.

Definition 3.3.12. Ctr
Ord denotes the subclass of structures of COrd (see Def-

inition 3.3.4) whose universe is transitive.
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Remark 3.3.13. The class Ctr
Ord is Σ1-definable.

Proof. By Remark 3.3.5, plus the fact that the predicate “M is transitive”
is ∆0-expressible. ■

And now we obtain characterizations of our targeted large cardinal notions
also in terms of the IHSR and IVSR principles.

Theorem 3.3.14. Let κ be a cardinal and β be a limit ordinal. Let D denote
either COrd or Ctr

Ord. The following are equivalent:

(1) κ is a β-Erdős cardinal.

(2) κ |= ISR(D, β).

(3) κ |= IHSR(Ctr
Ord, β).

(4) κ |= IVSR(Ctr
Ord, β).

Proof. For the ISR cases, by Theorem 3.3.8 and Lemma 3.3.11 with µ < κ.

For the IHSR case: Since A /∈ Hκ is transitive, we have |A| ≥ κ, whence
|Ord ∩ A| ≥ κ, whence, by Lemma 3.3.11, we have B with B transitive and
|Ord ∩ B| = |B| = µ < κ, whence B ∈ Hκ. And conversely, ⟨κ,∈, fn⟩n∈ω /∈
Hκ.

For the IVSR case: Since A /∈ Vκ, we have that A /∈ Hκ. By the IHSR case,
we have B ∈ Hκ ⊆ Vκ. And conversely, ⟨κ,∈, fn⟩n∈ω /∈ Vκ. ■

Finally, in addition to these results, we can as well characterize our targeted
large cardinal notions by applying the invariant structural reflection princi-
ples to a much narrower class of structures. In order to do so, we first observe
the following lemma.

Lemma 3.3.15. Let α be an infinite ordinal and β be a limit ordinal. The
following are equivalent:

(1) α −→ (β)<ω
2 .

(2) For every structure A with universe Lγ[X] for γ ≥ α and X some
set, and for every infinite cardinal µ ≤ α, there is a structure B with
universe Lδ[X

′] for δ ≤ γ such that |δ| = µ and X ′ some set, and there
is j : B ↪→ A elementary and (Y,∈)-invariant for some Y ∈ [γ]β.
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Proof. (1)⇒(2): Let us assume (1). Let A be a structure with universe
Lγ[X] for γ ≥ α and X some set. Let A′ := ⟨A,∈, X ∩ Lγ[X]⟩. Let us note
that L∈ ⊊ L∈(Ẋ) ⊆ LA′ and LA ⊆ LA′ = LA(∈̇, Ẋ), where ∈̇ is the binary
relation symbol for the set-membership relation ∈ and Ẋ is a unary predicate
symbol. By Proposition 2.2.4, γ = Ord ∩ Lγ[X]. Hence, by Theorem 3.2.7,
there is Y ∈ [γ]β a set of ∈-indiscernibles for A′ and, by Proposition 3.2.5,
also for A. Let µ ≤ α be an infinite cardinal. Let Y ′ ∈ [Lγ[X]]µ be such
that |Y ∩ Y ′| ≥ ω. Let H(Y ′) be the Skolem hull of Y ′ in A′. Hence, we
have that H(Y ′) ≺ A′, with Y ′ ⊆ H(Y ′) and |H(Y ′)| = |Y ′| = µ. Therefore,
by Lemma 2.2.9 (Generalized Gödel’s Condensation Lemma), we have an
isomorphism j : ⟨Lδ[X

′],∈, X ′⟩ ∼= H(Y ′) ↾ L∈(Ẋ), with δ ≤ γ an infinite
ordinal and X ′ = j−1“(X ∩H(Y ′)). By Proposition 2.2.4, δ = Ord ∩ Lδ[X

′]
and |Lδ[X

′]| = |δ|. Therefore, since H(Y ′) ∼ Lδ[X
′] and |H(Y ′)| = µ, we

have that |δ| = µ. We define the LA-structure B with universe Lδ[X
′] induced

by j. Thus, we have that j : B ∼= (H(Y ′) ↾ LA) ≺ A, whence j : B ↪→ A is
elementary with Y ′ ⊆ ran(j). Furthermore, since |Y ∩Y ′| ≥ ω, we have that
|Y ∩ ran(j)| ≥ ω. By the same argument exhibited in the last part of the
proof of (1)⇒(2) of Lemma 3.3.11, we have that j is (Y,∈)-invariant.

(2)⇒(1): Let us assume (2). Let f : [α]<ω → {0, 1}. Let A := ⟨Lα,∈, fn⟩n∈ω,
where

fn(a1, . . . , an) := f({a1, . . . , an}), if a1, . . . , an ∈ α;

fn(a1, . . . , an) := 0, otherwise.

Let µ ≤ α be an infinite cardinal. By assumption, there is a structure
B = ⟨Lδ[X],∈, gn⟩n∈ω, with δ ≤ α such that |δ| = µ and X some set, and
there is j : B ↪→ A elementary and (Y,∈)-invariant for some Y ∈ [α]β with
|Y ∩ ran(j)| ≥ ω. By the same argument exhibited in the last part of the
proof of (2)⇒(1) of Lemma 3.3.3, we have that Y is f -homogeneous. ■

Observation 3.3.16. The proof of Lemma 3.3.15 shows that, if X = ∅,
then X ′ = ∅.

By the previous lemma, we observe that the following classes of structures
allow us to characterize our targeted large cardinal notions by means of any
of the three invariant structural reflection principles previously defined.

Definition 3.3.17. CL[·] denotes the class of structures whose universe is
Lα[X] for some ordinal α and some set X (see Definition 2.2.2). Moreover,
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CL denotes the subclass of structures of CL[·] whose universe is Lα for some
ordinal α.

Observation 3.3.18. Clearly, CL ⊊ CL[·] ⊊ Ctr
Ord ⊊ COrd.

Remark 3.3.19. The classes CL[·] and CL are Σ1-definable.

Proof. By Remark 3.3.5, plus the fact that the class function α 7→ Lα[X] is
∆1-definable with X as a parameter (see Observation 2.2.3). ■

Finally, we provide a full characterization of Erdős, Ramsey and Almost
Ramsey cardinals in terms of the ISR, IHSR and IVSR principles, combined
with the increasingly narrower classes COrd, Ctr

Ord, CL[·] and CL of structures.

Theorem 3.3.20. Let κ be a cardinal and β be a limit ordinal. Let Ctr

denote either Ctr
Ord, CL[·] or CL. Let D denote either COrd or Ctr. The following

are equivalent:

(1) κ is a β-Erdős cardinal.

(2) κ |= ISR(D, β).

(3) κ |= IHSR(Ctr, β).

(4) κ |= IVSR(Ctr, β).

Proof. For the ISR cases: By Theorems 3.3.8 and 3.3.14. And by Defini-
tion 3.2.1 and Lemma 3.3.15 with µ < κ, since, by Proposition 2.2.4, we have
that |Lα[X]| = |α| for every infinite ordinal α.

For the IHSR and IVSR cases: By Theorem 3.3.14. And by Definition 3.2.1
and Lemma 3.3.15: we pick µ < κ and we note that, by Proposition 2.2.4,
for any ordinal α ≥ κ, we have that Lα[X] and Lδ[X

′] are transitive with
Lα[X] ∈ Vα+1 \Vα and |Lδ[X

′]| = |δ| = µ < κ, whence Lα[X] /∈ Vκ ⊇ Hκ and
Lδ[X

′] ∈ Hκ ⊆ Vκ. ■

Corollary 3.3.21. Let κ be a cardinal. Let Ctr denote either Ctr
Ord, CL[·] or

CL. Let D denote either COrd or Ctr. The following are equivalent:

(1) κ is a Ramsey cardinal.

(2) κ |= ISR(D, κ).

(3) κ |= IHSR(Ctr, κ).
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(4) κ |= IVSR(Ctr, κ).

Proof. By Definition 3.2.2 and Theorems 3.3.8, 3.3.14 and 3.3.20. ■

Corollary 3.3.22. Let κ be a cardinal. Let Ctr denote either Ctr
Ord, CL[·] or

CL. Let D denote either COrd or Ctr. The following are equivalent:

(1) κ is an Almost Ramsey cardinal.

(2) κ |= ISR(D, β), for every limit ordinal β < κ.

(3) κ |= IHSR(Ctr, β), for every limit ordinal β < κ.

(4) κ |= IVSR(Ctr, β), for every limit ordinal β < κ.

Proof. By Definition 3.2.3, Proposition 3.1.5(2) and Theorems 3.3.8, 3.3.14
and 3.3.20. ■

We close this subsection by pointing out the following observation.

Observation 3.3.23. In Lemmas 3.3.3, 3.3.11 and 3.3.15, the condition for
the infinite cardinal µ is to be less than or equal to α. This fact allows
the particular case µ = α that has not been included in the invariant struc-
tural principles defined in this subsection, since it is not contemplated in the
definitions of the basic SR, HSR and VSR principles originally provided by
Bagaria and Lücke (2024) (see Definitions 2.3.1 to 2.3.3). However, we can
define the variants SR* and ISR* (with |B| ≤ α), HSR* and IHSR* (with
B ∈ Hα+) and VSR* and IVSR* (with B ∈ Vα+1). We want to highlight
the fact that, if we allowed for these variants, then Theorems 3.3.8, 3.3.14
and 3.3.20, as well as Corollaries 3.3.21 and 3.3.22, would also include the
ISR*, IHSR* and IVSR* principles.

3.3.2 Level-by-level structural reflection

We begin this subsection by highlighting the following observation.

Observation 3.3.24. The ISR, IVSR and IHSR principles do not exploit
all the power of Lemmas 3.3.3, 3.3.11 and 3.3.15, which provide the existence
of invariant elementary embeddings for every infinite cardinal µ ≤ α.

We notice that the fact pointed out in the previous observation allows us to
connect the results obtained in the previous subsection with the level-by-level
kind of structural reflection proposed by Hou (2024).
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Hou’s definition of the level-by-level structural reflection is made in terms
of the ranks of the structures of the class involved in the reflection, that is
to say, in terms of the VSR principle. Therefore, although Lemmas 3.3.3,
3.3.11 and 3.3.15 do not yield a level-by-level variant of invariant elementary
embeddings in terms of ranks, they do yield such a variant in terms of the
cardinalities of the universes of structures.

Thus, as a first step, we next present the level-by-level structural reflection
principle proposed by Hou and rename it as “Level-by-level VSR”.

Definition 3.3.25 (LVSR). The LVSR(C) principle states: There is an or-
dinal α such that, for every ordinal β, there is an ordinal γ < α such that, for
every structure A ∈ C ∩ (Vβ+1 \ Vβ), there is a structure B ∈ C ∩ (Vγ+1 \ Vγ)
and there is j : B ↪→ A elementary.

Secondly, we next propose analogue counterparts of the LVSR principle in
terms of SR and HSR; i.e. we define level-by-level versions of the SR and
HSR principles.

Definition 3.3.26 (LSR). The LSR(C) principle states: There is an ordi-
nal α such that, for every cardinal κ, there is a cardinal µ < α such that, for
every structure A ∈ C with |A| = κ, there is a structure B ∈ C with |B| = µ
and there is j : B ↪→ A elementary.

Definition 3.3.27 (LHSR). The LHSR(C) principle states: There is an
infinite cardinal α such that, for every infinite cardinal κ, there is an infinite
cardinal µ < α such that, for every structure A ∈ C ∩ (Hκ+ \Hκ), there is a
structure B ∈ C ∩ (Hµ+ \Hµ) and there is j : B ↪→ A elementary.

We are now in a position to extend the invariant structural reflection princi-
ples to their respective level-by-level versions, which is precisely what we do
next.

Definition 3.3.28 (LISR). For β an ordinal, the LISR(C, β) principle
states: There is an ordinal α such that, for every cardinal κ ≥ α, there
is a cardinal µ < α such that, for every structure A ∈ C with |A| = κ, there
is a structure B ∈ C with |B| = µ and there is j : B ↪→ A elementary and
(X,∈)-invariant for some X ∈ [Ord ∩ A]β.

Definition 3.3.29 (LIHSR). For β an ordinal, the LIHSR(C, β) principle
states: There is an infinite cardinal α such that, for every cardinal κ ≥ α,
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there is an infinite cardinal µ < α such that, for every structure A ∈ C ∩
(Hκ+ \Hκ), there is a structure B ∈ C ∩ (Hµ+ \Hµ) and there is j : B ↪→ A
elementary and (X,∈)-invariant for some X ∈ [Ord ∩ A]β.

Definition 3.3.30 (LIVSR). For β an ordinal, the LIVSR(C, β) principle
states: There is an ordinal α such that, for every ordinal γ ≥ α, there is
an ordinal δ < α such that, for every structure A ∈ C ∩ (Vγ+1 \ Vγ), there
is a structure B ∈ C ∩ (Vδ+1 \ Vδ) and there is j : B ↪→ A elementary and
(X,∈)-invariant for some X ∈ [Ord ∩ A]β.

Thus, we finally present the equivalent characterizations of Erdős, Ramsey
and Almost Ramsey cardinals yielded by the LISR and LIHSR principles.

Theorem 3.3.31. Let κ be a cardinal and β be a limit ordinal. Let Ctr

denote either Ctr
Ord, CL[·] or CL. Let D denote either COrd or Ctr. The following

are equivalent:

(1) κ is a β-Erdős cardinal.

(2) κ |= LISR(D, β).

(3) κ |= LIHSR(Ctr, β).

Proof. By Theorem 3.3.20 and Observation 3.3.24. ■

Corollary 3.3.32. Let κ be a cardinal. Let Ctr denote either Ctr
Ord, CL[·] or

CL. Let D denote either COrd or Ctr. The following are equivalent:

(1) κ is a Ramsey cardinal.

(2) κ |= LISR(D, κ).

(3) κ |= LIHSR(Ctr, κ).

Proof. By Definition 3.2.2 and Theorem 3.3.31. ■

Corollary 3.3.33. Let κ be a cardinal. Let Ctr denote either Ctr
Ord, CL[·] or

CL. Let D denote either COrd or Ctr. The following are equivalent:

(1) κ is an Almost Ramsey cardinal.

(2) κ |= LISR(D, β), for every limit ordinal β < κ.

(3) κ |= LIHSR(Ctr, β), for every limit ordinal β < κ.
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Proof. By Definition 3.2.3, Proposition 3.1.5(2) and Theorem 3.3.31. ■

We close this subsection by getting back to Observation 3.3.23, at the end of
the previous subsection.

Observation 3.3.34. Analogously to the basic structural reflection princi-
ples, all the level-by-level principles revisited or newly defined in this sub-
section allow for * variants that exploit the particular case µ = α in Lem-
mas 3.3.3, 3.3.11 and 3.3.15 pointed out in Observation 3.3.23. We want to
highlight the fact that, in case we allowed for these variants, then both The-
orem 3.3.31 and Corollary 3.3.32 would also include the LISR* and LIHSR*
principles.

3.3.3 For-all-levels structural reflection

We close this chapter by pointing out that Observation 3.3.24 allows to go
even further than the level-by-level principles defined in the previous subsec-
tion. In all the previous level-by-level principles (invariant or not), for every
level of the structure A, there is some level below the reflection point for the
structure B. However, Observation 3.3.24 suggests that we can actually work
with a kind of “for all” level-by-level principles; i.e. level-by-level principles
with a structure B and an elementary embedding for every level below the
reflection point that can in principle admit such a scenario.

Observation 3.3.35. There are some restrictions that we must accommo-
date in the definitions of any conceivable “for-all-levels” structural reflection
principles:

1. Finitary levels both for structures A and B must be counted out, oth-
erwise any “for-all-levels” principle would be trivially false, since evi-
dently a structure with a universe whose cardinality is finite neither can
be elementarily embedded into nor admits an elementary embedding
from a structure whose universe is of any other different cardinality.

2. Moreover, “for-all-levels” principles must also restrict the levels for the
structure A to those larger than or equal to the reflection point α.
Otherwise, we would be allowing for combinations of levels where the
cardinality of the structure B would be larger than the cardinality of
the structure A, which would make the existence of the elementary
embedding impossible and whence yield the principle trivially false.
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3. Finally, the reflection point α itself must be restricted to be larger than
ω, otherwise the principle would be vacuously witnessed by any α ≤ ω.

Thus, keeping this observation in mind, we next define the for-all-levels ver-
sions of the SR, HSR and VSR principles.

Definition 3.3.36 (∀SR). The SR(C) principle states: There is an ordinal
α > ω such that, for every cardinal κ ≥ α and for every infinite cardinal
µ < α, we have that, for every structure A ∈ C with |A| = κ, there is a
structure B ∈ C with |B| = µ and there is j : B ↪→ A elementary.

Definition 3.3.37 (∀HSR). The HSR(C) principle states: There is an un-
countable cardinal α such that, for every cardinal κ ≥ α and for every infinite
cardinal µ < α, we have that, for every structure A ∈ C ∩ (Hκ+ \Hκ), there
is a structure B ∈ C ∩ (Hµ+ \Hµ) and there is j : B ↪→ A elementary.

Definition 3.3.38 (∀VSR). The VSR(C) principle states: There is an or-
dinal α > ω such that, for every ordinal β ≥ α and for every infinite ordinal
γ < α, we have that, for every structure A ∈ C ∩ (Vβ+1 \ Vβ), there is a
structure B ∈ C ∩ (Vγ+1 \ Vγ) and there is j : B ↪→ A elementary.

Now, we proceed to extend the invariant structural reflection principles to
their respective for-all-levels versions.

Definition 3.3.39 (∀ISR). For β an ordinal, the ∀ISR(C, β) principle
states: There is an ordinal α > ω such that, for every cardinal κ ≥ α and
for every infinite cardinal µ < α, we have that, for every structure A ∈ C
with |A| = κ, there is a structure B ∈ C with |B| = µ and there is j : B ↪→ A
elementary and (X,∈)-invariant for some X ∈ [Ord ∩ A]β.

Definition 3.3.40 (∀IHSR). For β an ordinal, the ∀IHSR(C, β) principle
states: There is an uncountable cardinal α such that, for every cardinal
κ ≥ α and for every infinite cardinal µ < α, we have that, for every structure
A ∈ C ∩ (Hκ+ \ Hκ), there is a structure B ∈ C ∩ (Hµ+ \ Hµ) and there is
j : B ↪→ A elementary and (X,∈)-invariant for some X ∈ [Ord ∩ A]β.

Definition 3.3.41 (∀IVSR). For β an ordinal, the ∀IVSR(C, β) principle
states: There is an ordinal α > ω such that, for every ordinal γ ≥ α
and for every infinite ordinal δ < α, we have that, for every structure
A ∈ C ∩ (Vγ+1 \ Vγ), there is a structure B ∈ C ∩ (Vδ+1 \ Vδ) and there
is j : B ↪→ A elementary and (X,∈)-invariant for some X ∈ [Ord ∩ A]β.
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Thus, we finally present the equivalent characterizations of Erdős, Ramsey
and Almost cardinals yielded by the ∀ISR and ∀IHSR principles.

Theorem 3.3.42. Let κ be a cardinal and β be a limit ordinal. Let Ctr

denote either Ctr
Ord, CL[·] or CL. Let D denote either COrd or Ctr. The following

are equivalent:

(1) κ is a β-Erdős cardinal.

(2) κ |= ∀ISR(D, β).

(3) κ |= ∀IHSR(Ctr, β).

Proof. By Theorem 3.3.31 and Observation 3.3.24. ■

Corollary 3.3.43. Let κ be a cardinal. Let Ctr denote either Ctr
Ord, CL[·] or

CL. Let D denote either COrd or Ctr. The following are equivalent:

(1) κ is a Ramsey cardinal.

(2) κ |= ∀ISR(D, κ).

(3) κ |= ∀IHSR(Ctr, κ).

Proof. By Definition 3.2.2 and Theorem 3.3.42. ■

Corollary 3.3.44. Let κ be a cardinal. Let Ctr denote either Ctr
Ord, CL[·] or

CL. Let D denote either COrd or Ctr. The following are equivalent:

(1) κ is an Almost Ramsey cardinal.

(2) κ |= ∀ISR(D, β), for every limit ordinal β < κ.

(3) κ |= ∀IHSR(Ctr, β), for every limit ordinal β < κ.

Proof. By Definition 3.2.3, Proposition 3.1.5(2) and Theorem 3.3.42. ■

We close this subsection (and this chapter) by pointing out an observation
analogous to Observation 3.3.34, at the end of the previous subsection.

Observation 3.3.45. Analogously to the level-by-level structural reflection
principles, all the for-all-levels principles defined in this subsection allow for
* variants that exploit the particular case µ = α in Lemmas 3.3.3, 3.3.11
and 3.3.15 pointed out in Observation 3.3.23. Again, if we allowed for these
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variants, then both Theorem 3.3.42 and Corollary 3.3.43 would also include
the ∀ISR* and ∀IHSR* principles.
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Chapter 4

Structural reflection for
Rowbottom cardinals

In this chapter, we provide equivalent characterizations for the family of
Rowbottom cardinals in terms of new structural reflection principles. We
proceed analogously to chapter 3 and we start by introducing the family of
square-bracket partition properties in section 4.1. Subsequently, we briefly
present the large cardinal notions targeted in this chapter in section 4.2.
Lastly, we define a new family of structural reflection principles and show
how it characterizes Rowbottom cardinals in section 4.3.

4.1 Square-bracket partition properties

The kind of partition property that can be employed to define Rowbottom
cardinals is a weakening of the ordinary partition properties presented in
section 3.1. Following Kanamori (2003, p. 85–86), we call this family of par-
tition relations “square-bracket partition properties” and we next provide our
definitions adopting the same slightly more general setting that we employed
in section 3.1.

Definition 4.1.1 (Square-bracket partition properties). Let (A,◁) be
a well-order, C be a set and β, δ, η be ordinals.

• A −→ [β]δC denotes the following: For every f : [A]δ → C, there is
H ∈ [A]β such that f“[H]δ ̸= C.

• A −→ [β]δC,<η denotes the following: For every f : [A]δ → C, there is
H ∈ [A]β such that |f“[H]δ| < η.
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• A −→ [β]<δ
C denotes the following: For every f : [A]<δ → C, there is

H ∈ [A]β such that f“[H]<δ ̸= C.

• A −→ [β]<δ
C,<η denotes the following: For every f : [A]<δ → C, there is

H ∈ [A]β such that |f“[H]<δ| < η.

Notation. In the context of a square-bracket partition property, we say that
the set H is f -homogeneous. Also, we write −̸→ when the property fails.

Next, we show that square-bracket partition properties are also preserved as
long as the order-type of (A,◁) and the cardinality of C are preserved.

Proposition 4.1.2. Let (A,◁) be a well-order, C be a set and β, δ, η be
ordinals.

1. If A −→ [β]δC, then A′ −→ [β]δC′ for any well-order (A′,◁′) ∼= (A,◁)
and for any set C ′ ∼ C.

2. If A −→ [β]δC,<η, then A′ −→ [β]δC′,<η for any well-order (A′,◁′) ∼=
(A,◁) and for any set C ′ ∼ C.

3. If A −→ [β]<δ
C , then A′ −→ [β]<δ

C′ for any well-order (A′,◁′) ∼= (A,◁)
and for any set C ′ ∼ C.

4. If A −→ [β]<δ
C,<η, then A′ −→ [β]<δ

C′,<η for any well-order (A′,◁′) ∼=
(A,◁) and for any set C ′ ∼ C.

Proof. By the proof of Proposition 3.1.3. ■

Observation 4.1.3. Most often, square-bracket partition properties are par-
ticularized for α and γ ordinals, instead of (A,◁) and C, respectively. In
such a context, we always assume α ≥ β ≥ δ > 0 and γ ≥ η ≥ 2 to avoid
trivialities and nonsensical scenarios.

To close this section, we next show the preservation properties of the square-
bracket partition properties in terms of ordinals, as well as the conditions
under which the least ordinal α that satisfies a square-bracket partition prop-
erty, if any, is a cardinal.

Proposition 4.1.4. Let α, β, γ, δ, η be ordinals.

1. If α −→ [β]δγ, then α′ −→ [β′]δ
′

γ′ for any ordinals α′ ≥ α, β′ ≤ β, γ′ ≥ γ
and δ′ ≤ δ with δ′ < cf(β).
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2. If α −→ [β]δγ,<η, then α′ −→ [β′]δ
′

γ′,<η′ for any ordinals α′ ≥ α, β′ ≤ β,
γ′ ≤ γ, δ′ ≤ δ with δ′ < cf(β), and η′ ≥ η.

3. If α −→ [β]<δ
γ , then α′ −→ [β′]<δ′

γ′ for any ordinals α′ ≥ α, β′ ≤ β,
γ′ ≥ γ and δ′ ≤ δ.

4. If α −→ [β]<δ
γ,<η, then α′ −→ [β′]<δ′

γ′,<η′ for any ordinals α′ ≥ α, β′ ≤ β,
γ′ ≤ γ, δ′ ≤ δ and η′ ≥ η.

Proof. 1. Let us assume α −→ [β]δγ. The cases α′ ≥ α, β′ ≤ β and δ′ ≤ δ
with δ′ < cf(β) are shown by the same arguments exhibited in the proof
of point 1 of Proposition 3.1.5. Let γ′ ≥ γ and f : [α]δ → γ′. We define
g : [α]δ → γ as follows: g(x) = f(x) if f(x) ∈ γ; g(x) = 0 if f(x) /∈ γ. By
assumption, there is H ∈ [α]β g-homogeneous. Hence, γ \ g“[H]δ ̸= ∅. Let
x ∈ [H]δ. If f(x) ∈ γ, then f(x) = g(x) ∈ g“[H]δ, whence f(x) /∈ γ \ g“[H]δ;
if f(x) /∈ γ, then f(x) /∈ γ \ g“[H]δ. Therefore, we have that f“[H]δ ∩ (γ \
g“[H]δ) = ∅, whence γ \ g“[H]δ ⊆ γ′ \ f“[H]δ, whence γ′ \ f“[H]δ ̸= ∅. Thus,
H is f -homogeneous.

2. Let us assume α −→ [β]δγ,<η. The cases α′ ≥ α, β′ ≤ β, γ′ ≤ γ and δ′ ≤ δ
with δ′ < cf(β) are shown by the same arguments exhibited in the proof of
point 1 of Proposition 3.1.5. Let η′ ≥ η and f : [α]δ → γ. By assumption,
there is H ∈ [α]β such that |f“[H]δ| < η ≤ η′.

3. The cases α′ ≥ α and β′ ≤ β are shown by the same arguments exhibited
in the proof of point 1 of Proposition 3.1.5; the case γ′ ≥ γ is shown by the
same argument exhibited in point 1; the case δ′ ≤ δ is shown by the same
argument exhibited in the proof of point 2 of Proposition 3.1.5.

4. The cases α′ ≥ α, β′ ≤ β and γ′ ≤ γ are shown by the same arguments
exhibited in the proof of point 1 of Proposition 3.1.5; the case δ′ ≤ δ is shown
by the same argument exhibited in the proof of point 2 of Proposition 3.1.5;
the case η′ ≥ η is shown by the same argument exhibited in point 2. ■

Proposition 4.1.5. Let α, γ, η be ordinals and µ be a cardinal.

1. If α −→ [µ]nγ with n ∈ ω, then the least κ such that κ −→ [µ]nγ is a
cardinal.

2. If α −→ [µ]nγ,<η with n ∈ ω, then the least κ such that κ −→ [µ]nγ,<η is
a cardinal.

3. If α −→ [µ]<ω
γ , then the least κ such that κ −→ [µ]<ω

γ is a cardinal.

4. If α −→ [µ]<ω
γ,<η, then the least κ such that κ −→ [µ]<ω

γ,<η is a cardinal.
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Proof. By the proof of Proposition 3.1.6. ■

4.2 Rowbottom cardinals

In this section, we provide a brief introduction to the large cardinal family of
ν-Rowbottom cardinals, which were defined as a result of the investigation on
the partition properties of measurable cardinals carried out by Rowbottom
(1964). More detailed accounts of this large cardinal notion can be found in
Kanamori (2003, p. 85–92).

Definition 4.2.1. Let κ > ν be uncountable cardinals.

• κ is a ν-Rowbottom cardinal iff κ −→ [κ]<ω
λ,<ν for every cardinal λ < κ.

• κ is a Rowbottom cardinal iff κ is ω1-Rowbottom.

Proposition 4.2.2.

1. If κ is a ν-Rowbottom cardinal, then κ is a ν ′-Rowbottom cardinal for
every ν ′ ≥ ν.

2. κ is a ν-Rowbottom cardinal iff κ −→ [κ]<ω
λ,<ν for every cardinal λ such

that ν ≤ λ < κ.

Proof. 1. By Proposition 4.1.4(4). 2. Since the ν-Rowbottom partition
property is trivially true for any λ < ν. ■

Well-known facts are that ν-Rowbottom cardinals are either weakly inacces-
sible or singular with cofinality less than ν (Kanamori, 2003, p. 90), that
Ramsey cardinals are Rowbottom (Kanamori, 2003, p. 81–82) and that the
existence of a ν-Rowbottom cardinal implies that V ̸= L (Kanamori, 2003,
p. 88). Moreover, the consistency of “ℵω is Rowbottom” is a famous still
unsolved question.

It was Rowbottom’s discovery (see Theorem 4.2.5) that square-bracket parti-
tion properties are the purely combinatorial, set-theoretic counterpart of the
two-cardinal versions of the Downward Löwenheim-Skolem Theorem, which
is a well-known model-theoretic notion, that we next introduce in Defini-
tion 4.2.4.

Definition 4.2.3. Let M be an L(Ṗ )-structure, where L is some language
and Ṗ is a unary predicate symbol.
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• The type of M is ⟨κ, λ⟩ iff |M | = κ and |ṖM| = λ.

• Moreover, we allow for the notation of the type to support variants
with the symbols <, ≤, > and ≥; e.g. the type of M is ⟨≥ κ,< λ⟩ iff
|M | ≥ κ and |ṖM| < λ.

Definition 4.2.4 (Double arrow notation).

• ⟨κ, λ⟩ ↠ ⟨µ, ν⟩ denotes the following property:

Every structure of type ⟨κ, λ⟩ has an elementary substructure of type
⟨µ, ν⟩.

• Moreover, we allow the double arrow notation to support variants with
the symbols <, ≤, > and ≥; e.g. ⟨≥ κ,< λ⟩ ↠ ⟨> µ,< ν⟩ denotes the
following property:

Every structure of type ⟨≥ κ,< λ⟩ has an elementary substructure of
type ⟨> µ,< ν⟩.

Theorem 4.2.5 (Rowbottom, 1964, 1971). Let κ, µ, λ, ν be cardinals
such that κ > λ, κ ≥ µ ≥ ω and ν > ω. The following are equivalent:

(1) κ −→ [µ]<ω
λ,<ν.

(2) ⟨κ, λ⟩ ↠ ⟨µ,< ν⟩.

Proof. See the proof of Theorem 8.1 in Kanamori (2003, p. 86). ■

We close this section by showing the model-theoretic characterization of ν-
Rowbottom cardinals immediately derivable from Theorem 4.2.5, as well as
a slight generalization of it that will be useful in the next section and that
immediately follows from the preservation properties of the square-bracket
partition relations.

Theorem 4.2.6. Let κ > ν be uncountable cardinals. The following are
equivalent:

(1) κ is a ν-Rowbottom cardinal.

(2) ⟨κ,< κ⟩ ↠ ⟨κ,< ν⟩.

(3) ⟨≥ κ,< κ⟩ ↠ ⟨µ,< ν ′⟩ for every infinite cardinal µ ≤ κ and every
cardinal ν ′ ≥ ν.

Proof. (1)⇔(2): By Definition 4.2.1 and Theorem 4.2.5.
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(1)⇔(3): By Definition 4.2.1, Proposition 4.1.4(4) and Theorem 4.2.5. ■

Corollary 4.2.7. Let κ be an uncountable cardinal. The following are equiv-
alent:

(1) κ is a Rowbottom cardinal.

(2) ⟨κ,< κ⟩ ↠ ⟨κ,< ω1⟩.

(3) ⟨κ, λ⟩ ↠ ⟨κ, ω⟩ for every infinite cardinal λ < κ.

(4) ⟨≥ κ,< κ⟩ ↠ ⟨µ,< ν⟩ for every infinite cardinal µ ≤ κ and every
uncountable cardinal ν.

Proof. (1)⇔(2) and (1)⇔(4): By Theorem 4.2.6.

(1)⇔(3): By Definition 4.2.1 and Theorem 4.2.5. ■

4.3 Structural reflection principles for Row-

bottom cardinals

In this section, we provide the main contributions of the present work con-
cerning the equivalent characterization of the family of Rowbottom cardinals
in terms of principles of structural reflection. In subsection 4.3.1, we in-
troduce a new family of principles: the two-cardinal structural reflection
principles. We show different definable classes of structures for which this
new family of principles characterizes ν-Rowbottom cardinals. And, analo-
gously to subsection 3.3.3, we introduce in subsection 4.3.2 the for-all-levels
versions of the two-cardinal structural reflection principles and show how
ν-Rowbottom cardinals can also be characterized by them.

4.3.1 Two-cardinal structural reflection

In light of Theorem 4.2.6 and Corollary 4.2.7, we can already define two
different classes of structures and a new structural reflection principle that,
applied to any of those two classes of structures, yields equivalent character-
izations of ν-Rowbottom cardinals.

Definition 4.3.1. Let κ be a cardinal. C≥κ,<κ denotes the class of structures
of the form ⟨M,S, . . .⟩, where M is the universe of the structure, |M | ≥ κ,
S ⊆ M and |S| < κ. Moreover, Cκ,<κ denotes the subclass of structures of
C≥κ,<κ whose universe has cardinality κ.
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Remark 4.3.2. The classes Cκ,<κ and C≥κ,<κ are Σ1-definable with a cardi-
nal κ as a parameter.

Proof. The conditions |M | ≥ κ, |S| < κ and |M | = κ are Σ1-expressible
with a cardinal κ as a parameter. The fact that the type of the structure is
countable is Σ1-expressible and the rest is ∆0-expressible. ■

Furthermore, the SR principle introduced in Definition 2.3.1 can be extended
in a very natural way into the following two-cardinal version.

Definition 4.3.3 (2CSR). For β an ordinal, the 2CSR(C, β) principle
states: There is an ordinal α such that, for every structure A ∈ C, there
is a structure B ∈ C with type ⟨< α,< β⟩ and there is j : B ↪→ A elementary.

And next, we give the characterization of ν-Rowbottom cardinals by means
of the 2CSR principle.

Theorem 4.3.4. Let κ > ν be uncountable cardinals. Let D denote either
Cκ,<κ or C≥κ,<κ. The following are equivalent:

(1) κ is a ν-Rowbottom cardinal.

(2) κ+ 1 |= 2CSR(D, ν).

Proof. This is equivalent to Theorem 4.2.6. ■

In contrast to the invariant structural reflection principles studied in sub-
section 3.3.1, the 2CSR principle has no straight counterparts in the form
of the HSR and VSR principles respectively introduced in Definitions 2.3.2
and 2.3.3, since 2CSR is all about the type of structure B and then types are
about two different cardinalities: that of the universe of the structure and
that of the interpretation in the structure of some designated unary predicate
symbol Ṗ . The only “natural” moves that we are able to conceive here are
the following:

1. As for an HSR-version of the 2CSR principle, we require for B and ṖB

to be hereditarily of cardinality less than α and β, respectively.

2. As for a VSR-version of the 2CSR principle, we require for B and ṖB

to be of rank less than α and β, respectively.

Thus, we next define the notions of “H-type” and “V-type” of a structure,
followed by our definitions of the 2CHSR and 2CVSR principles.
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Definition 4.3.5. Let M be an L(Ṗ )-structure, where L is some language
and Ṗ is a unary predicate symbol.

• The H-type of M is ⟨κ, λ⟩ iff M ∈ Hκ+ \ Hκ and ṖM ∈ Hλ+ \ Hλ

(or equivalently: M and ṖM are hereditarily of cardinality κ and λ,
respectively).

• Moreover, we allow the notation of the type to support variants with
the symbols <, ≤, > and ≥; e.g. the H-type of M is ⟨< κ,< λ⟩ iff
M ∈ Hκ and ṖM ∈ Hλ (or equivalently: M and ṖM are hereditarily
of cardinality less than κ and less than λ, respectively).

Definition 4.3.6. Let M be an L(Ṗ )-structure, where L is some language
and Ṗ is a unary predicate symbol.

• The V-type of M is ⟨α, β⟩ iff M ∈ Vα+1 \ Vα and ṖM ∈ Vβ+1 \ Vβ (or
equivalently: rk(M) = α and rk(ṖM) = β).

• Moreover, we allow the notation of the type to support variants with
the symbols <, ≤, > and ≥; e.g. the V-type of M is ⟨< α,< β⟩ iff
M ∈ Vα and ṖM ∈ Vβ (or equivalently: rk(M) < α and rk(ṖM) < β).

Definition 4.3.7 (2CHSR). For β an infinite cardinal, the 2CHSR(C, β)
principle states: There is an infinite cardinal α such that, for every structure
A ∈ C, there is a structure B ∈ C with H-type ⟨< α,< β⟩ and there is
j : B ↪→ A elementary.

Definition 4.3.8 (2CVSR). For β an ordinal, the 2CVSR(C, β) principle
states: There is an ordinal α such that, for every structure A ∈ C, there is a
structure B ∈ C with V-type ⟨< α,< β⟩ and there is j : B ↪→ A elementary.

Now, we observe that the transitive versions of the classes Cκ,<κ and C≥κ,<κ

of structures yield equivalent characterizations of Rowbottom cardinals in
terms of 2CSR and 2CHSR. To that end, we first prove the following lemma.

Lemma 4.3.9. Let κ, µ, λ, ν be cardinals with κ > λ, κ ≥ µ ≥ ω and
ν > ω. The following are equivalent:

(1) κ −→ [µ]<ω
λ,<ν.

(2) For every structure A = ⟨A, S, . . .⟩, with S ⊆ A transitive sets, |A| = κ
and |S| = λ, there is a structure B = ⟨B,Z, . . .⟩, with Z ⊆ B transitive
sets, |B| = µ and |Z| < ν, and there is j : B ↪→ A elementary.
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Proof. (1)⇒(2): Let us assume (1). Let A := ⟨A, S, . . .⟩ be a structure with
S ⊆ A transitive sets, |A| = κ and |S| = λ. Let A′ := ⟨A,∈⟩. Let us note
that L∈,LA ⊆ LA′ . By Theorem 4.2.5, there is M ≺ A′, with |M | = µ
and |S ∩ M | < ν. Therefore, by Theorem 2.2.7 (Mostovski’s Collapsing
Theorem), we have an isomorphism j : ⟨B,∈⟩ ∼= M ↾ L∈, with B transitive.
We define the LA′-structure B′ with universe B induced by j. Thus, we have
that j : B′ ∼= M ≺ A′, whence j : B′ ↪→ A′ is elementary. Furthermore, since
|S ∩M | < ν, we have that |Z| < ν. By the elementarity of j and since A, B,
S are transitive, we have that Z is transitive. Let B := B′ ↾ LA. Therefore,
since A = A′ ↾ LA, we have that j : B ↪→ A is elementary.

(2)⇒(1): Let us assume (2). Let f : [κ]<ω → λ. LetA := ⟨κ, λ,∈, f ↾ [κ]n⟩n∈ω.
By (2), there is a structure B = ⟨B,Z,∈, gn⟩n∈ω with Z ⊆ B transitive sets,
|B| = µ and |Z| < ν and there is j : B ↪→ A elementary. By the elementarity
of j, we have that j“B is f -homogeneous. ■

The previous lemma leads to the definition of the following classes of struc-
tures.

Definition 4.3.10. Let κ be a cardinal. Ctr
≥κ,<κ and Ctr

κ,<κ denote the respec-
tive subclasses of structures of C≥κ,<κ and Cκ,<κ (see Definition 4.3.1) where
both M and S are transitive sets.

Observation 4.3.11. Clearly, Ctr
κ,<κ ⊊ Cκ,<κ, Ctr

≥κ,<κ ⊊ C≥κ,<κ.

Remark 4.3.12. The classes Ctr
κ,<κ and Ctr

≥κ,<κ are Σ1-definable with a car-
dinal κ as a parameter.

Proof. By Remark 4.3.2, plus the fact that the predicate “x is transitive”
is ∆0-expressible. ■

And now we obtain a characterization of ν-Rowbottom cardinals also in terms
of the 2CHSR principle.

Theorem 4.3.13. Let κ > ν be uncountable cardinals. Let Ctr denote either
Ctr
κ,<κ or Ctr

≥κ,<κ. Let D denote either Cκ,<κ, C≥κ,<κ or Ctr. The following are
equivalent:

(1) κ is a ν-Rowbottom cardinal.

(2) κ+ 1 |= 2CSR(D, ν).

(3) κ+ |= 2CHSR(Ctr, ν).
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Proof. For the 2CSR cases: By Theorem 4.3.4, and by Definition 4.2.1,
Proposition 4.1.4(4) and Lemma 4.3.9.

For the 2CHSR cases: By Definition 4.2.1, Proposition 4.1.4(4) and Lemma
4.3.9 (the structure B ∈ Ctr with Z ⊆ B transitive sets has H-type ⟨< κ+, <
ν⟩ iff |B| = κ and |Z| < ν). And conversely, ⟨κ, λ,∈, fn⟩n∈ω ∈ Ctr. ■

It is worth pointing out that κ being ν-Rowbottom renders the structural
reflection of the classes Ctr

κ,<κ and Ctr
≥κ,<κ in terms of 2CVSR, but not the con-

verse, since the fact that rk(S) < ν for S a transitive set does not imply that
|S| < ν, which is imperative to obtain the ν-Rowbottom partition property.

Lemma 4.3.14. Let Ctr denote either Ctr
κ,<κ or Ctr

≥κ,<κ. If κ is a ν-Rowbottom
cardinal, then κ+ |= 2CVSR(Ctr, ν).

Proof. Let us assume that κ is ν-Rowbottom. By Theorem 4.3.13, we have
that κ+ |= 2CHSR(Ctr, ν), whence κ+ |= 2CVSR(Ctr, ν), since B ∈ Ctr with
H-type ⟨< α,< β⟩ implies B with V-type ⟨< α,< β⟩. ■

We can, however, obtain a full equivalent characterization in terms of 2CVSR,
if we require the interpretation of the designated unary predicate symbol to
be an ordinal.

Lemma 4.3.15. Let κ, µ, λ, ν be cardinals with κ > λ, κ ≥ µ ≥ ω and
ν > ω. The following are equivalent:

(1) κ −→ [µ]<ω
λ,<ν.

(2) For every structure A = ⟨A,α, . . .⟩, with A transitive, |A| = κ and
α ⊆ A an ordinal such that |α| = λ, there is a structure B = ⟨B, β, . . .⟩,
with B transitive, |B| = µ and β ⊆ B an ordinal such that β < ν, and
there is j : B ↪→ A elementary.

Proof. By Lemma 4.3.9, plus the fact that, in (1)⇒(2), β is an ordinal by
the elementarity of j. ■

So, we add the extra requirement that the interpretation of the designated
unary predicate symbol is an ordinal in the definition of the classes of tran-
sitive structures.
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Definition 4.3.16. Let κ be a cardinal. Ctr
≥κ,α<κ and Ctr

κ,α<κ denote the re-
spective subclasses of structures of Ctr

≥κ,<κ and Ctr
κ,<κ (see Definition 4.3.10)

where S is some ordinal α < κ.

Observation 4.3.17. Clearly, Ctr
κ,α<κ ⊊ Ctr

κ,<κ, Ctr
≥κ,α<κ ⊊ Ctr

≥κ,<κ.

Remark 4.3.18. The classes Ctr
κ,α<κ and Ctr

≥κ,α<κ are Σ1-definable with a
cardinal κ as a parameter.

Proof. By Remark 4.3.12. ■

And we obtain a new characterization of ν-Rowbottom cardinals that in-
cludes the 2CVSR principle.

Theorem 4.3.19. Let κ > ν be uncountable cardinals. Let Ctr
Ord denote ei-

ther Ctr
κ,α<κ or Ctr

≥κ,α<κ. Let Ctr denote either Ctr
κ,<κ, Ctr

≥κ,<κ or Ctr
Ord. Let D

denote either Cκ,<κ, C≥κ,<κ or Ctr. The following are equivalent:

(1) κ is a ν-Rowbottom cardinal.

(2) κ+ 1 |= 2CSR(D, ν).

(3) κ+ |= 2CHSR(Ctr, ν).

(4) κ+ |= 2CVSR(Ctr
Ord, ν).

Proof. For the 2CSR and 2CHSR cases: By Theorem 4.3.13, and by Defi-
nition 4.2.1, Proposition 4.1.4(4) and Lemma 4.3.15.

For the 2CVSR cases: By the 2CHSR case, we get B ∈ Ctr
Ord with H-type

⟨< κ+, < ν⟩, which implies B with V-type ⟨< κ+, < ν⟩. And conversely, we
have ⟨κ, λ,∈, fn⟩n∈ω ∈ Ctr

Ord and we get B = ⟨B, β, . . .⟩ ∈ Ctr
Ord with V-type

⟨< κ+, < ν⟩ and j : B → A elementary, whence |B| = κ and β < ν. ■

In addition to the classes of structures so far defined in this subsection, we
can narrow the classes Ctr

κ,α<κ and Ctr
≥κ,α<κ to the respective subclasses where

the universe of the structure is an initial segment of some universe of sets
constructible relative to a set. As a result, we obtain new equivalent char-
acterizations of ν-Rowbottom cardinals in terms of the three 2C structural
reflection principles with respect to those new classes of structures.

To that end, we first prove the following lemma, where, analogously to what
we did in Lemma 3.3.15, we go by a condensation argument to obtain a
characterization of the square-bracket partition property similar to the one
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obtained in Lemma 4.3.15, but here restricted to initial segments of some
universe of sets constructible relative to a set.

Lemma 4.3.20. Let κ, µ, λ, ν be cardinals with κ > λ, κ ≥ µ ≥ ω and
ν > ω. The following are equivalent:

(1) κ −→ [µ]<ω
λ,<ν.

(2) For every structure A = ⟨Lα[X], β, . . .⟩, with α, β ordinals, |α| = κ,
|β| = λ and X some set, there is a structure B = ⟨Lγ[X

′], δ, . . .⟩, with
γ, δ ordinals, |γ| = µ, δ < ν and X ′ some set, and there is j : B ↪→ A
elementary.

Proof. (1)⇒(2): Let us assume (1). Let A := ⟨Lα[X], β, . . .⟩, with α, β
ordinals, |α| = κ, |β| = λ and X some set. Let A′ := ⟨A,∈, X ∩Lα[X]⟩. Let
us note that L∈ ⊊ L∈(Ẋ) ⊊ LA′ and LA ⊆ LA′ = LA(∈̇, Ẋ), where ∈̇ is the
binary relation symbol for the set-membership relation ∈ and Ẋ is a unary
predicate symbol. By Theorem 4.2.5, there is a structure

M = ⟨M,β ∩M,∈, X ∩ Lα ∩M, . . .⟩ ≺ A′,

with |M | = µ. Therefore, by Lemma 2.2.9 (Generalized Gödel’s Conden-
sation Lemma), we have an isomorphism j : ⟨Lγ[X

′],∈, X ′⟩ ∼= M ↾ L∈(Ẋ),
with γ ≤ α an infinite ordinal and X ′ = j−1“(X ∩ Lα ∩ M). By Proposi-
tion 2.2.4, |Lγ[X

′]| = |γ|. Therefore, since M ∼ Lγ[X], we have that |γ| = µ.
We define the LA′-structure B′ := ⟨Lγ[X

′], j−1“(β ∩ M),∈, X ′, . . .⟩ induced
by j. Thus, we have that j : B′ ∼= M ≺ A′, whence j : B′ ↪→ A′ is elementary.
Therefore, since β ∈ A′ is an ordinal, we have that j−1“(β∩M) is an ordinal.
Let therefore δ := j−1“(β ∩M). Moreover, since |β ∩M | < ν, we have that
δ < ν. Let B := B′ ↾ LA. Therefore, since A = A′ ↾ LA, we have that
j : B ↪→ A is elementary.

(2)⇒(1): Let us assume (2). Let f : [κ]<ω → λ. Let A := ⟨Lκ, λ,∈, fn⟩n∈ω,
where

fn(a1, . . . , an) := f({a1, . . . , an}), if a1, . . . , an ∈ κ;

fn(a1, . . . , an) := 0, otherwise.

By assumption, there is a structure B = ⟨Lγ[X], δ,∈, gn⟩n∈ω, with γ, δ or-
dinals, |γ| = µ, δ < ν and X some set, and there is j : B ↪→ A elemen-
tary. Since µ ⊆ γ ⊆ Lγ[X], we have that j“µ ∈ [κ]µ. Let n ∈ ω. Let
ξ1, . . . , ξn ∈ j“µ. By the elementarity of j, we have that fn(ξ1, . . . , ξn) =
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j(gn(j
−1(ξ1), . . . , j

−1(ξn))). Since ran(gn) ⊆ δ, we have that fn(ξ1, . . . , ξn) ∈
j“δ. Therefore, f“[j“µ]<ω ⊆ j“δ. Since |j“δ| = |δ| < ν, we have that
|f“[j“µ]<ω| < ν. Hence, j“µ is f -homogeneous. ■

Observation 4.3.21. The proof of Lemma 4.3.20 shows that, if X = ∅,
then X ′ = ∅.

Now, we define the “L-versions” of the classes Ctr
κ,α<κ and Ctr

≥κ,α<κ of struc-
tures.

Definition 4.3.22. Let κ be a cardinal. CL≥κ[·],<κ and CL≥κ,<κ denote the
subclasses of structures of Ctr

≥κ,<κ (see Definition 4.3.10) whose respective
universes are Lα[X] and Lα for some ordinal α ≥ κ and some set X, and
where S is some ordinal β < κ. Moreover, CLκ[·],<κ and CLκ,<κ denote the
respective subclasses of structures of CL≥κ[·],<κ and CL≥κ,<κ where |α| = κ.

Observation 4.3.23. Clearly, CLκ,<κ ⊊ CL≥κ,<κ, CLκ[·],<κ ⊊ CL≥κ[·],<κ.

Remark 4.3.24. The classes CLκ,<κ, CL≥κ,<κ, CLκ[·],<κ and CL≥κ[·],<κ are Σ1-
definable with a cardinal κ as a parameter.

Proof. By Remarks 3.3.19 and 4.3.18. ■

And finally, we complete our characterization of the family of Rowbottom
cardinals in terms of the 2C structural reflection principles by adding the
L-classes of structures.

Theorem 4.3.25. Let κ > ν be uncountable cardinals. Let Ctr
Ord denote ei-

ther Ctr
κ,α<κ, Ctr

≥κ,α<κ, CLκ,<κ, CL≥κ,<κ, CLκ[·],<κ or CL≥κ[·],<κ. Let Ctr denote
either Ctr

κ,<κ, Ctr
≥κ,<κ or Ctr

Ord. Let D denote either Cκ,<κ, C≥κ,<κ or Ctr. The
following are equivalent:

(1) κ is a ν-Rowbottom cardinal.

(2) κ+ 1 |= 2CSR(D, ν).

(3) κ+ |= 2CHSR(Ctr, ν).

(4) κ+ |= 2CVSR(Ctr
Ord, ν).

Proof. By Theorem 4.3.19 and Lemma 4.3.20. ■
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Corollary 4.3.26. Let κ be an uncountable cardinal. Let Ctr
Ord denote either

Ctr
κ,α<κ, Ctr

≥κ,α<κ, CLκ,<κ, CL≥κ,<κ, CLκ[·],<κ or CL≥κ[·],<κ. Let Ctr denote either
Ctr
κ,<κ, Ctr

≥κ,<κ or Ctr
Ord. Let D denote either Cκ,<κ, C≥κ,<κ or Ctr. The following

are equivalent:

(1) κ is a Rowbottom cardinal.

(2) κ+ 1 |= 2CSR(D, ω1).

(3) κ+ |= 2CHSR(Ctr, ω1).

(4) κ+ |= 2CVSR(Ctr
Ord, ω1).

Proof. By Definition 4.2.1 and Theorem 4.3.25. ■

We close this subsection by observing the following point.

Observation 4.3.27. In Theorem 4.3.25 and Corollary 4.3.26, the ordinal
that witnesses the structural reflection principles is never κ, which is what
one intuitively would expect to obtain. The reason for this lies in The-
orem 4.2.6(2): in order to render the Rowbottom partition property, the
cardinality of the universe of the structure B must be κ. Since the 2C struc-
tural reflection principles defined in this subsection have been conceived as
two-cardinal variants of the SR, HSR and VSR principles originally provided
by Bagaria and Lücke (2024) (see Definitions 2.3.1 to 2.3.3), the restriction
on the type/H-type/V-type of B is ⟨< α,< β⟩, which puts a less than α
condition on B. Thus, if κ is ν-Rowbottom, then κ can never witness the 2C
principle with parameter ν, since that would imply that the type/H-type/V-
type of B is ⟨< κ,< ν⟩, whence |B| < κ. Nonetheless, we can define the
variants 2CSR* and 2CHSR*, where the type/H-type of B is ⟨≤ κ,< ν⟩, and
thus obtain variants of Theorem 4.3.25 and Corollary 4.3.26 with the 2CSR*
and 2CHSR* principles with parameter ν witnessed by κ for all the classes
of structures defined in this subsection.

After this observation, it is worth noticing that defining a variant 2CVSR* in
the same fashion as 2CSR* and 2CHSR* would be pointless, since, working
with V-types (i.e. in terms of ranks), the ordinal that would witness the
hypothetical 2CVSR* principle with parameter ν would still be κ+.

4.3.2 For-all-levels two-cardinal structural reflection

To close this chapter, we begin this subsection by highlighting the following
observation.
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Observation 4.3.28. The 2C structural reflection principles defined in the
previous subsection do not exploit all the power of Theorem 4.2.6 and Lem-
mas 4.3.9, 4.3.15 and 4.3.20. Thanks to the preservation properties of the
square-bracket partition relation (see Proposition 4.1.4(4)), the fact that κ
is ν-Rowbottom yields that any structure of type ⟨κ′, < κ⟩ for any cardinal
κ′ ≥ κ has embedded a substructure of type ⟨µ,< ν⟩ for any infinite cardinal
µ ≤ κ, and vice versa (see Theorem 4.2.6(3)).

The previous observation indicates that Rowbottom cardinals can be charac-
terized in terms of for-all-levels 2C structural reflection principles, conceived
as two-cardinal variants of the ∀SR, ∀HSR and ∀VSR principles introduced
in subsection 3.3.3 (see Definitions 3.3.36 to 3.3.38). Let us hence recall that,
by Observation 3.3.35, these principles restrict the levels for the structure A
to those larger than or equal to the reflection point α.

Therefore, by Observation 4.3.27, we next define the for-all-levels versions of
the 2C structural reflection principles by taking as reference not the ∀SR,
∀HSR and ∀VSR principles just as introduced in Definitions 3.3.36 to 3.3.38,
but their * variants mentioned in Observation 3.3.45.

Definition 4.3.29 (∀2CSR*). For β an ordinal, the ∀2CSR*(C, β) princi-
ple states: There is an infinite ordinal α such that, for every cardinal κ ≥ α
and for every infinite cardinal µ ≤ α, we have that, for every structure
A ∈ C with |A| = κ, there is a structure B ∈ C with type ⟨µ,< β⟩ and there
is j : B ↪→ A elementary.

Definition 4.3.30 (∀2CHSR*). For β an infinite cardinal, the ∀2CHSR*
(C, β) principle states: There is an infinite cardinal α such that, for every
cardinal κ ≥ α and for every infinite cardinal µ ≤ α, we have that, for every
structure A ∈ C∩(Hκ+ \Hκ), there is a structure B ∈ C with H-type ⟨µ,< β⟩
and there is j : B ↪→ A elementary.

Definition 4.3.31 (∀2CVSR*). For β an ordinal, the ∀2CVSR*(C, β)
principle states: There is an infinite ordinal α such that, for every ordinal
γ ≥ α and for every infinite ordinal δ ≤ α, we have that, for every structure
A ∈ C ∩ (Vγ+1 \ Vγ), there is a structure B ∈ C with V-type ⟨µ,< β⟩ and
there is j : B ↪→ A elementary.

Before providing an equivalent characterization of ν-Rowbottom cardinals
in terms of ∀2C structural reflection principles, we observe three relevant
points.
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Observation 4.3.32.

1. Theorem 4.2.6 and Lemmas 4.3.9, 4.3.15 and 4.3.20 yield a for-all-levels
variety of elementary embeddings in terms of the cardinalities of the
universes of structures, but they do not yield such a variety in terms of
ranks. Hence, we will be able to characterize ν-Rowbottom cardinals
by means of ∀2CSR* and ∀2CHSR*, but not ∀2CVSR*.

2. The for-all-levels 2C principles, as previously defined, allow for the
classes of structures involved in the structural reflection to have uni-
verses of arbitrary cardinality (i.e. not restricted by some parameter
κ). As a consequence, we will define new versions of the classes of
structures defined in the previous subsection.

3. Even so, the new classes of structures will be defined still using κ as a
parameter. The reason for this is that, by Definition 4.2.1 and Propo-
sition 4.1.4, all the variety of square-bracket partition properties that
hold for κ a ν-Rowbottom cardinal requires for the type of structure A
to be ⟨κ′, < κ⟩, even when κ′ > κ. Otherwise, the ν-Rowbottom par-
tition property cannot yield an elementary substructure of the desired
type.

Thus, we next define the new versions of the classes of structures introduced
in the previous subsection.

Definition 4.3.33. Let κ be a cardinal. C·,<κ, Ctr
·,<κ and Ctr

·,α<κ denote the
respective superclasses of structures of C≥κ,<κ, Ctr

≥κ,<κ and Ctr
≥κ,α<κ (see Def-

initions 4.3.1, 4.3.10 and 4.3.16) whose universes have arbitrary cardinality.
Moreover, CL[·],<κ and CL,<κ denote the respective superclasses of structures
of CL≥κ[·],<κ and CL≥κ,<κ (see Definition 4.3.22) where α is some arbitrary
ordinal.

Observation 4.3.34. Clearly, CL,<κ ⊊ CL[·],<κ ⊊ Ctr
·,α<κ ⊊ Ctr

·,<κ ⊊ C·,<κ.

Remark 4.3.35. The classes C·,<κ, Ctr
·,<κ, Ctr

·,α<κ, CL[·],<κ and CL,<κ are Σ1-
definable with a cardinal κ as a parameter.

Proof. By Remarks 4.3.2, 4.3.12, 4.3.18 and 4.3.24. ■

And finally, we close this subsection (and this chapter) by giving the equiv-
alent characterizations of the family of Rowbottom cardinals in terms of the
∀2CSR* and ∀2CHSR* principles.
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Theorem 4.3.36. Let κ > ν be uncountable cardinals. Let Ctr denote either
Ctr
·,<κ, Ctr

·,α<κ, CL[·],<κ or CL,<κ. Let D denote either C·,<κ or Ctr. The following
are equivalent:

(1) κ is a ν-Rowbottom cardinal.

(2) κ |= ∀2CSR*(D, ν).

(3) κ |= ∀2CHSR*(Ctr, ν).

Proof. By Theorem 4.2.6(3) plus Theorems 4.3.4, 4.3.13, 4.3.19 and 4.3.25.■

Corollary 4.3.37. Let κ be an uncountable cardinal. Let Ctr denote either
Ctr
·,<κ, Ctr

·,α<κ, CL[·],<κ or CL,<κ. Let D denote either C·,<κ or Ctr. The following
are equivalent:

(1) κ is a Rowbottom cardinal.

(2) κ |= ∀2CSR*(D, ω1).

(3) κ |= ∀2CHSR*(Ctr, ω1).

Proof. By Definition 4.2.1 and Theorem 4.3.36. ■
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Chapter 5

Structural reflection for
Jónsson cardinals

In this chapter, we provide equivalent characterizations of Jónsson cardinals
in terms of new structural reflection principles. Jónsson cardinals can be
characterized by means of the square-bracket partition properties we already
introduced in section 4.1. Thus, we start by briefly introducing the notion of
a Jónsson cardinal and its most prominent features in section 5.1. Then, we
define a new family of structural reflection principles in section 5.2 and show
how it characterizes Jónsson cardinals. Finally, in section 5.3, we show the
connection between one of the new structural reflection principles introduced
in the previous section and the notion of exacting cardinals.

5.1 Jónsson algebras and Jónsson cardinals

We next provide a brief introduction to Jónsson cardinals. More detailed
accounts of this large cardinal notion can be found in Kanamori (2003, p.
92–98). Since Jónsson cardinals were originally introduced in an algebraic
setting, we start by giving the definition of the notions of algebra and subal-
gebra.

Definition 5.1.1.

• An algebra is any structure of the form ⟨M, fi⟩i∈I , where |I| ≤ ω and,
for every i ∈ I, fi : M

n → M for some n ∈ ω.
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• Given an algebra M = ⟨M, fi⟩i∈I , a subalgebra of M is any structure
of the form ⟨M ′, fi ↾M ′⟩i∈I , where M ′ ⊆ M and, for every i ∈ I,
fi ↾ M ′ ⊆ M ′.

By all accounts, Bjarni Jónsson asked in 1962 the following question con-
cerning finite algebras (Nation, 2018):

For which cardinals κ can one find an algebra A of finite type
with |A| = κ, but |B| < κ for every proper subalgebra B < A?

Although he wrote no papers on the subject, the question was posed in the
context of his works on transfinite universal algebra (Jónsson, 1972) and the
notion of a “Jónson algebra” was quickly generalized to a standard model-
theoretic setting with countable languages.

Definition 5.1.2. A Jónsson algebra is an algebra without a proper subal-
gebra of the same cardinality.

And then we get to define the notion of a Jónsson cardinal.

Definition 5.1.3. κ is a Jónsson cardinal iff there are no Jónsson algebras
of cardinality κ (i.e. iff every algebra of cardinality κ has a proper subalgebra
of the same cardinality).

We next show how the algebraic conception of Jónsson cardinals can be equiv-
alently characterized both in the strictly combinatorial terms of a square-
bracket partition property (Erdős and Hajnal, 1966) and in model-theoretical
terms similar to those employed to characterize Rowbottom cardinals (Keisler
and Rowbottom, 1965). This result is the one that will be useful in the next
section in order to obtain equivalent characterizations of Jónsson cardinals
in terms of structural reflection principles.

Theorem 5.1.4. Let κ be a cardinal. The following are equivalent:

(1) κ is a Jónsson cardinal.

(2) κ −→ [κ]<ω
κ .

(3) Every structure of cardinality κ has a proper elementary substructure
of the same cardinality

Proof. See Kanamori (2003, p. 93). ■
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We close this section with a brief summary of some well-known facts about
Jónsson cardinals and their relation with both Rowbottom and Ramsey car-
dinals. On the one hand, as shown by Kanamori (2003) in Proposition 8.14,
Jónsson cardinals are uncountable (i.e. ω is not Jónsson), the least Jónsson
cardinal (if it exists) is either weakly inaccessible or singular with cofinality ω
and, if κ is not Jónsson, then neither is κ+ (i.e. the first possible candidate to
be consistently Jónsson is ℵω). Moreover, ν-Rowbottom cardinal are Jónsson
(Keisler and Rowbottom, 1965) and the least Jónsson cardinal (if it exists) is
a ν-Rowbottom cardinal for some ν < κ (Kleinberg, 1973). Furthermore, if
κ is a Jónsson cardinal, then x# exists for every x ∈ Vκ (Kanamori, 2003, p.
277 and 282), whence the existence of a Jónsson cardinal implies that V ̸= L
(Keisler and Rowbottom, 1965). And on the other hand, the existence of a
Jónsson cardinal is equiconsistent both to the existence of a Rowbottom car-
dinal (Kleinberg, 1979) and to the existence of a Ramsey cardinal (Mitchell,
1999).

5.2 Structural reflection principles for Jóns-

son cardinals

In terms of structural reflection principles that may provide an equivalent
characterization of Jónsson cardinals, our first observation is that the situ-
ation is highly analogous to the one with Rowbottom cardinals. By Theo-
rem 5.1.4, we observe that the Jónsson partition property requires that the
structures involved in the elementary embedding are of the same cardinality.
Therefore, we conceive two possible strategies here:

1. In the definitions of the classes of structures to be reflected, we limit the
cardinality of the structures to be at least κ. Then, a slight modification
of the basic structural reflection principles (namely, we require that the
range of j is a proper subset of A) will do the job. We follow this
strategy in subsection 5.2.1.

2. We work with “for-all-levels” versions of the structural reflection princi-
ples employed in the first strategy, whence the cardinality of the struc-
tures need no longer be limited by κ in the definitions of the classes of
structures to be reflected. We follow this strategy in subsection 5.2.2.

5.2.1 Proper structural reflection

Given that the situation is analogous to the one that we have already studied
in subsection 4.3.1 with respect to Rowbottom cardinals, we directly provide
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the definitions of the classes of structures involved in this subsection. We
point out that they are the same classes defined in subsection 4.3.1 but
without the requirement of the presence of a designated unary predicate
symbol in the language of the structures.

Definition 5.2.1. Let κ be a cardinal. C≥κ, Ctr
≥κ, Ctr

κ and Cκ denote the
respective superclasses of structures of C≥κ,<κ, Ctr

≥κ,<κ, Ctr
κ,<κ and Cκ,<κ (see

Definitions 4.3.1 and 4.3.10) defined without the bits S ⊆ M and |S| < κ.
Moreover, CL≥κ[·], CLκ[·], CL≥κ

and CLκ denote the respective superclasses of
structures of CL≥κ[·],<κ, CLκ[·],<κ, CL≥κ,<κ and CLκ,<κ (see Definition 4.3.22)
defined without the bit β < κ.

Observation 5.2.2. Clearly, Cκ ⊊ C≥κ, Ctr
κ ⊊ Ctr

≥κ and CLκ ⊊ CL≥κ
, CLκ[·] ⊊

CL≥κ[·] ⊊ Ctr
≥κ.

Remark 5.2.3. The classes Cκ, C≥κ, Ctr
κ , Ctr

≥κ, CLκ , CL≥κ
, CLκ[·] and CL≥κ[·]

are Σ1-definable with a cardinal κ as a parameter.

Proof. By Remarks 4.3.2, 4.3.12 and 4.3.24. ■

Next, we directly define the new family of structural reflection principles
involved in this subsection. They are proper versions of the basic principles
originally defined by Bagaria and Lücke (2024) (see Definitions 2.3.1 to 2.3.3);
i.e. just like those, but with the addition of the requirement that the range
of j is a proper subset of A, which is the “properness” that Jónsson cardinals
require when the structures involved in the elementary embedding share the
same cardinality.

Definition 5.2.4 (PrSR). The PrSR(C) principle states: There is an ordi-
nal α such that, for every structure A ∈ C, there is a structure B ∈ C with
|B| < α and there is j : B ↪→ A elementary with ran(j) ⊊ A.

Definition 5.2.5 (PrHSR). The PrHSR(C) principle states: There is an
infinite cardinal α such that, for every structure A ∈ C, there is a structure
B ∈ C ∩Hα and there is j : B ↪→ A elementary with ran(j) ⊊ A.

Definition 5.2.6 (PrVSR). The PrVSR(C) principle states: There is an
ordinal α such that, for every structure A ∈ C, there is a structure B ∈ C∩Vα

and there is j : B ↪→ A elementary with ran(j) ⊊ A.

56



And finally, we provide the characterization of Jónsson cardinals in terms
of proper structural reflection principles applied to the classes of structures
previously defined.

Theorem 5.2.7. Let κ be a cardinal. Let Ctr denote either Ctr
κ , Ctr

≥κ, CLκ,
CL≥κ

, CLκ[·] or CL≥κ[·]. Let D denote either Cκ, C≥κ or Ctr. The following are
equivalent:

(1) κ is a Jónsson cardinal.

(2) κ+ 1 |= PrSR(D).

(3) κ+ |= PrHSR(Ctr).

(4) κ+ |= PrVSR(Ctr).

Proof. By Theorem 5.1.4 and Proposition 4.1.4(3), we obtain modified ver-
sions of Lemmas 4.3.9 and 4.3.20 where the “< ν condition” (with respect
to the interpretations of the designated unary predicate symbol in the lan-
guage of the structures) is substituted with the “proper condition” (i.e. the
fact that ran(j) ⊊ A) and the rest is just the same. And then we obtain
the present equivalencies in terms of Jónsson cardinals and proper structural
reflection principles by Theorems 4.3.4, 4.3.13, 4.3.19 and 4.3.25. ■

Similarly to what we did in subsection 4.3.1, we close this subsection by
stressing a point analogous to Observation 4.3.27.

Observation 5.2.8. We can define the variants PrSR* and PrHSR*, with
|B| ≤ α and B ∈ Hα+ , respectively, and thus obtain a variant of Theo-
rem 5.2.7 with the PrSR* and PrHSR* principles witnessed by κ for all the
classes of structures defined in this subsection. And, again, this would imply
no changes in the case of PrVSR.

5.2.2 For-all-levels proper structural reflection

We proceed in this subsection just like in the previous one, since the situation
is similarly analogous to that of subsection 4.3.2 with respect to Rowbottom
cardinals and the for-all-level versions of the structural reflection principles
previously defined.

Thus, we first directly define the classes of structures involved in this subsec-
tion. Since we are also going to use them here, let us recall that the classes
CL[·] and CL were already introduced in Definition 3.3.17.
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Definition 5.2.9. The class C· denotes the class of all structures (i.e. the
class of first-order structures of countable type). Moreover, the class Ctr

·
denotes the class of structures whose universe is transitive.

Observation 5.2.10. Clearly, CL ⊊ CL[·] ⊊ Ctr ⊊ C·.

Remark 5.2.11. The classes C· and Ctr
· are Σ1-definable.

Proof. The fact that the type of the structure is countable is Σ1-expressible
and the rest is ∆0-expressible. ■

Next, we directly define the for-all-levels versions of the proper structural
reflection principles presented in the previous subsection. Again, we include
the point made in Observation 5.2.8 in our definitions and we hence take
as a reference the ∀2CSR*, ∀2VCSR* and ∀2HCSR* principles defined in
subsection 4.3.2.

Definition 5.2.12 (∀PrSR*). The ∀PrSR*(C) principle states: There is
an infinite ordinal α such that, for every cardinal κ ≥ α and for every infinite
cardinal µ ≤ α, we have that, for every structure A ∈ C with |A| = κ, there
is a structure B ∈ C with |B| = µ and there is j : B ↪→ A elementary with
ran(j) ⊊ A.

Definition 5.2.13 (∀PrHSR*). The ∀PrHSR*(C) principle states: There
is an infinite cardinal α such that, for every cardinal κ ≥ α and for every
infinite cardinal µ ≤ α, we have that, for every structure A ∈ C∩ (Hκ+ \Hκ),
there is a structure B ∈ C ∩ (Hµ+ \Hµ) and there is j : B ↪→ A elementary
with ran(j) ⊊ A.

Definition 5.2.14 (∀PrVSR*). The ∀PrVSR*(C) principle states: There
is an infinite ordinal α such that, for every ordinal γ ≥ α and for every
infinite ordinal δ ≤ α, we have that, for every structure A ∈ C ∩ (Vγ+1 \ Vγ),
there is a structure B ∈ C ∩ (Vδ+1 \ Vδ) and there is j : B ↪→ A elementary
with ran(j) ⊊ A.

Finally, we close this subsection by providing the characterization of Jónsson
cardinals in terms of proper structural reflection principles applied to the
classes of structures previously defined. For the same reasons already ex-
plained in Observation 4.3.32, we next characterize Jónsson cardinals by
means of ∀PrSR* and ∀PrHSR*, but not ∀PrVSR*
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Theorem 5.2.15. Let κ be a cardinal. Let Ctr denote either Ctr
· , CL or CL[·].

Let D denote either C· or Ctr. The following are equivalent:

(1) κ is a Jónsson cardinal.

(2) κ |= ∀PrSR*(D).

(3) κ |= ∀PrHSR*(Ctr).

Proof. By Proposition 4.1.4 and Theorem 5.1.4. ■

5.3 Strong Jónssonness

To close this chapter, we connect the PrSR* principle defined in Observa-
tion 5.2.8 with the notion of an exacting cardinal, which is a very strong
large cardinal notion introduced by Aguilera et al. (2024, p. 6–10).

Definition 5.3.1. A cardinal κ is exacting iff, for every ζ > κ, there is
X ≺ Vζ with Vκ ∪ {κ} ⊆ X and there is j : X ↪→ Vζ elementary with
j(κ) = κ and j ↾ κ ̸= idκ.

The existence of exacting cardinals is consistent under the existence of an I0
embedding (Aguilera et al., 2024, p. 10–12), which is one of the strongest
large cardinal notions not known to be inconsistent with ZFC. Interestingly,
the existence of an exacting cardinal implies that V ̸= HOD (Aguilera et al.,
2024, p. 12). And, moreover, the consistency of ZFC with an exacting
cardinal above an extendible cardinal refutes Woodin’s HOD Conjecture and
Ultimate-L Conjecture (Aguilera et al., 2024, p. 34–40).

The reason for our interest in exacting cardinals is that they happen to be
equivalent to a strong form of Jónssonness, as the next theorem shows.

Theorem 5.3.2. Let κ ∈ C(1). The following are equivalent:

(1) κ is an exacting cardinal.

(2) For every class D of structures that is definable by a formula with pa-
rameters contained in Vκ ∪ {κ}, every structure of cardinality κ in D
contains a proper elementary substructure of cardinality κ that is iso-
morphic to a structure in D.

Proof. See Corollary 2.8 and the proofs of Propositions 2.6 and 2.7 in Aguil-
era et al. (2024, p. 8–10). ■

59



We notice that the statement (2) in the previous theorem is basically the
model-theoretic characterization of a Jónsson cardinal κ generalized to any
class of structures definable with parameters in Vκ∪{κ}. Thus, we next define
a version of the PrSR* principle restricted to structures of the same cardi-
nality and then we generalize it by applying the same kind of generalization
of the SR principle introduced in Definition 2.3.5.

Definition 5.3.3 (PrSR−). The PrSR−(C) principle states: There is a car-
dinal α such that, for every structure A ∈ C with |A| = α, there is a structure
B ∈ C with |B| = α and there is j : B ↪→ A elementary with ran(j) ⊊ A.

Definition 5.3.4 (Σn(A)-PrSR−). For n ∈ ω and A a set, the principle
Σn(A)-PrSR

− states: There is an ordinal α such that, for every Σn-definable,
with parameters in A, class D of structures, α |= PrSR−(D).

And now, we show that the Σn(A)-PrSR
− principle yields an equivalent

characterization of exacting cardinals.

Theorem 5.3.5. Let κ ∈ C(1). The following are equivalent:

(1) κ is an exacting cardinal.

(2) κ |= Σn(Vκ ∪ {κ})-PrSR−, for every n ∈ ω.

Proof. (1)⇒(2): Let us assume (1). Let n ∈ ω. Let C be a Σn-definable,
with parameters in Vκ ∪ {κ}, class of structures. Let A ∈ C be with |A| = κ.
By Theorem 5.3.2, there is A′ ≺ A, with |A′| = κ and A′ ⊊ A, and there
is B ∈ C such that B ∼= A′. The isomorphic map between B and A′ is an
elementary embedding from B into A whose range is A′.

(2)⇒(1): Let us assume (2). Let C be a class of structures defined by a
formula with parameters in Vκ ∪ {κ}. Let A ∈ C be with |A| = κ. Let Σn be
the complexity of the formula that defines C, for some n ∈ ω. By (2), there
is B ∈ C with |B| = κ and there is j : B ↪→ A elementary with ran(j) ⊊ A.
Hence, ran(j) is the universe of a proper elementary substructure A′ of A of
cardinality κ and j : B ∼= A′. Therefore, by Theorem 5.3.2, κ is an exacting
cardinal. ■

This result clearly suggests the interest of the study of possible generaliza-
tions of the family of proper structural reflection principles introduced in this
chapter, as they might yield new large cardinal notions of high consistency
strength and interesting properties. Moreover, the study of such generaliza-
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tions could also be extended to the families of invariant and two-cardinal
structural reflection principles introduced in chapters 3 and 4, respectively,
as they might also lead to interesting new strong forms of both Ramseyness
and Rowbottomness.

61



Chapter 6

Conclusions and open questions

In the present work, we have shown how families of large cardinals defined
in terms of partition properties (namely, Erdős, Ramsey, Rowbottom and
Jónsson cardinals) are equivalent to different kinds of structural reflection
principles applied to a variety of classes of structures. In particular, we have
introduced three new families of structural reflection principles:

1. Invariant structural reflection principles yield equivalent characteriza-
tions of Erdős and Ramsey cardinals.

2. Two-cardinal structural reflection principles yield equivalent character-
izations of Rowbottom cardinals.

3. Proper structural reflection principles yield equivalent characterizations
of Jónsson cardinals.

Furthermore, at the end of the work, we have shown that a particular gener-
alization of a proper structural reflection principle yields an equivalent char-
acterization of exacting cardinals, which are equivalent to a sort of “strong
Jónsson” cardinals.

Interestingly, we have observed that every large cardinal notion studied in
this work fails to yield the level-by-level and for-all-levels versions of their re-
spective structural reflection principles in terms of ranks (i.e. the V-versions
of the principles). We consider that this fact suggests a few questions regard-
ing such principles. Furthermore, we also consider that the characterization
of exacting cardinals observed at the end of the work suggests a few more
questions that may lead further research in the Structural Reflection pro-
gram. We next pose all of such open questions.
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Question 6.1. What Erdős/Ramsey-like large cardinal notion (if any) is
yielded by the LIVSR principle?

Question 6.2. What Erdős/Ramsey-like large cardinal notion (if any) is
yielded by the ∀IVSR principle?

Question 6.3. What Rowbottom-like large cardinal notion (if any) is
yielded by the ∀2CVSR* principle?

Question 6.4. What Jónsson-like large cardinal notion (if any) is yielded
by the ∀PrVSR* principle?

Question 6.5. Let us consider a Σn(A)-2CSR
− principle analogous to the

Σn(A)-PrSR
− principle. Does the former yield a strong form of Rowbottom-

ness analogous to the strong form of Jónssonness yielded by the latter?

Question 6.6. Let us consider a Σn(A)-ISR
− principle analogous to the

Σn(A)-PrSR
− principle. Does the former yield a strong form of Ramseyness

analogous to the strong form of Jónssonness yielded by the latter?

Question 6.7. What large cardinal notions (if any) are yielded by the Σn

and Πn (without and with parameters) generalizations of the LSR and LHSR
principles?

Question 6.8. What large cardinal notions (if any) are yielded by the Σn

and Πn (without and with parameters) generalizations of the ∀SR, ∀HSR
and ∀VSR principles?

Question 6.9. What large cardinal notions (if any) are yielded by the Σn

and Πn (without and with parameters) generalizations of the LISR, LIHSR
and LIVSR principles?

Question 6.10. What large cardinal notions (if any) are yielded by the Σn

and Πn (without and with parameters) generalizations of the ∀ISR, ∀IHSR
and ∀IVSR principles?

Question 6.11. What large cardinal notions (if any) are yielded by the
Σn and Πn (without and with parameters) generalizations of the ∀2CSR*,
∀2CHSR* and ∀2CVSR* principles?
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Question 6.12. What large cardinal notions (if any) are yielded by the
Σn and Πn (without and with parameters) generalizations of the ∀PrSR*,
∀PrHSR* and ∀PrVSR* principles?
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