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This thesis applies Uniform Manifold Approximation and Projection (UMAP) to
analyse and visualize research works from the OpenAlex database. By using various
embedding methods (including transformer-based models and hierarchical topic
encodings) the study demonstrates that UMAP projections can effectively capture
meaningful structures in the data, revealing relationships among research areas and
institutions. Results show that capturing complex topic relationships across multi-
ple domains is a challenging task. Nevertheless, the visualizations reveal significant
thematic clusters and author groupings that align with our data analysis. Quan-
titative evaluation using clustering metrics, such as the silhouette score, confirms
the agreement between visual patterns and semantic embeddings. We also show
the impact of UMAP hyperparameters on balancing local and global data structure
preservation, which influences visualization clarity and interpretability. The result-
ing interactive, zoomable visual maps provide researchers with a powerful tool to
explore and understand the organization of scientific knowledge.
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Chapter 1

Introduction

Making academic knowledge more accessible and understandable is a key chal-
lenge in today’s research environment. The sheer volume of research published
annually makes it hard to stay updated, even within specific fields, requiring cre-
ative techniques to organize and access information (Canon, Boyle, and Hepworth,
2022). Additionally, interdisciplinary research combines diverse vocabularies, meth-
ods, and publication practices, complicating the mapping of connections across do-
mains (Marrone and Linnenluecke, 2020). Moreover, understanding relationships
between research topics and authors is especially important for identifying trends,
collaboration networks, and cross-disciplinary work.

This thesis explores these aspects using the OpenAlex dataset, a large, open cat-
alogue of scholarly metadata.

The main goal of this project is to develop an interactive visualization tool that
reveals relationships between academic works, both in topical contents and author-
ship. We use text embedding models to convert research titles and abstracts into
numerical representations. These embeddings are then reduced in dimensional-
ity using UMAP to create two-dimensional data maps for visualization and explo-
ration. Embedding models are well suited for capturing semantic similarities, and
UMAP is chosen for preserving high-dimensional data structure (McInnes, Healy,
and Melville, 2020).

To build the tool, we experiment with different embedding strategies (including
hierarchical topic labels and transformer-based models) and UMAP hyperparame-
ters to study their effect on visualization quality and how well they reveal meaning-
ful data groupings.

The analysis uses data from the University of Barcelona and Utrecht University.
While most experiments focus on the UB dataset, including a second university adds
variety to the experiments and allows us to study relationships between authors
from different institutions.

This thesis is structured as follows. Chapter 2 covers the methodology, includ-
ing dataset, embeddings, UMAP, and visualization tools. Chapter 3 presents topic
relationship experiments, evaluating different embedding models qualitatively and
quantitatively. Chapter 4 examines UMAP hyperparameters effects. Chapter 5 fo-
cuses on author relationship experiments with author embeddings and visualiza-
tions. Chapter 6 concludes and suggests future work.

The GitHub repository of the project is available here, and the final interactive
visualization can be seen here.

https://github.com/AlbaGarciaRomo/Exploring-Academic-Relationships-with-UMAP-and-OpenAlex?tab=readme-ov-file
https://albagarciaromo.github.io/
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Chapter 2

Methodology and Theoretical
Background

As introduced, the final goal of the project is to build a tool that visualizes and
highlights different types of relationships between academic papers. This chap-
ter presents both a theoretical and experimental overview of the components used
throughout the project pipeline, from data acquisition to interactive visualization.

The process is as follows: first, we select and collect the necessary data from the
OpenAlex dataset. Then, we transform the textual features of the works (such as ti-
tles and abstracts) into numerical representations using different embedding strate-
gies and models. Next, we reduce the dimensionality of these high-dimensional
vectors to a 2D space using UMAP, an algorithm for dimensionality reduction. This
step produces a two-dimensional data map, which we then use to create an interac-
tive visualization code from specific Python libraries.

The following sections describe each of these steps in detail. Additionally, we
include a brief section to introduce the clustering evaluation metrics that will be
used in the experiments to quantify the resulting clusters in the visualizations.

2.1 The OpenAlex Dataset

We begin by presenting the OpenAlex dataset, which is used throughout this project.
OpenAlex is a fully open catalogue of the global research system (OpenAlex

Team, 2025d). Launched in 2022, it initially contained metadata for 209 million
works (journal articles, books, etc.); 213 million disambiguated authors; 124,000
venues (e.g., journals and online repositories); and 109,000 institutions (Priem, Pi-
wowar, and Orr, 2022). Currently, OpenAlex indexes over 240 million works works,
with about 50,000 new records added daily (OpenAlex Team, 2025c).

The dataset is fully and freely available via a web-based GUI, a full data dump,
and high-volume REST API. For this project, we primarily used the REST API to
retrieve the necessary data.

The OpenAlex dataset is a heterogeneous directed graph, composed of different
types of scholarly entities, and the connections between them. The current Ope-
nAlex entities include works, authors, sources, institutions, topics, publishers and
founders (more information can be found in OpenAlex Team (2025b)). Figure 2.1
illustrates the connections among them.

We now describe the key entities that are relevant for this project.
Works are scholarly documents like journal articles, books, datasets, and theses.

They are central entities because their connections define the scholarly nature of au-
thors, venues, institutions, and topics. Approximately 50,000 new works are added
daily from sources like Crossref, PubMed, and arXiv.
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FIGURE 2.1: Sketch of OpenAlex graph model (source: OpenAlex
Team (2025b)).

Authors are defined as people who create works. Authors are identified using
ORCID IDs when available, though only a small percentage of the author profiles
have these identifiers (the percentage is higher for authors of more recent works). To
address name disambiguation, OpenAlex uses algorithms that analyse the author’s
name, their publication record and their citation patterns to reduce misattributions
(OpenAlex Team, 2023). Notice that authors are connected to works through the
authorship object.

Institutions are organisations to which authors claim affiliations. The identifier
for institutions is the ROR ID. Every affiliation is listed by author in order to link
institutions to works. These affiliations strings are obtained from both structured
sources (eg, PubMed) and unstructured ones (publisher webpages). A two-step al-
gorithm (rules-based and machine-learning-based) is used to extract and normalize
affiliation strings. Like authors, institutions are linked to works via the authorship
object.

Topics are abstract ideas that works are about. Figure 2.2 shows the Topics hier-
archical structure, this structure ensures that each topic maps to exactly one Subfield,
Field, and Domain, avoiding ambiguity in classification. Note that there are 4 Do-
mains, 26 Fields, 252 Subfields and 4516 Topics. The full list of topics is available in
OpenAlex Team (2025e). See Table 2.1 for an example.

FIGURE 2.2: Topic Structure (source: OpenAlex Team (2025e)).

Works in OpenAlex are tagged with Topics using an algorithm that incorporates
both large language models (LLMs) and traditional classifiers, see Figure 2.3. These
models consider features such as the title, abstract, source name, and citation context
(OpenAlex Team, 2025e). The classification model produces a score for all candidate
topics, then the top three topics are assigned to the work, with the highest-scoring
one designated as its Primary Topic (OpenAlex Team, 2025a).
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Topic: Natural Language Processing
Subfield: Artificial Intelligence
Field: Computer Science
Domain: Physical Sciences

TABLE 2.1: Example of Topic classification.

FIGURE 2.3: Outline of Topic Model (source: OpenAlex Team
(2025e)).

2.1.1 Data Collection

Now that we understand the basics of the OpenAlex dataset, we describe how it was
used in this project.

The initial selection criterion was to filter works by the institution of University
of Barcelona (UB) and the publication year 2024, generating a dataset of 7,878 works.
To introduce more variety into the data, we also used works from Utrecht University
published in 2024, with 7,271 entries. Utrecht was selected because it is part of the
Charm-EU international university alliance, which includes UB. This second dataset
also allows us to explore potential relationships between the two institutions, like
collaborations patterns between authors.

Given these filters, the metadata extracted for each work in both datasets in-
cludes: title, publication year, list of authors, abstract, and the top three ranked top-
ics. For each topic, we also collected its score, domain, field, and subfield.

2.1.2 Distribution of Fields and Domains

During the exploratory analysis, we examined how works are distributed across
domains and fields, based on the field and domain of each work’s primary topic.
The results revealed a strong imbalance in both datasets, with a dominant concen-
tration in the Health Sciences domain, especially within the field of Medicine ( see
figure 2.4). This trend was also observed in other universities within the alliance
and in other institutions from Barcelona, except for the Universitat Politècnica de
Catalunya (UPC), which is primarily focused on engineering disciplines. See Fig-
ure A.1 in Annex A for those examples.

This imbalance can be partially explained by the fact that, as of 2022, approxi-
mately 23% of all EU scientific publications were in the field of clinical medicine, as
reported in Chapter 3 of the Science, Research and Innovation Performance of the
EU 2024 report (Directorate-General for Research and Innovation, 2024). One reason
for this may be that medical science often produces many short-form publications,
such as clinical trials, case reports, and epidemiological studies.
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(A) University of Barcelona. (B) Utrecht University.

FIGURE 2.4: Distribution of works per Field and Domain.

Additionally, we have seen that OpenAlex gathers data from highly standard-
ized sources like PubMed. Because of this, it may under-represent research areas
that do not have a strong tradition of systematically analysing their own publica-
tions (like Humanities). On the other hand, it tends to favour fields like Medicine,
where these practices are already well established.

In our experiments, we did not apply any method to address the imbalance
across fields, as our goal was to study the topic distribution as it naturally appears
in the data. Since both UB and Utrecht exhibit a similar patters, the comparison be-
tween the two remains consistent. However, this imbalance implies that fields with
fewer publications are less represented in the analysis.

2.1.3 Topic Score Correlations

Another aspect we analysed was the score distribution of the three topics assigned to
each work. Our goal was to better understand the behaviour of the OpenAlex Topic
Model by exploring the relationship between these three variables. This analysis
will also be relevant later, when we study the classification of works by its topics.

To investigate this, we plotted each score against the others and applied a linear
regressor to detect possible correlations. The results for the UB 2024 data are shown
in Figure 2.5, excluding those scores that were not present in the data. The same
analysis is done for Utrecht 2024 data showing the same behaviour, see Figure A.2.

In Figure 2.5 observe that the level of confidence is similar across all three scores.
For example, when Score 1 is close to one, Scores 2 and 3 are also close to one. This
pattern holds across all scores and shows a strong linear correlation between them.

The coefficients from the linear regression models in the second case, all range
from r = 0.95 to 0.98. These values confirm the strong positive correlation, indi-
cating that all three scores tend to increase or decrease together. This suggest that
the OpenAlex Topic Model is consistent when detecting relevant Topics of a work:
when it is confident about the primary topic, it typically also assigns high scores to
secondary topics, implying that the work is thematically rich and easily to classify.
In contrast, when the model is uncertain about the primary topic, the other scores
also tend to be low, suggesting that the work is more difficult to classify within the
available topic categories.

2.2 Text Representation with Embeddings

After collecting data, we need to find a way of representing each work based on dif-
ferent criteria. In this section, we present the theoretical background of the method
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FIGURE 2.5: Correlation between scores in UB 2024 data.

we chose, along with the different models we used.
Our first approach involves building a high-dimensional space where each work

is mapped using the Topic, Subfield, Field, and Domain tags as orthogonal dimen-
sions. This represents the "natural" embedding of a work when we are interested in
exploring the relationships between works and their assigned topics. This approach
is further developed in Section 3.1.

After we study this natural topic space, we will also create representations of the
works based on their title and abstracts. The underlying assumption is that papers
of the same research area will also have similar title, and abstracts and the other way
around; in contrast, works from different areas should have more distinct features.
Therefore, we treat the title and abstract as text features that will characterize each
work.

Since machine learning algorithms operate on numerical data, we need to con-
vert this textual information into vector representations. This is where text and sen-
tence embeddings come into play. Here we want to give a brief overview of how
these models work, but it is not the main focus of this project.

Text embeddings are vector representations that map text into a continuous math-
ematical space, where semantically similar words or sentences are located near each
other. These embeddings are generated by neural network models trained to capture
the meaning and context of text.

Transformer-based models, like BERT (Devlin et al., 2019), capture the context
of each word by examining each token in the context of every other token. This is
done through a self-attention mechanism, which allows the model to weigh the im-
portance of different tokens relative to each other. As the input text passes through
successive layers of the transformer, the embeddings are refined and enriched with
contextual information. This process results in deeply contextualized vector repre-
sentations of each token, shaped by the full sequence of input text.

2.2.1 Embedding Models Used in the Experiments

In this section, we describe the different models used in our experiments, along with
their main characteristics.

We begin with a model from the Sentence Transformers Python module (Reimers
and Gurevych, 2019a). This library offers a wide range of pre-trained models based
on the Sentence-BERT (SBERT) model. As described in the original SBERT paper
(Reimers and Gurevych, 2019b), the SBERT model is a modification of the pre-trained
BERT network that use siamese and triplet network structures to derive semanti-
cally meaningful sentence embeddings. This design reduces the computational cost
of similarity comparisons, while preserving BERT-level accuracy.
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From these pre-trained models models based on SBERT, we selected the model
all-MiniLM-L6-v2. Trained on a large and diverse dataset of over 1 billion training
pairs, according to the documentation (Reimers and Gurevych, 2019a), this model
offers strong performance on 14 sentence embedding tasks (relevant to our use case).

Next, we also make use the Nomic Embed model (nomic-embed-text-v1), an
open-source model with a context length of 8192 tokens. This is also the model used
in the example data map from the DataMapPlot examples (McInnes, 2024).

The Nomic model is a modified version of BERT with architectural changes, for
example, the activation layer or the batch size. When using this model, it is necessary
to include a task-specific instruction prefix in the text input (Nomic AI, 2024). In our
case, we used the "clustering" prefix, indicating that the embeddings are intended
for grouping similar texts, discovering common topics, or removing semantic dupli-
cates.

Finally, we also use the SPECTER2 model, a successor to the original SPECTER
model (Cohan et al., 2020). Given the combination of title and abstract of a scientific
paper, the model can be used to generate effective embeddings. SPECTER2 has been
trained on over 6 million triplets of scientific paper citations, making it particularly
well-suited to our task and data (A. Singh et al., 2022).

Overall, our selection of these three models is based on accessibility, perfor-
mance, and relevance to our dataset. Chapter 3, presents the results produced by
these models.

2.3 UMAP Algorithm for Dimensionality Reduction

Once we have the embeddings that represent the works, we need to reduce them to
a 2D space so we are able to visualize them. These process is done through dimen-
sionality reduction algorithms. Principal component analysis (PCA), t-distributed
stochastic neighbour embedding (t-SNE) and uniform manifold approximation and
projection (UMAP) are among these algorithms. This project focuses on UMAP due
to the advantages discussed below and builds upon the arXiv example (McInnes,
2024), which also utilized UMAP. In this section, we will give an overview of algo-
rithm without detailing the more theoretical or mathematical aspects, that would go
beyond the scope of this thesis.

As we have introduced, UMAP (Uniform Manifold Approximation and Projec-
tion) is a flexible, non-linear dimensionality reduction algorithm designed to cap-
ture the underlying structure of high-dimensional data. Its goal is to learn the man-
ifold structure of the data and construct a lower-dimensional representation that
preserves the essential topological characteristics of that manifold (McInnes, Healy,
and Melville, 2020).

Dimensionality reduction techniques generally fall into two categories: global
methods like PCA, which attempt to preserve all pairwise distances across the dataset,
and local methods, like t-SNE and UMAP, which prioritize preserving the relation-
ships among nearby points, focusing on local neighbourhoods to uncover the data’s
intrinsic geometry.

In contrast with t-SNE, UMAP offers a better preservation of the data’s global
structure in the final projection (Coenen and Pearce, 2020). This can be attributed to
UMAP’s strong theoretical foundations, which allow the algorithm to better strike a
balance between emphasizing local versus global structure, which we will explain a
bit further. Figure 2.6, from McInnes, Healy, and Melville (2020) shows a compari-
son between UMAP and t-SNE for different datasets. Note that UMAP successfully
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reflects much of the large scale global structure while also preserving the local fine
structure, this is also shown in the several examples of Coenen and Pearce (2020).

FIGURE 2.6: Comparison of UMAP and t-SNE for several datasets
(source: McInnes, Healy, and Melville (2020)).

Another difference from t-SNE is that UMAP is more scalable and faster to com-
pute, which offers a clear advantage when visualizing large datasets. This improve-
ment in performance is analysed in the original UMAP paper (McInnes, Healy, and
Melville, 2020) using several datasets.

Let us now introduce how UMAP works, without going into much detail of the
theoretical aspects. The algorithm operates in two main phases. First, it builds a
weighted n-nearest neighbour graph in the original high-dimensional space, repre-
sented in Figure 2.7. This graph encodes the local structure of the data by connect-
ing each point to its nearest n neighbours, where the strength of each connection
(the edge weight) reflects the proximity between points. UMAP defines these edge
weights using a smooth exponential function that ensures each point is strongly con-
nected to at least its closest neighbour (McInnes, Healy, and Melville, 2020). This
weighting function can be interpreted probabilistically, with each edge representing
the likelihood that two points are connected.

FIGURE 2.7: Representation of the weighted n-nearest neighbour net-
work (source: Coenen and Pearce (2020)).

Given this set of local graphs, we now require a method to combine them into
a unified topological representation. Because n-nearest neighbour graphs are in-
herently asymmetric, UMAP applies a symmetric transformation to the weighted
adjacency matrix of G. This step merges local neighbourhood views into a unified
topological structure that better captures the global layout of the data.
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Once we have this unified graph G, UMAP enters into its second phase. In
this step, the algorithm computes a low-dimensional layout of G using a force di-
rected algorithm. This approach uses attractive forces along graph edges to bring
connected points closer together and repulsive forces between all pairs of points
to prevent overcrowding. The goal is to optimize a non-convex objective function
that minimizes the difference between the original graph and the low-dimensional
embedding. The result is the low dimensional representation that optimizes this
objective function.

2.3.1 UMAP Hyperparameters

Now that we have seen the basic workings of the algorithm, we can study it hy-
perparameters. In terms of hyperparameters, UMAP provides several variables that
are used to fine-tune the lower-dimensional representation. McInnes, Healy, and
Melville (2020) describes two key hyperparameters. The first one is the number of
neighbours n, already introduced. It defines the local scale at which the manifold is
approximated. Conceptually, it sets the size of the local neighbourhood used to esti-
mate the structure of the data manifold. Smaller values of this parameter focus more
on capturing fine-grained local structure, potentially at the expense of the global
shape, while larger values emphasize broader, large-scale features but may smooth
over important local variations. This trade-off means that choosing an appropriate
neighbourhood size depends on whether one is more interested in detailed local
clustering or the overall topology of the data.

The second one is the min_dist variable defined as the desired separation be-
tween close points in the embedding space. It controls how tightly UMAP packs
points together in the low-dimensional embedding. Unlike n (or n_neighbors),
which governs the construction of the graph from the high-dimensional space, min
_dist affects the layout of the embedding itself. Lower values preserve more of the
local structure, often resulting in dense clusters, while higher values produce more
evenly spaced layouts, which can be beneficial for clarity in visualizations. As such,
min_dist is often considered an aesthetic parameter.

Lastly, The UMAP library in python also supports a variety of distance metrics
through the metric parameter (McInnes, Healy, Saul, et al., 2018). While Euclidean
distance is the default and works well for many standard use cases, other options
such as cosine, Manhattan, or correlation distances can be used depending on the
data type and domain. For example, cosine distance is particularly useful when
working with high-dimensional sparse vectors such as text embeddings, as it focuses
on angular similarity rather than magnitude.

Both the n_neighbors and min_dist are studied in McInnes, Healy, and Melville
(2020) and applied to different datasets. Just for completeness, we have included the
example for the MNIST dataset in Figure A.3 in the Appendix A. In our case, we
will explore these hyperparameters later when applying the algorithm to our data
in Chapter 4.

2.3.2 UMAP Limitations

Finally, we must talk about some of the limitations of the UMAP algorithm. One
of the main concerns, as explained in McInnes, Healy, and Melville (2020), lies in
interpretability. Like many non-linear methods, UMAP does not offer easily inter-
pretable dimensions in the output space (unlike PCA, where each axis corresponds
to a direction of maximum variance in the original data).
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Another limitation comes from from its core assumption: that data lies on a well-
defined manifold. In datasets with significant noise or very small sample sizes,
UMAP may falsely detect structure where there is none. In situations where the
dataset has highly variable density across regions, UMAP will attempt to "even out"
these differences, which might not be desirable if preserving relative distances is a
priority. As the sample size increases, this issue tends to diminish, but it still requires
caution in small or noisy datasets.

Additionally, it is important to be cautious when interpreting the geometry of
UMAP plots. For example, the size of clusters in the visualization is not meaningful.
This is a consequence of the algorithm’s focus on preserving local distances when
constructing its graph representation. Similarly, the distances between clusters is
likely to be meaningless. While it is true that the global positions of clusters are
better preserved in UMAP, the distances between them are not meaningful. It still
builds the embedding based on local neighbourhoods, which means that the spacing
between clusters is largely arbitrary and should not be over-interpreted (Coenen and
Pearce, 2020).

2.3.3 Experimental Configuration

In our experiments, we will apply the UMAP algorithm using the umap Python li-
brary (McInnes, Healy, Saul, et al., 2018). Since we will study the different embed-
ding models first, we will use UMAP with its default configuration, allowing us to
obtain a baseline for the embeddings of the data. Later, as mentioned above, we
will investigate its hyperparameters in more detail, exploring their effects on the
resulting layout and identifying the settings that best suit the characteristics of our
dataset.

2.4 Interactive Visualization with DataMapPlot

Once we have the 2D dimension representation of the works, the final step of our
process is to generate a useful visualization. This visualization needs to support
certain features, such as zooming, filtering, and interactivity, so we can adapt it
to our needs and extract meaningful insights. For this task, we have chosen the
DataMapPlot library, which is also the tool used in the example data map from
arXiv (McInnes, 2024). Note that all visualization experiments have been tested on
Google Chrome and Microsoft Edge and for computer devices, compatibility with
other browsers or devices may vary.

DataMapPlot is a small library designed to help create aesthetically pleasing data
map plots. As described in its documentation Leland McInnes (2023), it can generate
both static plots or simple interactive plots, only by passing the data map points and
the label clusters of points in the data map.

The main strength of DataMapPlot is that it supports the visualization of multiple
clustering layers, this reveals hierarchical groupings of data as the user zoom in and
out of the map.

In terms of interactivity, the visualizations supports hover tooltips, a search bar,
and click behaviour. Tooltips can be fully customized with HTML to display any
metadata we want, for example paper titles, authors, topic scores, or links. The
search bar allows users to quickly locate specific items, and we can define what
happens when a user clicks on a point.



12 Chapter 2. Methodology and Theoretical Background

Filtering is another important feature, especially when working with large datasets.
Using the filters parameter, we can add filters through and histogram extracted for
any categorical variable included in the metadata, for example the year or field of
study. This is useful to isolate and explore specific subsets of the data without need-
ing to generate a new map.

Additional customizations are more focused on overall appearance of the visu-
alization. These include both light and dark themes, font control and appearance
options for the points in the scatter plot with. These are useful for keeping labels
readable and consistent, especially when the map includes many data points. In
terms of colour, there are many ways to personalize the style: from adjusting label
colour, to shifting the default palette, or applying a custom colour map.

Altogether, these settings make DataMapPlot a practical and versatile tool for
building clean, interactive, and informative data maps. The combination of inter-
activity, filtering, and visual customization has been essential for making our topic
and author visualizations both engaging and insightful.

2.4.1 Experimental Configuration

Finally, this subsection presents the configuration choices we made for our visual-
izations and the reasoning behind them. As it will be detailed later, we analyse
both topic relationships and author relationships within our data, each of them will
present different configurations on the final visualization.

Topic Relationships

For the topic relationship analysis, we include label layers corresponding to the Do-
main, Subfield, and Field of the Primary Topic. We also add a filter by Primary Field,
which helps clarify clusters when applied. Regarding hover information, we display
the paper’s title along with the names of its three Fields, including Secondary and
Tertiary Fields. This setup supports visualizing the correlations between topics that
emerged during our analysis, which we will revisit in Section 3.1. For instance, it
could be relevant that the Primary Topic of a work falls under Health Sciences, but
the Secondary and Tertiary Topics relate to Life Sciences.

The search bar is enabled, allowing users to find works by name, and the on-click
feature is also available, linking to the work’s details when clicked.

In terms of colour, DataMapPlot automatically generates a cyclic HSL palette
based on the geometry of the data map. We keep the default palette for scatter
plot points since the library detects cluster labels and adjusts colours accordingly.
For the hover data, the different Fields are colour-coded using five distinct colours
representing the Domains as in Table 2.2.

Physical Sciences #2ca02c, green
Health Sciences #9467bd, purple
Life Sciences #1f77b4, blue
Social Sciences #d62728, red
Unknown #ff7f0e, orange

TABLE 2.2: Domain Colours.

These colours are chosen for their distinctiveness, being opposite each other on
the colour wheel, and are used consistently across the project for all visualizations
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that filter by Domain. The histogram filter colour, a light blue, is selected to avoid
visual conflict with these colours.

Figure 2.8 shows a static preview of the interactive visualization. We will dis-
cuss the results in more detail later, including the overall shape and cluster patterns.
For now, focus on the different custom visualization options. Observe the topic la-
bels, at the default zoom level, the four Domains are visible (2.8a). As you zoom
in, more specific layers appear, revealing the Fields and Subfields (2.8b); in this ex-
ample, within the Physical Sciences domain. Also observe the tooltip information,
with the name of the work and the colour coded fields as we explained. In the image
(2.8a), a paper was classified closer to the Life Sciences cluster even when its main
topic was from Social Sciences (red). Looking at the metadata in the tooltip, this may
be because the other two topics where from the Life Sciences domain (blue). In this
case, this extra data gives us more context on the clustering of the works.

(A) Original Zoom and Tooltip.

(B) Fields and Subfields when Zoomed In.

FIGURE 2.8: Preview of the Topics Interactive Map.

Figure A.4 in the Appendix A, shows two examples of using the histogram filter
for two different Fields in the visualization.

Author Relationships

For the author visualizations, we use a single label layer representing the Primary
Topic Domains of all papers attributed to each author. However, the data points are
not coloured based on these labels. Instead, they are coloured by institution, with
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FIGURE 2.9: Preview of the Authors Interactive Map.

a legend added for clarity. This approach helps combine author and topic relation-
ships, making it easier to identify authors working in similar research areas. These
configurations are possible thanks to the flexibility of the visualization library. Ad-
ditionally, we include the same Domain labels as a histogram filter to reinforce the
visualization with consistent information. The hover text is customized to display
the author’s name and their number of publications, and both the search bar and
on-click functionalities are enabled using the author name.

Figure 2.9 shows a static preview of the interactive visualization with these cus-
tomizations. And Figure A.5 in the Appendix A, shows two examples of using the
histogram filter for two different Domains in the visualization.

2.5 Clustering Metrics

For each embedding strategy, we also want to be able to interpret the results in a
quantitive way, beyond just visual inspection. For this purpose, we rely on estab-
lished clustering evaluation metrics that provide quantitative insight into how well-
defined, compact, and distinct the clusters are. Our intention with these metrics is
not to asses the quality of the generated clusters, but to see if they also reflect the
behaviour that we see in the qualitative analysis. In this section, we introduce the
three metrics used in the experiments: the Silhouette Score (Rousseeuw, 1987), the
Davies–Bouldin Index (Davies and Bouldin, 1979), and the Calinski–Harabasz Index
(Caliński and and, 1974). A mathematical explanation of the metrics can be found in
the Appendix A.

The Silhouette Score is a measure of clustering quality that captures how well a
data point is assigned to its cluster relative to others. Its values range from −1 to 1:
a score closer to 1 indicates that the point is well-clustered, closer to its own group
and far from others, a score near 0 suggests it is located near the boundary between
clusters, and a score closer to −1 means it may have been assigned to the wrong
cluster.

The Davies-Bouldin Index (DBI) measures clustering quality by assessing both
the compactness of clusters and the separation between them. A lower DBI value is
preferred, as it implies low internal dispersion and well-separated clusters.

The Calinski-Harabasz Index (or Variance Ratio Criterion) evaluates clustering
quality based on the ratio of between-cluster dispersion to within-cluster dispersion.
Higher values imply well-defined, compact clusters that are clearly separated.



15

Chapter 3

Topic Relationships: Evaluation of
Embedding Models

In this chapter, we present the experiments carried out to explore topic relationships
between works and to comapre different embedding methods. The main goal is to
understand how each model behaves and to find which one captures topic-based
structure more effectively.

We study two datasets: the works from the University of Barcelona (UB) in 2024,
and the works from Utrecht University in the same year. Most of the experiments
are done using the UB data, where we compare four different embedding strategies.
For the Utrecht dataset, we apply only two of these methods as a complementary
analysis.

For the UB dataset, we start by representing the works in a high-dimensional
space defined by the hierarchical topic labels from OpenAlex. Then, we move to
the text embedding models, applying Sentence Transformers and Nomic model to
the work titles. Finally, we include the SPECTER2 model, which uses both the title
and the abstract of the works. In contrast, for the Utrecht dataset we apply only the
hierarchical topic embedding and the Nomic model.

In all cases for this section, we will generate the 2D map using the default pa-
rameters of UMAP (n_neighbors = 15, min_dist = 0.1 and metric = euclidean),
and evaluate the result both qualitative (by visual inspection) and quantitive.

For the quantitative analysis, we will use three clustering metrics, introduced
in section 2.5 of Chpater 2, the Silhouette Score, the Davies-Bouldin Index and the
Calinski-Harabasz Index. The three of them are computed using the labels of the
Domain of the Primary Topic in all cases.

3.1 Embedding using Hierarchical Topics Vector Basis

We begin with the representation of works by its "natural" embedding (C. K. Singh
et al., 2023). This embedding is based on the hierarchical topic tags provided by
OpenAlex. For each work, we extract its three Topics along with the associated
Subfield, Field, and Domain. We create one-hot encoded vectors for each of these
features—Domain, Field, Subfield, and Topic—and concatenate them for each topic.
For each work, we then combine the three topic vectors by summing them element-
wise. If a feature appears multiple times, such as when several topics share the same
Field, this is reflected in the summed vector by values greater than one. Table A.1 in
the Appendix A shows an example of this process. Note that all features not shown
in the table would have a value of zero.

We also want to note that, in this case, we used a binary variable (1 or 0) to
indicate whether a topic is present in a work, instead of using the actual topic scores
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given by OpenAlex. This decision is based on the analysis presented in Section 2.1.3,
where we observed a strong linear correlation between the scores of the three topics.
In practice, this means that when one topic score is high, the others tend to be high
as well, and vice versa. This consistent pattern, suggests that the scores are not
providing significantly different information from the presence or absence of a topic.
Therefore, for simplicity and to avoid introducing unnecessary complexity, we chose
to represent the features as binary variables.

This approach was applied to both datasets introduced earlier: the works from
the University of Barcelona in 2024 and those from Utrecht University in the same
year. The results are presented in the following sections.

3.1.1 UB Dataset

Using the explained construction, we applied UMAP for dimensionality reduction
to the UB data and generated several visualizations1. For reference, we include two
static visualizations here: Figure 3.1a shows the data map coloured by the Domain of
the Primary Topic, while Figure 3.1b uses a colour scheme based on the combination
of all three Domains assigned to each work.

In the first figure, we can observe relatively distinct clusters, with Health Sciences
overlapping slightly with both Life Sciences and Social Sciences. There is also some
overlap between Life Sciences and Physical Sciences. The second figure, however,
provides a more detailed view of how cross-domain works are distributed. In the
middle section of the map, we see an orange cluster and a light blue cluster repre-
senting works that combine Life Sciences and Social Sciences, and Life Sciences with
Health Sciences, respectively. These correspond to the overlapping regions seen in
the first figure. The light blue dots also appear in the upper section of the map,
closer to the Social Sciences cluster, something not visible when only the Primary
Domain was considered. Similarly, we now observe pink dots scattered across both
the Health and Physical Sciences areas, revealing interactions between these two
domains that were previously hidden.

(A) UMAP projection by Primary Domain. (B) UMAP projection by Combined Domains.

FIGURE 3.1: UMAP projections for UB data and Topic embeddings.

As revealed by the visualizations, we find that works are highly dependent on
the combination of all three topics, not just the primary one. Moreover, understand-
ing the mix of Topics and Domains present in the dataset is essential for interpreting
the results. For this reason, we examine this aspect of the data in more detail. To

1An interactive version of the resulting map can be found at the following link.

https://albagarciaromo.github.io/UB_24_topics_15_neighbors.html


3.1. Embedding using Hierarchical Topics Vector Basis 17

simplify the analysis, we focus on the four Domains, although a similar study could
be conducted using the Fields or Subfields.

Overall, we find that 4,972 works have all three topics assigned to the same Do-
main, while 2,906 works include at least one topic from a different Domain. This
means that approximately 37% of the works can be considered cross-domain. We
are also interested in identifying which pairs of Domains are most commonly com-
bined, as this can provide insight into how research areas intersect and which fields
tend to collaborate or overlap more frequently. To explore this, we count the occur-
rences of each pair of different Domains across all works. The results are presented
in the co-occurrence matrix shown in Figure 3.2. It is clear that the most common
cross-domain pairing is between Health and Life Sciences, more than twice as fre-
quent as other combinations. This may explain why we see more overlap between
these two clusters compared to others. We also observe some co-occurrence between
Life and Physical Sciences, as well as between Life and Health Sciences, which aligns
with the patterns seen in the clusters of Figure 3.1b.

FIGURE 3.2: Domain co-occurrence matrix for UB.

Finally, as part of the quantitative analysis, we applied the clustering metrics in-
troduced earlier in the chapter. The results are shown in Table 3.1. The Silhouette
Score of 0.1170 is low, but positive, it suggests that the clusters have some cohesion
and separation, though there is also some overlap and the clusters are not very well
defined overall. The Davies-Bouldin Index value of 1.0722 indicates moderate clus-
ter separation (lower values, closer to 0, indicate better separation). The Calinski-
Harabasz Index, is relatively high at 3619.08, implying that the clustering captures
meaningful differences between groups. Overall, these results suggest that the clus-
tering method identifies some relevant structure in the topic embedding space, but
the clusters are not sharply defined. Note that this results do align with the previ-
ous analysis of the visualization, where we are able to differentiate between the four
main groups, but where we also observe overlapping between them.

Clustering Metric Value
Silhouette Score 0.1170
Davies-Bouldin Index 1.0722
Calinski-Harabasz Index 3619.0762

TABLE 3.1: Clustering metrics for Topic embedding of UB data.
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In conclusion, the clustering metrics and visualizations together provide a clear
understanding of the UB dataset’s topic structure. While some distinct clusters are
present, there is also considerable overlap, particularly across different domains.
This reflects the interdisciplinary nature of the research and the complexity of the
topic relationships. These findings offer a solid foundation for the following chap-
ters, where the implications of these connections will be explored further through
the use of embedding models.

3.1.2 Utrecht Dataset

In this section, we repeat the analysis performed on the UB data, using the same
configuration of the high-dimensional space2. Here, we include two static visualiza-
tions for reference: Figure 3.3a shows the data map coloured by the Domain of the
Primary Topic, while Figure 3.3b presents a colour scheme based on the combination
of all three Domains assigned to each work.

As before, in the first visualization, we observe that the five distinct clusters are
generally well-defined with some expected overlap. In this case, the central region of
the visualization reveals the highest degree of overlap. Specifically, the Life Sciences
cluster overlaps much more with the others. Additionally, there is noticeable over-
lap involving the Social Sciences cluster with both the Health Sciences and Physical
Sciences clusters. The second visualization provides a more detailed representation
of these relationships. On the left, the combination of Health and Social Sciences,
shown in orange, corresponds to the overlap observed between these clusters in the
first visualization. Similarly, near the bottom center, a yellow cluster represents the
overlap between Social Sciences and Physical Sciences, which is more pronounced
in this dataset compared to the UB data. At the center, we still see the Life Sciences
cluster, now overlapping with a broader range of cluster combinations.

(A) UMAP projection by Primary Domain. (B) UMAP projection by Combined Domains.

FIGURE 3.3: UMAP projections for Utrecht data and Topic embed-
dings.

For this dataset, we find that 4,425 works have all assigned topics within the
same Domain, while 2,846 works include topics from more than one Domain, mean-
ing that approximately 39% of the works can be considered cross-domain. Referring
to the co-occurrence matrix shown in Figure 3.4, which displays the frequency of
domain combinations across topic pairs, we can observe the following. While the

2As before, an interactive visualization of the resulting map is available at the following link

https://albagarciaromo.github.io/Utrecht_24_topics_15_neighbors.html
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combination of Health and Life Sciences remains the most frequent, it is less domi-
nant than in the UB data. In contrast, we observe a higher presence of other cross-
domain combinations. For instance, between Physical and Social Sciences, which is
consistent with the patterns already identified in the combined cluster visualization.

FIGURE 3.4: Domain co-occurrence matrix for Utrecht University.

Finally, as part of the quantitative analysis, we applied the clustering metrics.
The results are shown in Table 3.2. The Silhouette Score of 0.1031, suggest a weak
but present clustering structure, where data points are, on average, slightly closer to
their own cluster than to others. The Davies-Bouldin Index of 1.4738 indicates mod-
erate separation between clusters, and the Calinski-Harabasz Index, with a value
of 3056.02, reflects a relatively high ratio of between-cluster dispersion to within-
cluster dispersion. Altogether, it implies that this projection captures some structure
in the data, with discernible variance between groups. Similar to the UB data, these
results suggest that this embedding strategy is able to identify relevant patterns in
the topic embedding space, although the clusters are not clearly separated and show
considerable overlap.

Additionally, in this case, the clustering metrics perform slightly worse than for
the UB dataset, which may suggest that Utrecht University exhibits a higher degree
of cross-domain research activity. This observation is consistent with what we know
about the data. When comparing the co-occurrence matrices of both institutions, we
see that the number of interactions between Domains is slightly higher in the Utrecht
dataset than in the UB papers.

Clustering Metric Value
Silhouette Score 0.1031
Davies-Bouldin Index 1.4738
Calinski-Harabasz Index 3056.0227

TABLE 3.2: Clustering metrics for Topic embedding of Utrecht Uni-
versity data.

In conclusion, we obtain results that are very similar to those of the UB data.
Based on both the clustering metrics and the visualizations, we observe that while
distinct clusters are present, there is also considerable overlap, particularly across
different Domains. In this case, cross-domain relationships appear more frequently
for certain Domain combinations that were less prominent in the UB dataset. Again,
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this reinforces the interdisciplinary nature of the research and highlights the com-
plexity of the relationships between topics.

3.2 Embedding using Transformer-based Models

After analysing the results obtained using the hierarchical topic-based embeddings,
we proceeded to explore the transformer-based models introduced in Section 2.2.1.
As previously discussed, these models rely on the assumption that works with sim-
ilar titles and abstracts are likely to be related in terms of content and topic, and vice
versa. For the Sentence Transformer and Nomic models, we use only the title as
input, while for the SPECTER2 model, we incorporate both the title and abstract.

After obtaining the embeddings for each model, we apply the UMAP transfor-
mation (with default parameters) to generate the same interactive visualization as
before with DataMapPlot. We also replicate the qualitative and quantitative analy-
ses conducted in the previous section. The results derived from these models are
presented in the following sections.

3.2.1 UB Dataset

Sentence Transformer Model

We begin by analysing the Sentence Transformer (ST) model all-MiniLM-L6-v2,
which generates embeddings based only on the title of each work. The titles are
passed to the model without any pre-processing, as transformer-based models are
trained on naturally language and are designed to handle linguistic variability, in-
cluding filler words, punctuation, and inconsistent phrasing. Therefore, we do not
find it necessary to remove these elements, especially for short texts like titles.

After generating the embeddings, we apply UMAP for dimensionality reduction
and examine the resulting visualization and clustering metrics3. The static visualiza-
tion is in Figure 3.5, showing the data map coloured by the Domain of the Primary
Topic and it has the centroids of each cluster marked in black.

In this projection, the Health and Life Sciences clusters exhibit the most notice-
able overlap, followed by the overlap between the Life and Physical Sciences clus-
ters. Towards the bottom of the visualization, the Social Sciences cluster appears
somewhat better defined, although it still shows a degree of overlap with the Physi-
cal Sciences cluster.

The clustering metrics for the Sentence Transformer embeddings of the UB data
are shown in Table 3.3. The Silhouette Score of 0.0266 is very close to zero, indicating
that the clusters are weakly defined and there is significant overlap between them.
The Davies-Bouldin Index of 2.7895 is relatively high, suggesting poor separation
and high similarity between clusters. The Calinski-Harabasz Index, although still
moderately high at 1554.33, is lower than in previous cases, indicating less distinct
group structure. Overall, these results suggest that the clustering structure is weak
and not well-separated in the embedding space produced by the Sentence Trans-
former model. This is consistent with what we see in Figure 3.5 where there are not
clear clusters overall.

3An interactive version of the resulting map is available at the following link

https://albagarciaromo.github.io/UB_24_works_st_15_neighbors.html
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FIGURE 3.5: UMAP projection for ST model and UB 2024 data.

Clustering Metric Value
Silhouette Score 0.0266
Davies-Bouldin Index 2.7895
Calinski-Harabasz Index 1554.3284

TABLE 3.3: Clustering metrics for ST embedding of UB data.

Nomic Embedding Model

Next, we evaluate the Nomic embedding model, which also uses only the title as
input. This model can be configured with a task-specific instruction as prefix in the
text input. In our case, we used the "clustering" prefix followed by the work title,
indicating that our goal is to group similar title and discover similarities between
them. As before, we did not perform any preprocessing of the title texts.

For reference, the static visualization is in Figure 3.6, showing the data map
coloured by the Domain of the Primary Topic4.

In this projection, we also observe that the Health and Life Sciences clusters show
the most visible overlap. The Physical Sciences and Social Sciences clusters appear
more clearly defined, although they still exhibit a noticeable degree of overlap with
the Life Sciences and Health Sciences clusters, respectively. Additionally, we note
a small cluster of works on the left side of the visualization, mostly from the So-
cial Sciences domain but also including some from Health and Life Sciences. After
exploring the interactive visualization, we find that these works share a common
characteristic: they are written in Spanish and have Spanish titles. In this case, the
Nomic embedding model appears to capture this linguistic feature, distinguishing
these works from the rest.

The clustering metrics for the Nomic embeddings of the UB data are shown in Ta-
ble 3.4. the results a really similar to the ones for the ST model. The Silhouette Score
of 0.0566 is low, indicating weak clustering structure with limited separation be-
tween clusters. The Davies-Bouldin Index of 2.3495 suggests moderate to poor sep-
aration, with significant similarity between clusters. The Calinski-Harabasz Index,
at 1564.62, reflects some variance between clusters but remains relatively modest.
Overall, these values point to a weakly defined clustering structure with noticeable
overlap between groups, this is also clear with the findings of Figure 3.6.

4An interactive version of the resulting map is available at the following link

https://albagarciaromo.github.io/UB_24_works_nomic_15_neighbors.html
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FIGURE 3.6: UMAP projection for Nomic model and UB 2024 data.

Clustering Metric Value
Silhouette Score 0.0566
Davies-Bouldin Index 2.3495
Calinski-Harabasz Index 1564.6227

TABLE 3.4: Clustering metrics for Nomic embedding of UB data.

SPECTER2 Model

Finally, we analyse the SPECTER2 model, which differs from the previous two by
incorporating both the title and abstract of each work. As mentioned earlier, this
model is specifically trained on scientific paper data (titles, abstracts, and citation
information) which makes it particularly well suited for our context. For this reason,
we expect it to better capture the similarities between the papers, more than the
other general models. Again, the input texts were passed to the model without any
preprocessing.

For reference, the static visualization is in Figure 3.7, showing the data map
coloured by the Domain of the Primary Topic5.

Again, the Health and Life Sciences clusters consistently show the greatest over-
lap. Also, both the Physical Sciences and Social Sciences clusters appear somewhat
better defined in this case, although they continue to exhibit a notable degree of
overlap with the Life Sciences and Health Sciences clusters, respectively.

The clustering metrics for the SPECTER2 embeddings of the UB data are pre-
sented in Table 3.5. The results are again really similar to the previous models.
The Silhouette Score of 0.0775, indicates a modest improvement in cluster cohe-
sion and separation compared to previous models. The Davies-Bouldin Index of
2.1742 suggests moderate separation, with clusters being somewhat more distinct.
The Calinski-Harabasz Index, at 1800.49, reflects increased variance between clus-
ters, supporting the presence of a clearer group structure. Overall, these metrics
suggest that the SPECTER2 embeddings result in a slightly better-defined clustering
compared to the other models. This is consistent with the visualization, where some
clusters appear more compact and distinct, although a noticeable degree of overlap
remains.

5The interactive version of the resulting map is available at the following link

https://albagarciaromo.github.io/UB_24_works_specter2_15_neighbors.html
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FIGURE 3.7: UMAP projection for SPECTER2 model and UB 2024
data.

Clustering Metric Value
Silhouette Score 0.0775
Davies-Bouldin Index 2.1742
Calinski-Harabasz Index 1800.4878

TABLE 3.5: Clustering metrics for SPECTER2 embedding of UB data.

3.2.2 Utrecht Dataset

Nomic Embedding Model

Let us now apply Nomic model to the Utrecht dataset. The same configuration is
used as in the UB dataset: we embed only the titles of the works without any pre-
processing and use the "clustering" prefix provided by the model.

For reference, the static visualization is in Figure 3.8, where the data points are
coloured by the Domain of the Primary Topic6.

In this projection, we observe that the Physical Sciences cluster overlaps with all
the other clusters, most notably with Social Sciences, but there is also visible over-
lap with Life Sciences and Health Sciences. The Life Sciences cluster appears more
dispersed and shows clear overlap with the Health Sciences cluster.

The clustering metrics for this case are presented in Table 3.6. The results are
similar to those obtained for the UB dataset. The Silhouette Score of 0.0683, sug-
gests moderate cohesion within clusters and some degree of separation. The Davies-
Bouldin Index of 1.9653 indicates that the clusters are moderately distinct. The
Calinski-Harabasz Index, with a value of 1548.3580, reflects a relatively high vari-
ance between clusters. Overall, these metrics suggest that there is some underlying
group structure in the embedding, although the clusters are not clearly compact or
fully separated, consistent with the visualization.

6The interactive version of the resulting data map is available at the following link

https://albagarciaromo.github.io/Utrecht_24_works_nomic_15_neighbors.html
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FIGURE 3.8: UMAP projection for Nomic model and Utrecht 2024
data.

Clustering Metric Value
Silhouette Score 0.0683
Davies-Bouldin Index 1.9653
Calinski-Harabasz Index 1548.3580

TABLE 3.6: Clustering metrics for Nomic embedding of Utrecht data.

3.3 Discussion and Limitations

Now that we have presented the results for the different embedding methods ap-
plied to the UB 2024 and Utrecht 2024 datasets, we dedicate this section to a com-
parative discussion of their outcomes.

First, it is worth noting that the spatial structure produced by the three transformer-
based models (Sentence Transformer, Nomic, and SPECTER2) is visually different
from the one generated by the topic-based embeddings, for both datasets. In the
case of all three embedding models, the resulting UMAP projections exhibit a ring
or doughnut-shaped layout (showing that the research areas are not directly con-
nected), contrasting with the more clustered and dense central structure observed in
the topic embedding space. Despite this change in geometry, the transformer-based
models still manage to capture the most prominent cross-domain relationships iden-
tified in the topic-based analysis.

Overall, all results are coherent with the data from the Domain co-occurrence
matrices, both for UB data (Figure 3.2) and for Utrecht data (Figure 3.4). For in-
stance, in the case of UB, overlaps between Health and Life Sciences, as well as be-
tween Physical and Social Sciences, are consistently reflected across all models. The
visualizations are also consistent with the results shown by the clustering metrics,
and together, both analyses help us better understand the relationships between the
different Domains. This confirms that the visualizations are not only aesthetically
coherent but also capture meaningful structural properties of the data, providing
confidence in the results obtained through UMAP dimensionality reduction.

In addition, it is also important to consider the type of input each model uses.
The topic-based embeddings come from OpenAlex’s hierarchical topic classification,
which is created using a combination of an LLM and a classifier model. This gives
the embeddings a level of interpretability tied to established academic domains. On
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the other hand, the transformer-based models generate semantic representations di-
rectly from the text based on their specific training. Among these, SPECTER2 stands
out because it uses both titles and abstracts, providing richer context compared to
models that rely only on titles. These differences in input and model design probably
explain some of the variation we see in the clustering results.

One limitation of this analysis is that both the visualizations and clustering met-
rics rely only on the Domain of the Primary Topic assigned to each work. While this
makes interpreting the results easier as a basic reference, it does not fully capture
that many works are linked to multiple topics across different domains. It is for this
reason that we included the three Fields as tooltip information in the interactive vi-
sualizations, giving more context for each work. In the future, it would be useful to
explore methods that take all assigned topics into account to better reflect the full
complexity of the data.

As future work, clustering metrics could also be applied directly to the original
embedding space, not just the 2D projection, to help assess how much information
is lost or preserved during dimensionality reduction.

3.4 Conclusion

Let us recap what we have done in this chapter. First, we created a high-dimensional
embedding space using the hierarchical structure of the Topics assigned to each
work given by OpenAlex. By doing this, we aimed to represent the thematic content
of the works in a way that follows the given classification used in the dataset.

Next, we generated data maps of the works by applying UMAP as a dimension-
ality reduction technique with fixed hyperparameters. We did this both for the topic-
based embeddings and for the embeddings produced by three different transformer-
based models (Sentence Transformer model, Nomic model and SPECTER2 model).
With these data maps, we produce both interactive and static visualizations in order
to analyse patterns, clusters, and overlaps between domains.

Looking at the results from the three transformer-based models, we saw that they
produced very similar outcomes. All models struggled to form clear clusters, and
there was considerable overlap between different domains. Nevertheless, this over-
lap was consistent with the previous analysis of Domain relationships, showing that
domains frequently occurring together in works were also those that overlapped
more in the visualizations.

Overall, these results demonstrate the difficulty of capturing complex topic re-
lationships in works that span multiple domains, confirming the interdisciplinary
nature of the majority of the research.
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Chapter 4

Fine-Tuning UMAP
Hyperparameters

After evaluating the different embedding methods, we now turn our attention to
fine-tuning the hyperparameters of the UMAP algorithm. In all previous experi-
ments, we used the default settings. In this chapter, we take a closer look at these
parameters and explore how they affect the resulting visualizations, considering the
possibility that an alternative configuration may better capture the topic relation-
ships observed in the previous chapter.

This analysis will focus only on the UB 2024 dataset and will be applied to both
the hierarchical topic embeddings and the SPECTER2 model.

4.1 Number of Neighbours and Min Distance

Let us begin by studying the key parameters of the algorithm, that is num_neighbors
and min_dist. As introduced earlier, num_neighbors determines how many neigh-
bouring points are connected when constructing the weighted graph in the high-
dimensional space (in the first step of the UMAP algorithm). It controls how much
of the local vs. global structure of the graph is captured. In contrast, min_dist in-
fluences the layout of the resulting embedding, controlling how tightly points are
packed together, affecting the visual compactness of clusters.

Figures 4.1 and 4.2 show the results of applying the UMAP algorithm with vary-
ing hyperparameters for the UB 2024 dataset with hierarchical topic embedding and
SPECTER2 embeddings respectively. As we can see, the num_neighbors parameter
mostly affects the overall shape of the map. Smaller values, like 5 or 20, produce
more fragmented maps with small and dense clusters, while higher values, like 100,
lead to smoother and more connected and continuous layouts that capture more
global structure. On the other hand, the min_dist parameter changes how close
points can appear in the 2D space. Low values (0.0125 or 0.05) make the clusters
more compact and easier to separate visually, while higher values (like 0.8) spread
the points out, which helps avoid clutter but makes the clusters less defined. Ob-
serve that these effects appear in both embedding methods, even when they repre-
sent different types of information.

In our case, for both embedding methods, we would choose both parameters to
be within a medium range, resulting in moderately dense clusters with some degree
of overlap and a balanced spread of points. This configuration allows us to preserve
the overall shape of the clusters while maintaining interpretability in the visualiza-
tion.

To complement the visual analysis, we also compute clustering metrics for these
projections. The main goal is not to fine-tune the UMAP hyperparameters using
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FIGURE 4.1: UMAP projections for UB 2024 with Topic embeddings.

FIGURE 4.2: UMAP projections for UB 2024 with SPECTER2 embed-
dings.
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these metrics, but rather to check whether the patterns seen in the visualizations are
supported by quantitative evidence. In other words, we use the metrics to assess
whether the clusters that appear more separated and compact in the plots are also
evaluated as such numerically.

Tables 4.1 and 4.2 present selected configurations for the UB 2024 dataset using
Topic embeddings and SPECTER2 embeddings, respectively. These tables include
both the default configuration and other cases that stood out visually. The com-
plete results for all hyperparameters combinations can be found in Appendix A, in
Tables A.2 and A.3.

Overall, the metrics align well with the patterns observed in the visualizations.
For example, in the Topic embeddings, configurations with n_neighbors set to 20 or
50 and smaller min_dist values tend to produce more compact and better-separated
clusters in the visualizations. These same settings usually result in higher Silhouette
and Calinski–Harabasz scores, confirming the visual impressions. A similar trend is
observed in the SPECTER2 results, where visually clearer groupings correspond to
better metric values.

The default configuration (n_neighbors = 15, min_dist = 0.1) performs rea-
sonably well in both cases, showing a good balance across all metrics. However, con-
figurations like n_neighbors = 20 and min_dist = 0.0125 or min_dist = 0.0125
sometimes show slight improvements and produce equally interpretable visualiza-
tions. Note that these are also the medium-range values as we mentioned before.

n_neighbors min_dist Silhouette Davies-Bouldin Calinski-Harabasz
15 0.1000 0.1170 1.0722 3619.0722
5 0.0500 0.0399 3.3972 1727.3931

20 0.8000 0.0982 0.9953 3272.9463
50 0.0125 0.2004 1.1493 2248.9446

100 0.0125 0.1267 1.9182 1758.5996

TABLE 4.1: Selected clustering metrics for UMAP hyperparameters
configurations on the UB 2024 dataset using Topic embeddings.

n_neighbors min_dist Silhouette Davies-Bouldin Calinski-Harabasz
15 0.1000 0.0775 2.1742 1800.4878
5 0.8000 0.0597 2.9995 1523.1870

20 0.0125 0.1006 2.0738 1991.3978
50 0.0125 0.0930 2.3555 1815.8835

100 0.8000 0.0597 3.0772 1706.9482

TABLE 4.2: Selected clustering metrics for UMAP hyperparameters
configurations on the UB 2024 dataset using SPECTER2 embeddings.

4.2 Distance Metric

Now we study the impact of the distance metric. As mentioned earlier, the default
distance metric used by the UMAP Python library is the Euclidean distance. In this
section, we explore other available options to see if a different metric can better re-
flect the structure of our data and lead to improved results. For this experiment, we
go back to using the default values for n_neighbors and min_dist.
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Figures 4.3 and 4.4 show the results of applying the UMAP algorithm with differ-
ent distance metrics to the UB 2024 dataset, using hierarchical topic embeddings and
SPECTER2 embeddings respectively. Overall, in both scenarios we find that the vi-
sualizations remain relatively stable across the various distance metrics, producing
similar shapes overall. Some exceptions are the cosine and correlation distances for
the Topic embedding model, where clusters appear more clearly defined and com-
pact; however, this result does not fully align with what we known from interdisci-
plinary nature of the data (there must be some overlap between different domains).
Another exception is the matching distance applied to the SPECTER2 embeddings,
which results in scattered points that do not capture any meaningful structure from
the embedding space.

FIGURE 4.3: UMAP projections for UB 2024 with Topic embeddings.

FIGURE 4.4: UMAP projections for UB 2024 with SPECTER2 embed-
dings.

We also used clustering metrics to quantitatively assess whether the structures
observed in the visualizations are supported by numerical evidence.

For the Topic embeddings (Table 4.3), the cosine and correlation distance metrics
showed higher Silhouette scores and relatively low Davies-Bouldin indices, which
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align with the clear, well-defined clusters seen in the visualizations.
Similarly, for the SPECTER2 embeddings (Table 4.4 ), the Bray-Curtis and Can-

berra distances achieved the best clustering metric values, indicating more compact
and distinct clusters in their visualizations. However, overall the clustering metrics
show less variation across different distance metrics compared to the Topic embed-
dings. This consistency is also reflected visually, where the SPECTER2 projections
maintain a more stable shape regardless of the distance metric used.

Distance Metric Silhouette Davies-Bouldin Calinski-Harabasz
euclidean 0.1170 1.0722 3619.0762
manhattan 0.0633 1.1092 3034.6414
chebyshev 0.2039 0.8897 4323.1968
minkowski 0.1170 1.0722 3619.0762
cosine 0.3482 0.8303 4073.1016
correlation 0.3535 0.9298 3976.5881
canberra 0.0000 1.4135 1861.3761
braycurtis 0.2537 0.9607 3614.1604
matching 0.0571 1.3221 2321.8289

TABLE 4.3: Clustering metrics for different UMAP distance metrics
using Topic embeddings.

Distance Metric Silhouette Davies-Bouldin Calinski-Harabasz
euclidean 0.0775 2.1742 1800.4878
manhattan 0.0795 2.2870 1700.1873
chebyshev 0.0859 2.3645 1760.1417
minkowski 0.0860 2.8441 1660.1942
cosine 0.0861 2.2863 1745.8170
correlation 0.0870 2.6180 1670.8789
canberra 0.0964 2.0740 1961.0160
braycurtis 0.0986 2.2034 1729.1510
matching 0.0334 3.1105 1285.3419

TABLE 4.4: Clustering metrics for different UMAP distance metrics
using SPECTER2 embeddings.

4.3 Limitations

Let us comment on some limitations of our analysis. Even though it is not possible to
test all ranges of hyperparameters due to practical constraints, one limitation of our
analysis is that we tested only a limited set of values for n_neighbors and min_dist.
Because of this, there may be better configurations outside the tested values that
we did not explore. Additionally, the experiments were conducted solely on the
UB 2024 dataset, so the results might not generalize to other datasets or domains
without further validation.

4.4 Conclusion

In this chapter, we evaluated different UMAP projections by varying the algorithm’s
hyperparameters for the UB 2024 dataset using hierarchical topic embeddings and
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SPECTER2 embeddings.
Our experiments with different values for n_neighbors and min_dist showed

that these parameters can produce quite different visualizations, so it is important
to understand their effects. In our case, mid-range values of n_neighbors (around
15 or 20) and low values of min_dist (0.0125 to 0.1) produced visualizations that
better reflected the behaviour we have seen for cross-domain works, showing the
necessary overlap in the clusters. This result was reflected both visually and with
the clustering metrics.

Regarding the distance metrics, we found that their impact on the final visualiza-
tion varies depending on the embedding model used. For example, the SPECTER2
model appeared more stable overall, while the Topic embeddings showed more vari-
ation, as reflected in both the resulting shapes and the clustering metrics. Another
example, cosine and correlation distances produced more compact, non-overlapping
clusters with the Topic embeddings, but did not have the same effect with the SPECTER2
embeddings.
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Chapter 5

Author Relationships

In this chapter, we move from exploring topic relationships to studying author re-
lationships across different institutions. The main goal stays the same: to create a
visualization tool that highlights the most relevant patterns and helps us gain in-
sights from the data.

For this part of the project, we use only the Nomic embedding model, applying it
to both the UB 2024 and Utrecht 2024 datasets. The next sections present the experi-
ments carried out to explore the author relationships between these two institutions.

5.1 Author Considerations and Embeddings

Let us begin by explaining how we process the works to extract author-related data.
As described earlier, authors are linked to each work through the “authorship” ob-
ject provided by OpenAlex. To retrieve this information, we read from that entity
and extract the name and ID of each author associated with every work. This allows
us to generate a list of authors for each work.

Next, we apply a filtering step by removing works that list more than 20 au-
thors. We do this because these works can introduce noise into the analysis and may
represent large-scale collaborations that are not the focus of this study. Such collab-
orations could be studied separately, but here we are more interested in the general
author relationships within the datasets. Figure 5.1 shows the distribution of the
number of authors per work in the UB 2024 dataset. As the figure illustrates, most
works have between 1 and 15 authors, with a noticeable drop beyond that range.
It is also worth noting that OpenAlex limits the maximum number of authors per
work to 100, which is reflected in the tail of the distribution.

FIGURE 5.1: Distribution of number of authors per work.

After filtering, we restructure the dataset using the explode method. This op-
eration creates one row for each author–work pair, effectively flattening the list of
authors into individual records. With this format, we group the data by author ID
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and collect all the works that each author has contributed to. For each author, we
compute a mean embedding vector by averaging the embeddings of all their works.
This averaged vector serves as a representation of the author in the high dimensional
space. Additionally, for each author, we also collect the Domain of the Primary Topic
of all their works, these we will use later in the visualization as metadata.

Finally, we apply the same UMAP reducer that was trained on the work embed-
dings to project the author embeddings into the same two-dimensional space.

5.2 Joint Visualization for UB and Utrecht Datasets

To construct the visualization tool for the authors, we follow the steps described pre-
viously. In this case, we use the Nomic embeddings for the works and recompute
the UMAP reducer using the combined set of works from both institutions. This en-
sures that the reducer captures the geometry of the shared high-dimensional space.
The author embeddings and their corresponding 2D projections are then computed
using this joint UMAP reducer, as described earlier. Finally, we generate the in-
teractive visualization using DataMapPlot, following the configuration detailed in
Section 2.4.1.

To analyse the visualization, we will return to Figure 2.91. We observe several
patterns. Firstly, the author points appear to be distributed relatively evenly across
all domains. There are no clearly defined clusters of blue (UB) or red (Utrecht) au-
thors, except for a small blue island at the bottom of the map. This matches the
projection of the UB 2024 data using the Nomic model, where we previously iden-
tified a similar cluster corresponding to papers written in Spanish, now fully blue,
as they are exclusively from UB. Even though the clusters are not sharply defined,
we notice that the top region of the visualization contains more UB authors, while
the lower part includes a higher concentration of Utrecht authors. This aligns with
our earlier observations about the Health Sciences domain, which is more heavily
represented in the UB dataset than in Utrecht’s.

5.3 Discussion and Limitations

To further discuss our results, we need to consider several limitations. First, the
method assumes that averaging the embeddings of all works gives a meaningful
representation of an author’s research profile. While this may work well for au-
thors who focus on a single research area, it may not reflect the profiles of those who
publish in multiple, unrelated fields. A more refined approach, such as assigning
weights to works or filtering them based on publication year, could provide more ac-
curate author embeddings, especially if future experiments include data from other
years.

Another point to consider is the combination of a linear operation, like averag-
ing, with a non-linear method such as UMAP. Averaging assumes that the embed-
ding space behaves in a mostly linear way, and that the meaning of a group of texts
can be captured by their average. This works reasonably well in high-dimensional
spaces created by models like Nomic or SPECTER2, which are designed to place
similar texts close together. However, since UMAP is a non-linear algorithm that
focuses on preserving the local structure of the data, the compatibility of the two

1An interactive version of the resulting map can be found at the following link.

https://albagarciaromo.github.io/UB_vs_Utrecht_authors_nomic_15_byInstitution.html
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methods may not be guaranteed. Although this approach still helps to reveal use-
ful patterns, especially when looking at a large number of authors, the interaction
between linear averaging and non-linear dimensionality reduction may limit how
accurately relationships are represented. Future work could explore whether other
non-linear aggregation methods work better alongside UMAP.

5.4 Conclusion

The author visualizations presented in this chapter offer an exploratory approach to
mapping author relationships through aggregated work embeddings. By averaging
the embeddings of each author’s publications, we generate a single vector represen-
tation that allows authors to be positioned in the same semantic space as individual
works. This approach provides a useful way to observe topical similarities between
researchers and to explore patterns across institutions.

While there are limitations to this approach, the resulting visualization serves as
a practical exploratory tool. It helps us examine how authors are distributed across
research areas and highlights potential collaboration patterns between institutions.
Overall, we have achieved our goal of building a visualization that effectively cap-
tures and reveals meaningful author relationships within the data.
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Chapter 6

Conclusion

This thesis has explored the challenge of visualizing the structure of academic knowl-
edge by leveraging open scholarly metadata and modern machine learning tech-
niques. Using the OpenAlex dataset, we developed an interactive visualization tool
that captures relationships between academic works both in terms of topical content
and authorship.

The experiments in Chapter 3 showed that embedding models—especially those
based on transformer architectures and hierarchical topic labels—provide consistent
and meaningful semantic representations of research works. When these embed-
dings are combined with the UMAP dimensionality reduction algorithm, it becomes
possible to generate two-dimensional maps that reveal clear clusters of related top-
ics. We found that the visualisations created with these models reflected the rela-
tionships between topics previously identified. For example, in the UB 2024 dataset,
all embedding models showed noticeable overlap between Health Sciences and Life
Sciences, which matched what we had observed in earlier analyses. We also applied
clustering metrics to support these visual insights with quantitative results, showing
a good match between visual cluster overlap and numerical evaluation. One inter-
esting pattern we noticed was the frequent appearance of a doughnut-like shape in
the maps, suggesting that some research areas are not directly connected to others.

In Chapter 4, we explored the impact of UMAP hyperparameters and observed
how these settings influence the layout and interpretability of the visualizations. For
our data, we saw that mid-range values often produces more coherent and readable
representations, where the spacing between points and the compactness of clusters
was better balances, making the visualisations easier to interpret.

In Chapter 5, we focused on the analysis of author relationships. We constructed
author embeddings by aggregating the embeddings of their associated works and
found that the resulting maps meaningfully captured the relationships between re-
searchers. These visualizations offer a valuable resource for identifying authors
working in similar research areas, serving as a useful tool for exploring potential
collaborations or understanding the structure of research communities.

Even with these positive results, we must have in mind the following limitations.
Firstly, the inherent limitations of UMAP, which can be reflected in our visualiza-
tions. For instance, while the overall structure of clusters is clear and consistent with
the semantic content of the works, we must be cautious when interpreting the dis-
tances between clusters or their specific layout in the 2D space. In several maps,
clusters that appear far apart may in fact share related topics, and the size of clusters
is not always proportional to the number of works they contain. These effects are
expected, given UMAP’s focus on preserving local relationships rather than global
geometry.



38 Chapter 6. Conclusion

Another limitation comes from the way we used the Primary Topic and Domain
labels to colour the visualizations. As mentioned earlier, this can sometimes lead to
a simplified view of the data, especially for works that belong to more than one topic
or do not clearly fit into a single domain. We tried to address this by including extra
metadata in the visualization, helping to better explain the context of each work
within its cluster. Still, it is important to keep in mind that the topic labels from
OpenAlex are assigned automatically, so some misclassification might be present,
which could affect how certain clusters or topic relationships appear in the final
maps. Nevertheless, these labels are assumed to be accurate for the purposes of this
project.

Finally, we want to discuss several ways this project could be improved in the
future. One important step would be to turn the current prototype1 into a more
complete and optimized website. Instead of using a static dataset, the tool could
connect directly to the OpenAlex API and allow live queries that generate visualiza-
tions on the spot. It would also be helpful to make sure the tool works well across
different browsers and devices.

Additionally, a stability analysis of the current results could be carried out by
running the embedding and visualization processes multiple times with different
random seeds. This would help assess the robustness of the patterns observed and
increase confidence in the consistency of the visualizations.

Another area worth exploring is the way OpenAlex assigns topics to research
works. Gaining a better understanding of this process could help identify possible
errors or inconsistencies in the topic classification. In addition, the visualizations
could be improved by going beyond the primary topic. Including secondary and
tertiary topics would provide a more complete view of each work and help produce
more meaningful results, especially in the context of interdisciplinary research.

Finally, another interesting direction for future work would be to analyse how
researchers move between different areas of knowledge over time. By looking at
author trajectories, it would be possible to explore whether authors stay within the
same research area or shift focus and collaborate across disciplines, as shown in
previous studies like C. K. Singh et al. (2023). This could reveal important patterns
in the evolution of scientific careers and the development of interdisciplinary work.

1Here is the link the the prototype website.

https://albagarciaromo.github.io/
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Appendix A

Additional Information

A.1 Mathematical Details for Clustering Metrics

The Silhouette Score for a point i is defined as:

S(i) =
b(i)− a(i)

max(a(i), b(i))

where a(i) is the average distance from point i to other points within the same clus-
ter, and b(i) is the smallest average distance from point i to points in any other clus-
ter.

The Davies-Bouldin Index is defined as:

DB =
1
k

k

∑
i=1

max
j ̸=i

Rii + Rjj

Rij

where k is the number of clusters, Rii and Rjj denote the compactness of clusters i
and j, respectively, and Rij denotes the distance between clusters i and j.

The Calinski-Harabasz Index is calculated as:

CH =
B/(K − 1)

W/(N − K)

where B is the between-cluster sum of squares, W is the within-cluster sum of squares,
N is the total number of data points, and K is the number of clusters.

The between-cluster sum of squares is defined as:

B =
K

∑
k=1

nk∥Ck − C∥2

and the within-cluster sum of squares is defined as:

W =
K

∑
k=1

nk

∑
i=1

∥Xik − Ck∥2

where nk is the number of observations in cluster k, Ck is the centroid of cluster k, C
is the global centroid, and Xik is the i-th point in cluster k.

A.2 Extra Figures and Tables
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FIGURE A.1: Distribution of works per Field and Domain for differ-
ent universities.

FIGURE A.2: Correlation between scores in Utrecht 2024 data.

FIGURE A.3: Variation of UMAP hyperparameters for the MNIST
dataset (source: McInnes, Healy, and Melville (2020)).
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(A) Filter in Life Sciences domain.

(B) Filter in the Social Sciences domain.

FIGURE A.4: Preview of the filter options in the Topics interactive
map.

Original Work Information Non-Zero Features
Topic 1: Dark Matter and... TOPIC_Dark Matter and...: 1.0
Topic 2: Computational Physics... TOPIC_Computational Physics...: 1.0
Topic 3: Particle physics... TOPIC_Particle physics...: 1.0
Subfield 1: Nuclear and High Energy...

SUBFIELD_Nuclear and High...: 2.0
Subfield 3: Nuclear and High Energy...
Subfield 2: Artificial Intelligence SUBFIELD_Artificial Intelligence: 1.0
Field 1: Physics and Astronomy

FIELD_Physics and Astronomy: 2.0
Field 3: Physics and Astronomy
Field 2: Computer Science FIELD_Computer Science: 1.0
Domain 1: Physical Sciences

DOMAIN_Physical Sciences: 3.0Domain 2: Physical Sciences
Domain 3: Physical Sciences

TABLE A.1: Example of topic-Based vector representation.
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(A) Filter in Health Sciences domain.

(B) Filter in the Life Sciences domain.

FIGURE A.5: Preview of the filter options in the Authors interactive
map.

n_neighbors min_dist Silhouette Davies-Bouldin Calinski-Harabasz
5 0.0125 0.07891 1.7102 2341.3286
5 0.0500 0.03987 3.3972 1727.3931
5 0.2000 0.06752 2.3806 2314.7666
5 0.8000 0.03190 3.1356 2074.8865

15 0.1000 0.1170 1.0722 3619.0722
20 0.0125 0.0885 1.1750 2653.2361
20 0.0500 0.0615 1.2574 2577.3235
20 0.2000 0.0647 2.1258 2497.3599
20 0.8000 0.0982 0.9953 3272.9463
50 0.0125 0.2004 1.1493 2248.9446
50 0.0500 0.1831 1.5606 2064.7981
50 0.2000 0.1835 1.0898 2052.6782
50 0.8000 0.0570 1.2492 2253.7119

100 0.0125 0.1267 1.9182 1758.5996
100 0.0500 0.0302 1.2546 2195.1226
100 0.2000 0.0581 1.5290 2181.9959
100 0.8000 0.0743 1.7080 1855.4984

TABLE A.2: Full clustering metrics for different UMAP hyperparam-
eters for UB 2024 with Topic embeddings.
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n_neighbors min_dist Silhouette Davies-Bouldin Calinski-Harabasz
5 0.0125 0.0797 2.4456 1607.7668
5 0.0500 0.0717 2.4899 1535.7249
5 0.2000 0.0817 2.3897 1654.4471
5 0.8000 0.0597 2.9995 1523.1870

15 0.1000 0.0775 2.1742 1800.4878
20 0.0125 0.1006 2.0738 1991.3978
20 0.0500 0.0868 2.1022 1949.5598
20 0.2000 0.0702 2.2720 1866.5370
20 0.8000 0.0570 2.3989 1789.4564
50 0.0125 0.0930 2.3555 1815.8835
50 0.0500 0.0899 2.3704 1785.9542
50 0.2000 0.0805 2.7701 1774.2121
50 0.8000 0.0614 2.4521 1793.7520

100 0.0125 0.0949 2.7127 1776.7771
100 0.0500 0.0886 2.4001 1800.5967
100 0.2000 0.0794 2.4182 1767.1643
100 0.8000 0.0597 3.0772 1706.9482

TABLE A.3: Full clustering metrics for different UMAP hyperparam-
eters for UB 2024 with SPECTER2 embeddings.
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