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Abstract: In this paper, I study avalanches in a mean-field spring-block model to simulate
earthquake dynamics. The model is implemented in Fortran90, and the equations of motion are
solved using a fourth-order Runge-Kutta method. The study begins with the analysis of a single
block, where the system behaves deterministically, and the elastic rebound theory is recovered.
Later, I consider a system of two interacting blocks. The introduction of interactions leads to
the emergence of complex dynamics, and a period-doubling bifurcation appears as heterogeneity
increases. Because of complex behaviour, a statistical analysis of earthquakes is performed using
up to 400 blocks. Then, I observe that the magnitude distribution, related to the logarithm of the
released energy, exhibits scale invariance, consistent with a power-law behaviour. In contrast, the
recurrence time between earthquakes follows an exponential distribution, which is characteristic of
a Poisson process, suggesting that earthquakes are statistically independent.
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I. INTRODUCTION

Earthquakes are a direct consequence of Earth’s crust
deformation. In some areas, fractures arise with deforma-
tion leading to faults. Earthquakes are mainly associated
to the stick-slip behaviour of those stressed faults. The
Earth’s crust is a complex highly heterogeneous and in-
teracting system with non-linear dynamics, and so com-
plexity is an inherent part of it. Because internal de-
tails are hard to assess we cannot pretend to carry out
deterministic predictions of earthquakes. Consequently,
statistical models based on empirical observations are of-
ten employed. It is well known that earthquake statis-
tics follow simple laws. One of the most famous is the
Gutenberg-Ritcher law, introduced by seismologists Beno
Gutenberg and Charles Francis Ritcher in 1956. This law
states that the frequency of occurrence of earthquakes in
terms of their magnitude in a given region or fault follows
the power-law

InN = —bm + Ina, (1)

where N is the number of earthquakes per unit time
with a magnitude greater than m and a and b are con-
stants. Given eq. (1), the same behaviour can be ob-
tained for the rate of events that fall in the magnitude
range [m,m + dm]. The magnitude m of an event is
m = InM, where M is its moment and it is calculated as
the sum of total displacement of slipping blocks during
and event, M = Ziv=1 Ay;. Thus, the magnitude is re-
lated to the logarithm of energy and that is why exhibits
scale-invariance, because energy follows indeed a power-
law. That is a sign of Self-Organized Criticallity (SOC),
by which the system tends to be in a critical state. There-
fore, there is no typical event size, and a wide range of
magnitudes can occur.

A deterministic approach is provided by the elastic re-
bound theory, established by Henry Fielding Reid, and

primarily based on his observations of the displacement
of the ground surface after the 1906 San Francisco earth-
quake. According to it, opposite plates in a fault are
pushed together and forced to move in opposite directions
along their line of contact [3], generating compressive and
shear stresses. These stresses accumulate until the local
stress exceeds the static friction and it is suddenly re-
leased, resulting in an earthquake event. However, be-
cause deterministic models fail to reproduce the statis-
tical features of seismic activity, alternative approaches
are needed. The Burridge-Knopoff (BK) model used in
this paper incorporate interactions, which give rise to
complex dynamics. As will be shown below, complex-
ity emerges in the two-block BK model as heterogene-
ity is increased: the recurrence time of events goes to
chaos through period-doubling bifurcations. Moreover,
for a large number of blocks, the system exhibits power-
law behaviour. Another approach is the Olami-Feder-
Christensen model (OFC), based on the idea of cellu-
lar automaton and dated from 1992. It is derives from
the two-dimensional BK and elements are arranged in
a square grid, where each cell represents a block. The
difference with the BK model is that in the OFC model
slipping is discrete, which means that slipping blocks first
jump to their final stable position and then, the stress on
their neighbours is recomputed by distributing the origi-
nal strain stored in the slipped blocks. For a large system,
this model shows SOC, leading to a power-law behaviour.

The following sections are structured as follows. Sec-
tion 2 introduces the Burridge-Knopoff (BK) model, in-
cluding its dynamic equations, friction law, and dimen-
sionless units. It also describes how numerical simula-
tions are implemented. Section 3 covers the simulation
results, including deterministic dynamics (single block),
the transition to chaos (two blocks), more complex in-
teractions (few blocks), and statistical behaviour (many
blocks). Finally, Section 4 presents the conclusions drawn
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from the study.

II. THE MODEL

The BK model is a simple deterministic model pro-
posed by R. Burridge and L. Knopoff in 1967 [1] rep-
resenting an earthquake fault. The one-dimensional BK
model consists of a chain of blocks of mass m lying on
a rough surface and connected to each other by mean of
springs with stiffness k. and to a driving plate by springs
of stiffness k, as illustrated in Fig. 1. The driving plate
moves at a constant slow velocity v’ loading the system,
simulating the external forces acting on a fault. The
compressive and shear stresses applied are then stored as
elastic energy in the springs until it is dissipated by the
friction force when a block slips. In the mean-field model
studied in this paper, all blocks are connected to each
other beyond the neighbouring blocks and the stiffness
constant between blocks k. is normalized by N — 1.
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FIG. 1: The one-dimensional Burridge-Knopoff model. This
picture is from [5].

The equation of motion for a bloc i is

N
; ke .
m¥; = kp (vt = Y) + (z_;y — NYz) — Fi(Yy),
(2)

where Y; is the displacement of a block from the initial
position and F; the friction force.

. (=00, Fo,i, Y; <0,
FZ(Y;) = Fo,ii(lftf) Y >0 (3)
14+2uY;/(1-0)’  *° '

The only nonlinear term of eq. (2) comes from the
stick-slip friction law, which in this case is the so-called
velocity-weakening friction in its asymmetric form, i.e.,
with back-slip Y < 0 prevented. In the mean-field BK
model with all blocks coupled, to obtain chaos it is nec-
essary to introduce disorder by setting different static
friction values Fj; per each block. During stick, the net
sum of the elastic forces is totally balanced by the static
friction but when it exceeds Fp; a block starts slipping.
Then it turns into dynamic friction. Some parameters
are taken into account: o is the acceleration of a block
when it starts slipping [3] and it ensures that a block
starts to slip with a certain velocity. Conversely, the
block would initiate slipping with an indefinitely slow
velocity and that is a problem when doing numerical cal-
culations. In this paper, the parameter o is set to be
1072, On the other hand, parameter o determines how
quickly dynamic friction decays as velocity is increased.

Treball de Fi de Grau

A. Dimensionless units

Eq. (2) can be expressed in dimensionless units: w =
\/kp/m is the frequency of a block attached to a spring
of the driving plate. L = Fy/k, is the maximum elon-
gation of the spring attached to the driving plate before
a block with a reference static friction of Fj slips, when
neglecting the elastic forces due to the rest of the blocks.
It is also half of the distance travelled by that block until
it sticks if there is no friction and it is not joined to other
blocks. to = T//2m = w™? is a characteristic time, where
T is the period of a block attached only to the driving
plate. vg = L/ty = Lw is a characteristic speed. Fy is
a characteristic static friction. Finally, o = k./k,, is the
ratio between the two elastic coefficients. By expressing
the former variables in terms of these units, dimension-
less quantities are obtained: y; = Y;/L for displacement,

=t'/tg = t'w for time, v = v’ /vy = v'/Lw for velocity
and qu)(yz) = Fz(}/z)/FO for friction, where 51 = FQ,’/FO
is uniformly spaced in range [1,1 + R] and defined as
Bi =1+ =L R. Then, eq. (2) results in

N
.. a N
Vi=vtoyit gy (;_1 Yi — Nyi> = Bi®i(g:). (4)

B. Numerical simulation and time evolution

The BK model is a deterministic dissipative system
which only contains quenched disorder, but it cannot be
solved analytically because of the nonlinear friction term.
Thus, I solved it by mean of a fourth-order Runge-Kutta
method (RK4) using Fortran90. Unless it is said the
contrary, the step size used is h = 1072,

Without loss of generality, the system is initially set
in the stable state y; = 0 and y; = 0. Imposing random
initial displacements only would change the time it takes
to the system to first start slipping. The movement of
the driving plate causes energy to flow into the system
increasing the elastic potential stored in it in a uniform
way throughout the blocks. When the net force acting
on a certain block overcomes static friction, it begins to
slip. While the block is moving, the forces applied on the
rest of the blocks change, so it may trigger the slipping
of other blocks.

It is called an event (related to earthquakes) what goes
on from when a block starts slipping to when all blocks
remain stuck. Events goes off in such a short time and the
driving plate moves at such slow velocity that during an
event the driving plate is considered as stopped. Then,
two times can be defined: the system time, measured
in v~! units and where events happen suddenly in zero
time and the event time, in dimensional units as said
before. After each event, I compute the time at which
next event starts, called as interverent time. Then, the
program advances the system to this time’s state, and
it computes its temporal evolution in event time until it
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goes off again.

Because the velocity is a continuous variable, it is nec-
essary to establish a criterion for when a stuck block be-
gins to move or when a moving block sticks, in order to
determine the beginning and end of an event. Above has
been said that a block starts to slip when the stress on
it exceeds the static friction 3;, so that stuck block will
move at the next time step. Conversely, it will remain
stuck. On the other hand, a slipping block will become
stuck if at the next time step its velocity is negative or
it is decelerating with a velocity smaller than a certain
threshold vy and a stress on it smaller than the static
friction 3;. In this paper, vy = 1076, This convention is
the same as [4].

III. SIMULATION RESULTS
A. One block

For a single block, 8 = 1, I find a periodic behaviour.
As there are not interacting blocks, the stress pattern
is repeated: when the stress on it overcomes [ it slips.
The system is fully deterministic, so I recover the elastic
rebound theory and it does not exhibit complexity at all.

B. Bifurcation diagram with two blocks

A slightly more complex system includes two blocks,
which has now interactions between them. It must be
solved eq. (4) with 8y = 1 for one block and 82 =1+ R
for the other. This model is fairly simple to describe the
behaviour of a single fault but it is a good approxima-
tion of the dynamics of two coupled large segments of
a fault. It allows to relate the spatial inhomogeneity of
an active zone, i.e. the factor R, to the degree of pre-
dictability of the earthquakes originated by it [2]. Fig. 2
shows the period of successive events as varied the fac-
tor R for a fixed « = 0.9, p = 1.0, v = 0.01 and a step
size h = 107%. At R = 0, the behaviour is periodic (not
appreciable in figure) and both blocks slip synchronized.
So there is only a single frequency, which indeed depends
on the particular initial condition chosen [2]. As R is in-
creased, the system drives to chaos via period-doubling
bifurcations. Also, inside chaos appear some regular win-
dows of periods such as 1, 3, 4 and 5 that also undergo
period-doubling. I find a similar behaviour when plotting
distance between blocks at each global stick.

C. More blocks

Now more blocks are added up to five. In Fig. 3, 1
plotted the displacement evolution of each block from its
initial position. As can be seen, there are some phases of
great events in which all blocks are involved and others
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FIG. 2: Bifurcation diagram of the period of sucessive earth-
quakes in adimensional units depending on parameter R for
a=0.9, x=1.0,v=0.01 and a step size h = 107

in which there are only small displacements. These small
events occur before a large event takes place.
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FIG. 3: Displacement evoluction in v~* adimensional time
units of five blocks for « = 9.0, p = 3.0 and R = 1.0.

D. Many more blocks and statistics

Now, I examine a system with many more blocks in or-
der to obtain a power-law behaviour like the Guttenberg-
Ritcher law in real earthquakes and observe how its ex-
ponents change as varying some parameters. First, I ex-
amine the evolution of the average stress per block, as
depicted in Fig. 4 for a system with N = 400, a = 9.0,
@ = 3.0 and R = 1.0. Initially, the system goes through
transients until it reaches a critical state, in which earth-
quakes of a large range of magnitudes can take place,
only limited by the number of blocks. Thus, the system
drives itself into that state and it will no longer leave
it. From then on, the average stress per block fluctuates
around a constant value. That behaviour is an example
of SOC. In the case of Fig. 4, transients arrive more or
less to time 16 which corresponds to around 2,500 events.
In the following simulations, only are taken into account
events from 10,000.

In total, 10% events are simulated of a system with N =
400 blocks. Similar results are obtained for fewer blocks,
like 200. A power-law behaviour gives a distribution that
goes as o« M~? for moment. For recurrence time, an
exponential distribution o« exp(—c7/(T)) emerges.

First, the effect of varying R is examined, as shown in
Fig. 5. Increasing R means raising the disorder, so for
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FIG. 4: Average stress per block evolution in v™* adimen-
sional time units for a system with N = 400, o« = 9.0, u = 3.0
and R =1.0.

R = 0 the system is periodic and all blocks move synchro-
nized, resulting in a unique value of magnitude. When R
is increased but still a lower value, such as 0.5 and 1.0, the
distribution exhibits a pronounced peak at a given large
magnitude, whereas the GR is satisfied for small events.
It means that smaller events exhibit a self-similar criti-
cal behaviour while large events exhibit an off-critical or
characteristic behaviour. However, this peak is reduced
while increasing R until at some value it disappears and
all events then satisfy the GR law. So, for small R most of
the blocks slip at similar stress thresholds, so they usually
slip simultaneously or nearly producing a sharp peak in
a characteristic magnitude. At increasing disorder, slip-
ping conditions for each block are much more different
leading to fewer characteristic events and therefore that
peak gradually disappears. After that, all events follow
the power law. The transition occurs for R between 1.0
and 2.0. In addition, the absolute value of the exponent
of the power law for those events that satisfy it is greater
as R is smaller.
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FIG. 5: Natural logarithm of the distribution of moments in
natural logarithm scale for 10° events with N = 400, o = 9.0
and p = 3.0, for different values of R.

As regards p parameter, lower values imply more dis-
sipation because ®; drops slower with velocity. Thus,
blocks tend to stop more rapidly than when using larger p
values and, in general, they cannot activate other blocks
to slip. On the contrary, upper values imply less dissi-
pation, so there is more energy available to share with
the rest of the blocks and that makes more blocks slip.
Therefore, bigger events with more blocks involved take
place. However, because the system is slippery blocks
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are usually not stressed at their maximum capacity and a
wide range of magnitudes are obtained for big events. An
exponent of b = (—0.688+£0.004) is obtained for x = 10.0
from a linear least-squares regression, with a lineal cor-
relation coefficient 2 = 0.98. For u values a bit smaller,
friction decays slower, so more energy is dissipated and
therefore, less supplied to the rest of the blocks. Then,
fewer blocks are forced to slip among them and more en-
ergy remains in the system. At some point, those blocks
with bigger static friction get full stressed and slip releas-
ing so much energy and triggering other blocks motion
leading to a characteristic magnitude. The magnitude
of that peak really doesn’t depend on the size of the
system, i.e. is really characteristic to the system. In
that case, the exponent for y = 2.0 obtained from a lin-
ear least-squares regression is b = (—1.404 4 0.010), with
r2 = 0.91. Finally, for u very small like 0.5 friction decays
very slowly. Thus, blocks stop quickly and total displace-
ments are smaller. By the way magnitude is measured,
this means smaller magnitudes and there are no large
events. In some papers, they refer to it as creeping-like
behaviour. Now, the exponent for y = 2.0 obtained from
a linear least-squares regression is b = (—0.651 £ 0.004),
with 72 = 0.99. On the other hand, it can be seen that
GR law is better satisfied at mid p values between 1.0 and
3.0. Also, these values have a greater slope so it means
that moment distribution decreases faster as moments is
increased.
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FIG. 6: Natural logarithm of the distribution of moments in
natural logarithm scale for 10° events with N = 400, o =
9.0 and R = 1.1, for different values of u. Moreover, linear
regression for = 0.5, 2.0 and 10.0 is plotted.

As regards «, a higher value means blocks more tightly
bounded, and energy can be shared more easily among
them. Therefore, blocks are more influenced by others
and they behave in a more coherent way. When a block
slips, it is easier to trigger other blocks movement. By
this reason, bigger a values exhibit a peak or nearly at
large magnitudes, as can be seen in Fig. 7. Big events
tend to be of a characteristic magnitude, while small
events follow GR law. For small «, blocks are more in-
dependent and there is not a characteristic magnitude.
In addition, as slipping blocks are less bounded less en-
ergy is transmitted so they can slip a long distance then,
implying larger magnitudes.

In the following, I focus on the recurrence time, defined
as the time (in system time) between successive events.
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FIG. 7: Natural logarithm of the distribution of moment in
natural logarithm scale for 10° events with N = 400, x4 = 3.0
and R = 1.1, for different values of a.

As shown in Fig. 8, it appears to follow an exponen-
tial law, except at short recurrence times for events with
a > 20. This behaviour implies that earthquakes are,
in most cases, statistically independent, and can be ef-
fectively described by a Poisson process. Consequently,
it is a memoryless process, meaning that the occurrence
of an event doesn’t provide information about when the
next will occur. For a > 20, the system becomes highly
bounded, and events with short recurrence times are not
fully independent.
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FIG. 8: Natural logarithm of the distribution of recurrence
time for 10° events with N = 400, x = 3.0 and R = 1.1, for
different values of a.

IV. CONCLUSIONS

e Using the well-known Burridge-Knopoff model, it
was possible to satisfactorily reproduce earthquake

dynamics in a mean-field approximation, partic-
ularly by using a velocity-weakening friction and
heterogeneous static friction for each block. For a
single block, the system exhibits deterministic dy-
namics consistent with the elastic rebound theory.
When more blocks are added and coupled through
interactions, the system develops complex dynam-
ics. Specifically, with two blocks, a period-doubling
route to chaos appears, along with intermediate pe-
riodic windows of periods 1, 3, 4, and 5.

e Considering a large number of blocks, it has been
shown that Burridge-Knopoff is effective in repro-
ducing a power-law behaviour in the magnitude dis-
tribution, as expected for real earthquakes. More-
over, for certain values of the parameter p, which
controls the decay of dynamic friction, the moment
distribution exhibits a peak at a characteristic mag-
nitude. I found a similar effect for large values of
stiffness between blocks. Statistical analysis also
revealed an exponential distribution of recurrence
time, indicating that they are governed by a Pois-
son process. This suggest that events are statisti-
cally independent, regardless of the previous event.

e A drawback of using mean-field approximation in
the present approach is the need to assign a differ-
ent static friction threshold to each block in order
to introduce disorder. This adds another parameter
to take into account. In this work, this parameter is
denoted as R. As a result, the outcomes for differ-
ent values of ;1 and « depend on the specific choice
of it.

Acknowledgments

First, I would like to thank my advisor Dr. Jordi Bard
Urbea for his constant support, valuable guidance, and
willingness to assist me at every stage of this project. I
also thank my parents for their encouragement and for
always being there when needed to give a hand.

[1] Burridge, R. and Knopoff, L.. ”Model and theoretical Seis-
micity”. Bull. Seismol. Soc. Amer. 57: 341-371 (1967).

[2] Lacorata, G. and Paladin, G.. "Predictability time from
the seismic signal in an earthquake model”. J. Phys. A:
Math. Gen. 26: 3463-3471 (1993).

[3] Carlson, J. M., Langer, J. S. and Shaw, B.E.. ?Dynam-
ics of earthquake faults”. Rev. Mod. Phys. 66: 657-670
(1994).

[4] Xia, J., Gould, H., Klein, W., Rundle, J. B.. "Near mean-
field behavior in the generalized Burridge-Knopoff earth-

Treball de Fi de Grau

quake model with variable range stress transfer”. Phys.
Rev. E 77: 031132 (2008).

[5] Mascia, C., Moschetta, P.. ”Numerical evidences of al-
most convergence of wave speeds for the Burridge-Knopof
model”. SN Appl. Sci. 2: 2053 (2020).

Barcelona, March 2022



Mean-field Burridge-Knopoff model for understanding earthquakes Alejandro Nicolds Noguerol

Model de Burridge-Knopoff en camp mig per entendre els terratremols

Author: Alejandro Nicolds Noguerol, anicolno25@alumnes.ub.edu
Facultat de Fisica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisor: Jordi Baré Urbea, jbaro@ub.edu

Resum: En aquest article, s’estudien les allaus d’un model de blocs i molles de camp mitja per
simular la dinamica dels terratrémols. Aixi doncs, s’implementa un model en Fortran90 que resol
mitjancant un Runge-Kutta de 4t ordre les equacions de moviment. L’estudi comenga amb ’analisi
d’un sol bloc, observant-se un comportament determinista consistent amb la teoria del rebot elastic.
A continuacié, la introduccié d’interaccions porta a I’aparicié de dinamiques complexes, observant-
se per dos blocs una bifurcacié period-doubling a mesura que augmenta [’heterogeneitat. A causa de
I’existencia de complexitat, es duu a terme una analisi estadistica dels terratremols en un sistema
de 400 blocs. Aleshores, s’observa que la distribucié de magnituds, relacionada amb el logaritme
de l’energia alliberada, presenta invariancia d’escala, consistent amb un comportament de llei de
poténcies. En canvi, el temps de recurréncia entre terratrémols segueix una distribucié exponencial,
caracteristica d’un procés de Poisson, suggerint independeéncia estadistica entre terratrémols.
Paraules clau: Criticalitat, camp mig, llei de poténcies, caos, integracié amb RK4.

ODSs: 3. Salut i benestar, 4. Educacié de qualitat.
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13.
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14.
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El contingut d’aquest TFG, part d'un grau universitari de Fisica, es relaciona amb ’ODS 4, i en particular amb
la fita 4.4, ja que contribueix a 1’educacié a nivell universitari. També es pot relacionar amb I’ODS 3 perque preten
aprofundir en el coneixement dels terratrémols per millorar la prevencié i aixi disminuir les possibles afectacions a la

poblacio.
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