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Abstract: We introduce a method to find a low sparsity partition and an estimate h of the
Cheeger constant of complex networks by exploiting the geometric properties that many networks
exhibit. We generate synthetic networks from the Sl/IHI2 model and obtain estimates for h that are
between one and three orders of magnitude lower than the average sparsity over a large number of
random partitions, (s), and decrease with network size. We then select seven real networks, infer
an embedding into the hyperbolic disk and obtain estimates for h that are all lower than (s), but
only three of them are at least one order of magnitude below. In conclusion, the geometric method
provides better results than random in all cases and, if the network exhibits an underlying metric
space, it provides estimates that are orders of magnitude lower than random and decrease with
network size. Keywords: Complex networks. SDGs: 4.

I. INTRODUCTION

Complex networks have become increasingly popular
as a way to organize and analyze large and interconnected
data sets, with plenty of applications in diverse fields such
as communication networks, computer science, social sci-
ences, economics, biology, etc.

A fundamental problem that arises when analyzing
such networks is reducing them to smaller, simpler and
easier to study networks, that is, finding a partition of
the network into two subsets such that both subsets are
similar in size and there are as little links between them
as possible. In order to balance these two conditions, we
shall define the sparsity of a partition.

Let G be a complex network on N nodes and we con-
sider a partition of G: two disjoint subsets A and B on
N4 and Np nodes, respectively, such that every node
of G is in either A or B (or in other words, such that
N = Ns+ By). If we denote the links between A and B
as F4p, then the sparsity of the partition is defined as:

=L (1)

SAB = min{Na, Ng}’

and we can then define the Cheeger constant of the net-
work G as:

hag = %lg{sAB}. (2)

We say a partition A, B of a network G is optimal if it
satisfies sap = hg. However, finding optimal partitions
in general requires exploring every possible partition of
the network and calculating their sparsity in order to
determine the Cheeger constant of the network. This is
an NP-hard problem and, as such, it is not practically
feasible in large networks.

The present project aims to show a polynomial-time
(O(N?)) method to estimate the Cheeger constant of a
network and to provide a partition which satisfies that es-
timate by exploiting the geometric properties that many
real complex networks exhibit.

A. The S'/H? model

As it was shown in [1], many real complex networks
can be mapped into low-dimensional metric spaces with
hyperbolic geometry, the S!/H? model. In the S! model,
this can be done by assigning two hidden variables to each
node in the network; a hidden degree x, which quantifies
its popularity, and an angle 6 € [0, 27) which determines
its position in the similarity space: a circumference of ra-
dius R = % Nodes that are similar are assigned similar
angles and, as such, the angular distance between nodes
gives us an idea of the likelihood of their connection. In
the S* model, the hidden degree distribution p(x) is given
by a power law:

p(r) = (y = DKy '6Y, k> ko, 3)
where v > 2 is a parameter and kg is given by:
v—2
=——{(k). 4
i =1 ()
The connection probability between nodes ¢ and j,
with hidden degrees x;, x; and angles 6;, 6;, respectively,
is then given by:
1
Pij = T’ (5)
)

HEiK

where S > 1 is a parameter (the inverse temperature)
that controls the level of clustering of the network, Af;;
is the (shortest) angular distance between nodes i and j,
and p controls the average degree of the network (k) as
follows:

Aby = 7 |x— 10— 0 (6)

e o

The H? model instead maps the complex network to
the hyperbolic plane. A point (7, 6) in the hyperbolic disk
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is assigned to each node, which combines the popularity
and similarity dimensions that we have discussed in the
S! model. Hyperbolic distance between two nodes is then
an indicator of the likelihood of their connection.

It can be shown that the S' and the H? models are
quasi-isomorphic and we can use them indistinctly, hence
we call it the S'/H? model. This model can be general-
ized to higher dimensions, the S” /H”*! model, but the
one-dimensional model is simpler and it is enough to cap-
ture the geometric properties of many real complex net-
works, so we shall only use the one-dimensional model in
this project.

II. METHOD TO ESTIMATE THE CHEEGER
CONSTANT

We shall now exploit the hidden geometry of a given
complex network in order to find a low sparsity partition
and an estimate of its Cheeger constant.

Nodes that are close in the similarity space of a com-
plex network described by the S! model have a small
angular distance A#;; and, as seen in Eq. (5), they
are much more likely to be connected than further away
nodes with a larger angular distance. Taking this into
consideration, we can partition the similarity space into
two continuous regions, A = {i € nodes |0 < 0; < z}
and B = {i € nodes | x < 0; < 2w} where 0 < z < 27 is
what we call the partition angle. We note that this par-
tition of the similarity space also defines a partition of
the complex network itself and, as we have discussed, it
is reasonable to think that partitions of this type provide
a good estimate of the Cheeger constant of the network,
as long as the network can be described by the S! model.
The method we propose is as follows.

1. We infer an embedding of the complex network into
the hyperbolic disk using the program Mercator
(see [4]) and, for each node 4, we obtain its position
in the similarity space, its angle ;.

2. We choose a step for the partition angle, Zgep,
and a step for the initial angle, sep, as well as
an arbitrary starting initial angle 6, (for simplicity,
we shall use 0 as our initial angle throughout this
project). We set the initial angle § = 6. Note that
the lower the step values, the more geometric par-
titions that will be calculated, and we will obtain
a better Cheeger constant estimate at the cost of
extra computing time.

3. Find the node with the closest angle to 8, node ¢,
such that its angle 6; satisfies § < 6; (this is to
ensure the partition has at least one node in subset
A). Set the partition angle z to @ = 6; + Tstep.

4. Partition the complex network into subsets A =

{i € nodes |0 < 6; <z, mod 2r} and B = {i €
nodes | x < 6; < 2w+ 0, mod 27}.
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5. Calculate the sparsity sap of the partition made
in step 4 using Eq. (1). Set Spmin = sap if sap <
Smin, OT if S;min had not yet been set.

6. Set the partition angle to x —  + Zs.ep. Repeat
steps 4-6 while there is at least one node in subset
B.

7. Set the initial angle to 6 — 0 4 0p,. Repeat steps
3-7 while 6 < 0y + 2.

8. Our estimate for the Cheeger constant of the com-
plex network is $,,in.

It was shown in [4] that the computational complexity
of Mercator scales as O(N?) and, since it is the slowest
part of the geometric method, it also scales as O(N?).

We have written a program that implements the afore-
mentioned method, and we shall test the method by ap-
plying it to different scenarios and comparing its Cheeger
constant estimate, h, with the average sparsity of a large
number of random partitions of the network, (s). In or-
der to do so, we shall first generate synthetic networks
using the S'/H? model for different values of N, 3 and
~. In theory we expect the geometric method to provide
considerably better results than random partitions: that
h is orders of magnitude lower than (s).

Afterwards, we shall perform the same comparison but
instead using real complex networks: we shall map the
networks to their underlying metric space using Merca-
tor, then apply our method on them to obtain an esti-
mate of the Cheeger constant, h, and compare it to the
random average sparsity, (s). If real complex networks
can be well described by the S'/H? model, then we also
expect h to be orders of magnitude lower than (s).

III. RESULTS FOR SYNTHETIC COMPLEX
NETWORKS

We have used the SD-model program found in [3]
to generate synthetic complex networks from the S'
model. For each v € {2.5,3.5} and for each g €
{1.0001,1.25,1.5,1.75,2,3} we have generated complex
networks of sizes N € {1000, 3000, 5000, 7000, 10000}, all
of them with average degree (k) = 10. We shall analyze
these networks in order to validate whether synthetic net-
works behave as expected.

Since synthetic networks from the S' model have a ho-
mogeneous angular distribution of nodes, we expect that
the sparsity of geometric partitions decreases as the par-
tition angle x approaches 7 (both subsets are of similar
size), since then we have Ny ~ Np ~ N/2, and the de-
nominator of Eq. (1) takes its greatest possible value.
This was true for every synthetic network we analyzed,
and we can see an example in Fig. 1. Since networks are
discrete rather than continuous, we observe some fluctu-
ations with respect to the expected behavior caused by
inhomogeneities in the angular distribution of nodes.
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FIG. 1: Sparsity as a function of the partition angle = for
multiple geometric partitions of a synthetic S' network with
parameters v = 2.5, 8 = 2, N = 7000 and (k) = 10. We
have chosen steps ZTstep = Ostep = 0.4. The partitions shown
correspond to the initial angle for which we obtained the par-
tition with the lowest sparsity, 6§ = 2.4. As expected, sparsity
decreases as the partition angle approaches .

On average, we expect random partitions to be of size
Na,Np ~ N/2 and to have Exp ~ (k) N/2 links be-
tween each subset, so the sparsity of an average random
partition would be, using Eq. (1); Srand ~ % = (k),
which does not depend on the size IV of the network. This
also proved to be true for every network we analyzed ex-
cept for some small fluctuations caused once again by the
discrete nature of complex networks. An example of this
behavior can be seen in Fig. 2.
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FIG. 2: Comparison between the average random sparsity and
the geometric Cheeger constant estimate of synthetic S' net-
works as functions of their size N. We have used parameters
v =25, 8 =25 and (k) = 10 to generate all the networks
shown. We have chosen steps Zstep = Ostep = 0.4 for the ge-
ometric partitions, and performed 1000 random partitions to
calculate the average random sparsity of each network. We
have also represented a power law fit aN® of the geometric
Cheeger estimates as a dashed line, with ¢ = 120 4+ 37 and
b= —0.70 £ 0.04. As expected, the average random sparsity
(s) is constant with N and of order (s) ~ (k) = 10, and the
geometric Cheeger estimate decreases as a power law with N.
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It was shown in [2] Appendix 4 that, for complex net-
works with a homogeneous hidden degree distribution,
the Cheeger constant scales with the size N of the net-
work as hg ~ ¢; N8 4+ ¢, N1, and so in the thermody-
namic limit N — oo, the Cheeger constant decays to zero
(since 8 > 1). Because of this, we expect that networks
from the S' model, which have a power law hidden degree
distribution given by Eq. (3), exhibit similar behavior
and their Cheeger constant estimates decay to zero for
increasingly larger networks following a power law trend,
and that they decrease faster for larger values of 3. Once
again, this was true for all the networks we analyzed, and
we can see an example in Fig. 2. In Figs. 3-4, we can ob-
serve that the geometric Cheeger constant estimate does
indeed decrease as ( increases and, by comparing both
figures, we can tell that the same is true for v. We can
also see that, in all cases, the geometric Cheeger estimate
as a function of N can be well approximated as a power
law of the form aN?. The results of the power law fits can
be found in Tables IIT of Appendix A. As we expected,
the exponent b decreases as ( increases: the geometric
Cheeger estimate decays faster with the size of the net-
work N for larger values of the inverse temperature (.
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FIG. 3: Geometric estimate of the Cheeger constant as a func-
tion of N for synthetic S' networks with parameters v = 2.5,
(k) = 10 and different sizes and values of the inverse tem-
perature 8. We have chosen steps Zstep = Ostep = 0.4. The
dashed lines represent power law fits (aN®) of the geometric
Cheeger estimate as a function of N for each value of f.

Lastly and as we have already discussed, we expect
to obtain a much better estimate of the Cheeger con-
stant through our method than the sparsity of an average
random partition, even more so for larger networks and
larger values of 5. Figs. 2-4 show that this is the case:
the average random sparsity is of order (s) ~ (k) = 10 in
all cases, whereas the geometric estimates of the Cheeger
constant are all at least one order of magnitude below,
with increasingly better results for larger values of N,
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FIG. 4: Geometric estimate of the Cheeger constant as a func-
tion of N for synthetic S' networks with parameters v = 3.5,
(k) = 10 and different sizes and values of the inverse tem-
perature 8. We have chosen steps Zstep = Ostep = 0.4. The
dashed lines represent power law fits (aN®) of the geometric
Cheeger estimate as a function of N for each value of 5.

and y; with the best results being three orders of magni-
tude below the average random sparsity.

IV. RESULTS FOR REAL COMPLEX
NETWORKS

After validating that the geometric method to estimate
the Cheeger constant works as expected for synthetic S*
model networks, we selected seven real complex networks
[6-14] in order to test our method on them. We first
used the Mercator program [4] to infer an embedding of
each network into the hyperbolic disk (see Fig. 5 for two
examples), and then we calculated the average random
sparsity and the geometric Cheeger estimate of every net-
work. Since the aforementioned networks have different
average degrees (k), in Fig. 6 we represented the aver-
age random sparsity and the geometric Cheeger estimate
divided by (k), so that we can compare the results of
different networks.

As it can be seen in Fig. 6, it is also true for real
networks that the average random sparsity is of order
(s) ~ (k), independent of the size N of the network.

We also observe in Fig. 6 that the geometric Cheeger
estimate is lower than the average random sparsity (s) in
all cases and, while some estimates are one, two or even
three orders of magnitude lower than (s), our method
does not provide estimates of at least one order of magni-
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FIG. 5: Embeddings of two real networks into the hyper-
bolic disk inferred using Mercator. a) Network [10] of size
N = 4039. Nodes represent Facebook users and edges rep-
resent friendships between users. We inferred § = 2.34134.
b) Network [12] of size N = 10680. Nodes represent users of
the Pretty Good Privacy algorithm and edges represent trust
relationships between users. We inferred = 1.94417.
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FIG. 6: Comparison between the average random sparsity
and the geometric Cheeger constant estimate, both of them
divided by the average degree (k) of the network, for real
networks as functions of their size N. We have chosen steps
Tstep = Ostep = 0.1 for the geometric partitions, and have
performed 10000 random partitions to calculate the average
random sparsity of each network.

tud below (s) in all cases like it did with synthetic com-
plex networks. This is possibly because some real net-
works cannot be properly described by the S' /H? model,
or because they have different parameters v and 3, thus
making them harder to compare directly.

V. CONCLUSIONS

We have introduced a method to find a low sparsity
partition and an estimate of the Cheeger constant of a
complex network by taking advantage of its hidden ge-
ometry.

We first tested the method on synthetic networks: we
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generated synthetic networks from the S!/H? model us-
ing [3] with various sizes and parameters and we verified
all the expected results. We saw that the sparsity as a
function of the partition angle decreases as the partition
angle approaches 7; that is, as both subsets get closer in
size. We then observed that the average random spar-
sity (s) is of order (s) ~ (k) and is independent of the
size of the network N. Furthermore, we noticed that
the geometric estimate of the Cheeger constant decreases
with the size of the network N, and with parameters
and 8. We concluded our analysis of synthetic networks
by pointing out that geometric estimates of the Cheeger
constant are at least about one order of magnitude lower
than the average random sparsity in all cases, with lower
results (up to three orders of magnitude lower) as N,
and + increase. In view of these results, synthetic S! /H?>
model networks behave as we expected and geometric
partitions have a much lower sparsity than random par-
titions, even more so the larger the network and param-
eters v and 3 are. Consequently, ours is a good method
(at least much better than random partitions) to esti-
mate the Cheeger constant and to find a partition that
satisfies that estimate for complex networks that are well
described by the S'/H? model.

Then we tested the geometric method on real com-
plex networks. We selected seven real networks [6—14]
of different sizes and inferred an embedding into the hy-
perbolic disk using Mercator [4] for every network. We
calculated the average random sparsity (s) of each net-
work and, just like we found out for synthetic networks,

real networks also have behave as (s) ~ (k), independent
of the size N of the network. We then applied the ge-
ometric partition method to obtain an estimate of the
Cheeger constant of each network and compared it to
(s). While the geometric estimate of the Cheeger con-
stant was lower than (s) on all cases, it was not at least
one order of magnitude lower on each network unlike in
the synthetic network case. This is likely because some
real networks are not well described by the S' /H? model,
and so the geometric method is unable find a low spar-
sity partition. Regardless, we have obtained results one
order of magnitude lower than (s) on three of the seven
networks we have analyzed, and even three orders of mag-
nitude lower on one of them. As such, our method gives
generally positive results (at least better than random
partitions) for real networks as well as synthetic ones,
especially if they are well described by the S' /H? model.
While it was not the goal of this project, a possible next
step could be to compare the estimates of the Cheeger
constant h provided by the geometric method with other
general methods to estimate h of complex networks.
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Resum: Introduim un metode per a trobar particions amb sparsity petita i una estimacié de la
constant de Cheeger h de xarxes complexes tot aprofitant les propietats geometriques que presenten
moltes xarxes. Generem xarxes sintétiques a partir del model S* /]HI2 i obtenim estimacions de
h que es troben entre un i tres ordres de magnitud per sota de la sparsity mitjana de moltes
particions aleatories, (s), i que decreixen amb el tamany de la xarxa. Després seleccionem set
xarxes complexes reals, inferim un embedding al disc hiperbolic i obtenim estimacions de h que sén
totes més petites que (s), perd només tres d’elles es troben un o més ordres de magnitud per sota.
En conclusié, el métode geomeétric proporciona resultats millors que els aleatoris en tots els casos
i, si la xarxa presenta un espai metric ocult, les estimacions sén ordres de magnitud millors que
les aleatories, i decreixen amb el tamany de la xarxa. Paraules clau: Xarxes complexes. ODSs:
Aquest TFG esta relacionat amb els Objectius de Desenvolupament Sostenible (SDGs)

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la pobresa 10. Reducci6 de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles
3. Salut i benestar 12. Consum i produccié responsables
4. Educacié de qualitat X|13. Accié climatica

5. Igualtat de genere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, justicia i institucions solides
8. Treball digne i creixement economic 17. Alianga pels objectius

9. Industria, innovacid, infraestructures

El contingut d’aquest TFG, part d’un grau universitari de Fisica, es relaciona amb 1’0ODS 4, i en particular amb la
fita 4.4, ja que contribueix a I’educacié a nivell universitari.
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Appendix A: Results of the power law fits

TABLE I: Results of the power law fits aN® of Fig. 3.

B8 a b
1.0001(6.7 £ 0.8 |—0.181 £ 0.015
1.25 |13.6 £1.8{—-0.321 £0.016

1.5 19£5 —0.41£0.03
1.75 |43+£10 |-0.55+0.03
2 120 £40 |—-0.70 £0.04
3 113+ 30 |—0.74 £0.04

TABLE II: Results of the power law fits aN® of Fig. 4.

B8 a b
1.0001|4.7 £0.5|—0.153 £ 0.013
1.25 |9.1+1.5|-0.32+£0.02
1.5 38+8 |—-0.574+0.03
1.75 |45+4 |—-0.67940.013
2 94 £17 |—-0.854+0.03
3 1224+ 99|—-1.05+0.11

Appendix B: Real network description

[6]: Size N = 1707. Nodes represent places and
names from the King James Bible and edges represent
co-occurrence in verses. We inferred § = 3.15.

[7]: Size N = 1893. Nodes represent users of an on-
line social network at the University of California, Irvine,
and edges represent private messages between users. We
inferred 5 = 0.621955.

[8]: Size N = 3775. Nodes represent users of a Bit-
coin trading platform called Bitcoin Alpha and edges
represent trust ratings between users. We inferred 5 =
1.09999.

[10]: Size N = 4039. Nodes represent Facebook users
and edges represent friendships between users. We in-
ferred § = 2.34134.

[11]: Size N = 8114. Nodes represent genes of
Drosophilas and edges represent genetic interactions. We
inferred 8 = 1.07889.

[12]: Size N = 10680. Nodes represent users of the
Pretty Good Privacy algorithm and edges represent trust
relationships between users. We inferred g = 1.94417.

[13]: Size N = 10879. Nodes represent hosts in the
Gnutella network topology and edges represent connec-
tions between hosts. We inferred g = 0.732776.
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